Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m872–m873. doi: 10.1107/S1600536808016218

Di-μ-methacrylato-κ4 O:O′-bis­[aqua­bis(1,10-phenanthroline-κ2 N,N′)copper(II)] dinitrate dihydrate

M T H Tarafder a,*, M Y Reza a, K A Crouse b, Suchada Chantrapromma c,, Hoong-Kun Fun d,§
PMCID: PMC2961707  PMID: 21202745

Abstract

The title complex, [Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2O, contains a dimeric [Cu2(C4H5O2)2(C12H8N2)2(H2O)2]2+ dication with two five-coordinated CuII ions linked by two methacrylate ions in a synsyn bridging arrangement. The dication possesses pseudo-twofold rotational symmetry. The penta­coordination of each CuII ion has a distorted square-pyramidal geometry, with two N donors from a phenanthroline ligand and two carboxyl­ate O atoms occupying basal sites and the apical position being occupied by a water mol­ecule. In the crystal packing, mol­ecules are linked to form a three-dimensional framework by O—H⋯O and C—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distances of 3.6039 (15), 3.5301 (15), 3.6015 (15), 3.6496 (15) and 3.6858 (15) Å].

Related literature

For bond-length data, see: Allen et al. (1987). For structures of related copper(II) complexes, see: Chen et al. (2008); Perlepes et al. (1995). For related literature, see: Besecke et al. (1989); Blackburn et al. (1995); Chen et al. (2007); Dang (1994); Houser et al. (1996); Matsushima et al. (1995); Reza et al. (1998, 1999, 2003); Tokii et al. (1989, 1990, 1992, 1995); Schubert (1996); Schubert et al. (1992, 1995).graphic file with name e-64-0m872-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2O

  • M r = 853.75

  • Monoclinic, Inline graphic

  • a = 13.6146 (2) Å

  • b = 15.7322 (2) Å

  • c = 16.4463 (2) Å

  • β = 102.1306 (8)°

  • V = 3443.94 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 100.0 (1) K

  • 0.27 × 0.24 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.716, T max = 0.822

  • 43546 measured reflections

  • 10036 independent reflections

  • 6885 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.113

  • S = 1.04

  • 10036 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016218/ci2604sup1.cif

e-64-0m872-sup1.cif (32.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016218/ci2604Isup2.hkl

e-64-0m872-Isup2.hkl (490.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O6i 0.85 2.42 3.115 (3) 140
O1W—H1W1⋯O8i 0.85 2.32 2.882 (3) 124
O2W—H1W2⋯O5ii 0.85 2.03 2.761 (3) 144
O3W—H1W3⋯O5 0.86 1.97 2.811 (3) 163
O4W—H1W4⋯O10iii 0.93 2.02 2.807 (3) 142
O1W—H2W1⋯O3Wi 0.85 2.19 2.791 (3) 127
O3W—H2W3⋯O9iii 0.91 2.00 2.862 (3) 157
O4W—H2W4⋯O7iii 0.84 2.29 2.860 (3) 125
C1—H1A⋯O4 0.93 2.56 3.035 (3) 112
C1—H1A⋯O10iv 0.93 2.53 3.247 (3) 134
C3—H3A⋯O9v 0.93 2.37 3.186 (4) 146
C14—H14A⋯O4Wvi 0.93 2.52 3.364 (4) 151
C15—H15A⋯O2Wii 0.93 2.49 3.357 (3) 155
C21—H21A⋯O3v 0.93 2.39 3.318 (4) 179
C28—H28B⋯O3 0.93 2.42 2.747 (4) 100
C32—H32B⋯O1 0.93 2.42 2.737 (4) 100
C32—H32B⋯O8i 0.93 2.43 3.345 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

MTHT and MYR thank Rajshahi University for the provision of laboratory facilities. KAC thanks the Universiti Putra Malaysia for financial assistance. SC thanks Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for University Golden Goose Grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

There is considerable interest in bioinorganic chemistry of metal carboxylates as these are formally analogous to organic esters (Dang, 1994; Reza et al., 2003). In this type of complex, the reactivity of the carboxylates towards the nucleophiles is enhanced (Houser et al., 1996; Blackburn et al., 1995; Reza et al., 1998; 1999; Tokii et al., 1989). Since transition metal complexes of methacrylic acid are also polymeric (Schubert, 1996; Schubert et al., 1992, 1995), chemists are attracted to study the application of these types of materials, particularly as catalysts. The CuII ions coordinate with a variety of carboxylates (Besecke et al., 1989; Matsushima et al., 1995). Such related coordinations have appeared in a series of binuclear CuII complexes with 1,3-bis(hydroxyphenyl)-2-imidazolidinethione, [Cu(RCOO)(HL1)]2 (R = CH3, C6H5),(HL1= 1-hydroxymethyl-3-methyl-2-imidazolidinethione), [Cu(RCOO)(L2)]2 (R = CH3, 2-CH3C6H4, and 4-CH3C6H4) (imidazolidinethione being the second substituent of the aryl ring) (Tokii et al., 1995), bis(µ-carboxylato-O,O')-diaquobis (1,10-pherathroline) dicopper(II) dinitrate tetrahydrates [Cu(RCOO)(phen)(H2O)]2(NO3)2. 4H2O [R = H, CH3 and (CH3)3C] (Tokii et al., 1990; 1992). Matsushima et al. (1995) have reported some triply bridged dinuclear carboxylato copper (II) complexes, [Cu2(Ph2CHCOO)3(L)2]BF4 [L = 2.2'-bipyridine and 1,10-phenanthroline]. From these related coordinations (Perlepes et al., 1995), we found there is no report on conjugated double-bond systems containing a monobasic acid (e.g. methacrylic acid) with synsyn bridging modes of binuclear Cu(II) and this has prompted us to attempt to prepare a binuclear Cu(II) complex with phenanthroline (phen) and methacrylic acid. Methacrylic acid and phenanthroline were used to gain some insight into the flexiblity of these complexes and also the effect of these auxiliary ligands on stacking. We report herein the first example of a binuclear CuII complex of this type, [Cu(C3H5COO)(phen)(H2O)]2(NO3)2.2H2O, along with its crystal structure.

The asymmetric unit of the title compound consists of a dinuclear [Cu(C3H5COO)(phen)(H2O)]22+ cation, two NO3- anions and two H2O molecules (Fig. 1). The coordination environment of each CuII ion is CuN2O3 in which the basal positions are formed by two N atoms from a bidentate phenanthroline ligand [Cu1—N1 = 2.014 (2) Å, Cu1—N2 = 2.018 (2) Å and Cu2—N3 = 2.008 (2) Å, Cu2—N4 = 2.019 (2) Å] and two O atoms of two bridging methacrylato ligands [Cu1—O1 = 1.9641 (19) Å, Cu1—O4 = 1.9446 (18) Å and Cu2—O2 = 1.9440 (19) Å, Cu2—O3 = 1.956 (2) Å]. The two carboxylate groups are in the bidentate synsyn bridging mode. The apical position of each CuII is occupied by an O atom of a water molecule [Cu1—O1W = 2.1525 (19) Å and Cu2—O2W = 2.1538 (18) Å]. These axial bonds are longer than the bond lengths in the basal positons. Coordination of the N2 chelate phenanthroline ligand to the CuII ion results in the formation of two planar five-membered rings Cu1/N1/N2/C11/C12 (with a maximum deviation of -0.019 (1) Å for atom Cu1) and Cu2/N3/N4/C23/C24 (with a maximum deviation of 0.014 (3) Å for atom C23). The dihedral angle between these two five-membered rings is 5.48 (10)°. The Cu1···Cu2 distance is 3.106 (1) Å. The orientation of the two bridging methacrylato ligands can be indicated by the dihedral angle between the mean planes through Cu1/O3/O4/C25 and Cu2/O1/O2/C29 of 71.74 (13)°. The electron delocalizations in the two carboxylate fragments are complete as can be indicated by the almost equal C—O bond lengths [C25—O3 = 1.263 (3) Å, C25—O4 = 1.261 (3) Å and C29—O1 = 1.259 (3) Å, C29—O2 = 1.266 (3) Å]. All bond lengths are in agreement with other related structures (Chen et al., 2008; Perlepes et al., 1995) and are in normal ranges (Allen et al., 1987).

The two phen ligands of the dinuclear complex are stacked with their centroids separated by 3.625 (1) Å indicating significant π–π interactions. The various centroid–centroid separations involving the two phen ligands are: Cg1···Cg3 = 3.6039 (15)Å, Cg1···Cg6 = 3.5301 (15)Å, Cg2···Cg4 = 3.6015 (15)Å, Cg4···Cg5 = 3.6496 (15)Å and Cg5···Cg6 = 3.6858 (15)Å (Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1–C4/C12, N2/C7–C11, N3/C13–C16/C24, N4/C19–C23, C4–C7/C11/C12 and C16–C19/C23/C24 rings, respectively).

O—H···O hydrogen bonds between water molecules and the nitrate ions play an important role in stabilizing the crystal structure (Table 1). These hydrogen bonds link the complex molecules, water molecules and nitrate groups into a two-dimensional network parallel to the (010) plane. The two-dimensional network is further strengthened by π–π interactions between two symmetry related C4–C7/C11/C12 rings at (x, y, z) and (1-x, 2-y, 1-z), with their centroids separated by 3.5381 (15) Å. The adjacent two-dimensional network are cross-linked along the b axis via weak C—H···O interactions.

Experimental

The title compound was synthesized by adding a mixture of methacrylic acid (10 mmol) and 1,10-phenanthroline (10 mmol) in water (60 ml) with triethylamine (10 mmol) to aqueous Cu(NO3)2 (2.42 g, 10 mmol) in water (20 ml) while stirring. The stirring was continued for another half an hour. Precipitates initially formed were filtered and the filtrate was concentrated to one-third of its original volume (25 ml). Deep blue single crystals of the title compound which appeared after a week were collected, washed with water and dried in air at room temperature (m.p. 494 K).

Refinement

H atoms attached to O atoms (water) were located in difference Fourier maps and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(O). C-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso = 1.2-1.5Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The O—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed approximately along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2O F000 = 1752
Mr = 853.75 Dx = 1.647 Mg m3
Monoclinic, P21/c Melting point: 494 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 13.6146 (2) Å Cell parameters from 10036 reflections
b = 15.7322 (2) Å θ = 1.5–30.0º
c = 16.4463 (2) Å µ = 1.32 mm1
β = 102.1306 (8)º T = 100.0 (1) K
V = 3443.94 (8) Å3 Block, blue
Z = 4 0.27 × 0.24 × 0.16 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 10036 independent reflections
Radiation source: fine-focus sealed tube 6885 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.069
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 1.5º
ω scans h = −19→19
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −21→22
Tmin = 0.716, Tmax = 0.822 l = −23→22
43546 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.113   w = 1/[σ2(Fo2) + (0.0457P)2 + 1.7397P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
10036 reflections Δρmax = 0.68 e Å3
489 parameters Δρmin = −0.78 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.38427 (2) 0.86242 (2) 0.280115 (19) 0.01328 (8)
Cu2 0.15436 (2) 0.83947 (2) 0.21652 (2) 0.01440 (9)
O1 0.36221 (13) 0.74006 (12) 0.26072 (11) 0.0175 (4)
O2 0.19581 (14) 0.72098 (12) 0.22433 (12) 0.0210 (4)
O3 0.19962 (13) 0.86057 (13) 0.11307 (12) 0.0195 (4)
O4 0.36133 (13) 0.89340 (12) 0.16317 (11) 0.0163 (4)
O1W 0.54224 (14) 0.84782 (13) 0.28332 (12) 0.0206 (4)
H1W1 0.5927 0.8148 0.2920 0.031*
H2W1 0.5466 0.8796 0.2424 0.031*
O2W 0.00149 (13) 0.80624 (12) 0.16106 (12) 0.0189 (4)
H1W2 −0.0256 0.8171 0.2020 0.023*
H2W2 0.0072 0.7524 0.1618 0.023*
N1 0.35977 (15) 0.98300 (14) 0.31179 (13) 0.0136 (4)
N2 0.40285 (15) 0.84520 (14) 0.40400 (13) 0.0133 (4)
N3 0.11389 (15) 0.96185 (14) 0.22068 (13) 0.0148 (5)
N4 0.15054 (15) 0.84559 (14) 0.33844 (14) 0.0147 (5)
C1 0.33896 (18) 1.05166 (17) 0.26328 (16) 0.0148 (5)
H1A 0.3400 1.0470 0.2071 0.018*
C2 0.31551 (19) 1.13053 (18) 0.29446 (17) 0.0174 (6)
H2A 0.3001 1.1768 0.2589 0.021*
C3 0.31543 (19) 1.13909 (18) 0.37706 (17) 0.0177 (6)
H3A 0.2990 1.1909 0.3979 0.021*
C4 0.34054 (18) 1.06858 (17) 0.43076 (16) 0.0156 (5)
C5 0.34706 (19) 1.07128 (18) 0.51869 (17) 0.0176 (6)
H5A 0.3327 1.1217 0.5433 0.021*
C6 0.37387 (19) 1.00148 (18) 0.56700 (17) 0.0170 (6)
H6A 0.3791 1.0052 0.6242 0.020*
C7 0.39418 (18) 0.92214 (17) 0.53086 (16) 0.0149 (5)
C8 0.42171 (19) 0.84690 (18) 0.57659 (17) 0.0175 (6)
H8A 0.4275 0.8463 0.6340 0.021*
C9 0.43985 (19) 0.77448 (18) 0.53534 (16) 0.0171 (6)
H9A 0.4590 0.7247 0.5649 0.021*
C10 0.42949 (19) 0.77571 (18) 0.44871 (17) 0.0173 (6)
H10A 0.4417 0.7261 0.4217 0.021*
C11 0.38645 (18) 0.91764 (17) 0.44477 (16) 0.0133 (5)
C12 0.36170 (18) 0.99215 (17) 0.39418 (16) 0.0137 (5)
C13 0.0902 (2) 1.01713 (18) 0.15840 (17) 0.0185 (6)
H13A 0.0966 1.0007 0.1054 0.022*
C14 0.0561 (2) 1.09905 (18) 0.16996 (18) 0.0217 (6)
H14A 0.0388 1.1358 0.1249 0.026*
C15 0.0481 (2) 1.12505 (18) 0.24745 (19) 0.0212 (6)
H15A 0.0258 1.1796 0.2556 0.025*
C16 0.07407 (19) 1.06854 (17) 0.31525 (17) 0.0169 (6)
C17 0.0720 (2) 1.08926 (19) 0.39989 (18) 0.0223 (6)
H17A 0.0540 1.1438 0.4128 0.027*
C18 0.0960 (2) 1.03040 (19) 0.46151 (18) 0.0220 (6)
H18A 0.0961 1.0459 0.5161 0.026*
C19 0.12109 (19) 0.94527 (19) 0.44389 (16) 0.0173 (6)
C20 0.1392 (2) 0.8790 (2) 0.50233 (18) 0.0215 (6)
H20A 0.1367 0.8894 0.5575 0.026*
C21 0.1606 (2) 0.7989 (2) 0.47812 (18) 0.0218 (6)
H21A 0.1711 0.7547 0.5165 0.026*
C22 0.16637 (19) 0.78423 (18) 0.39568 (17) 0.0191 (6)
H22A 0.1818 0.7298 0.3801 0.023*
C23 0.12645 (18) 0.92432 (17) 0.36181 (17) 0.0145 (5)
C24 0.10448 (18) 0.98683 (17) 0.29791 (16) 0.0153 (5)
C25 0.28327 (19) 0.89118 (17) 0.10616 (16) 0.0149 (5)
C26 0.2907 (2) 0.92989 (18) 0.02407 (17) 0.0205 (6)
C27 0.3878 (2) 0.9638 (2) 0.01568 (19) 0.0278 (7)
H27A 0.3827 0.9857 −0.0395 0.042*
H27B 0.4372 0.9193 0.0257 0.042*
H27C 0.4075 1.0086 0.0554 0.042*
C28 0.2060 (2) 0.9363 (2) −0.03626 (18) 0.0335 (8)
H28A 0.2080 0.9634 −0.0861 0.040*
H28B 0.1459 0.9136 −0.0277 0.040*
C29 0.28507 (19) 0.69382 (17) 0.24574 (16) 0.0154 (5)
C30 0.2994 (2) 0.59990 (17) 0.25582 (16) 0.0164 (5)
C31 0.2129 (2) 0.54491 (19) 0.23257 (18) 0.0246 (7)
H31A 0.2294 0.4892 0.2550 0.037*
H31B 0.1938 0.5415 0.1730 0.037*
H31C 0.1581 0.5675 0.2542 0.037*
C32 0.3946 (2) 0.56991 (19) 0.28914 (17) 0.0225 (6)
H32A 0.4054 0.5119 0.2975 0.027*
H32B 0.4480 0.6077 0.3032 0.027*
N5 0.15097 (17) 0.32307 (16) 0.18469 (15) 0.0220 (5)
O5 0.15892 (15) 0.33112 (15) 0.26311 (13) 0.0296 (5)
O6 0.22735 (16) 0.32020 (17) 0.15650 (14) 0.0374 (6)
O7 0.06546 (15) 0.31781 (15) 0.13950 (14) 0.0326 (5)
N6 0.33329 (18) 0.17479 (15) 0.07401 (15) 0.0201 (5)
O8 0.40081 (14) 0.18673 (13) 0.13715 (12) 0.0237 (5)
O9 0.34045 (18) 0.20737 (15) 0.00610 (13) 0.0348 (6)
O10 0.25858 (15) 0.13046 (14) 0.07883 (13) 0.0280 (5)
O3W 0.35788 (15) 0.35991 (13) 0.34804 (13) 0.0242 (5)
H1W3 0.2960 0.3622 0.3220 0.036*
H2W3 0.3448 0.3527 0.3996 0.036*
O4W 0.07983 (16) 0.28832 (15) 0.50131 (13) 0.0319 (5)
H1W4 0.1462 0.3043 0.5052 0.048*
H2W4 0.0414 0.2807 0.5347 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01626 (15) 0.01130 (17) 0.01213 (16) 0.00004 (12) 0.00262 (12) −0.00018 (12)
Cu2 0.01577 (15) 0.01211 (17) 0.01579 (17) 0.00068 (12) 0.00441 (12) −0.00054 (13)
O1 0.0210 (9) 0.0106 (10) 0.0202 (10) −0.0009 (7) 0.0028 (8) −0.0017 (8)
O2 0.0203 (9) 0.0144 (10) 0.0288 (11) 0.0017 (8) 0.0057 (8) −0.0023 (8)
O3 0.0176 (9) 0.0250 (11) 0.0166 (10) −0.0012 (8) 0.0055 (7) −0.0027 (8)
O4 0.0201 (9) 0.0144 (10) 0.0144 (9) −0.0011 (7) 0.0038 (7) −0.0001 (7)
O1W 0.0172 (9) 0.0251 (12) 0.0193 (10) 0.0037 (8) 0.0035 (8) 0.0022 (8)
O2W 0.0204 (9) 0.0161 (10) 0.0215 (10) −0.0014 (8) 0.0070 (8) −0.0008 (8)
N1 0.0142 (10) 0.0125 (11) 0.0148 (11) 0.0001 (8) 0.0047 (8) 0.0001 (9)
N2 0.0132 (10) 0.0118 (11) 0.0151 (11) 0.0000 (8) 0.0032 (8) 0.0010 (9)
N3 0.0140 (10) 0.0137 (12) 0.0173 (11) 0.0002 (9) 0.0048 (8) 0.0025 (9)
N4 0.0141 (10) 0.0141 (12) 0.0160 (11) 0.0011 (8) 0.0030 (8) 0.0015 (9)
C1 0.0175 (12) 0.0135 (13) 0.0144 (12) −0.0004 (10) 0.0053 (10) 0.0009 (10)
C2 0.0181 (12) 0.0145 (14) 0.0201 (14) 0.0003 (10) 0.0053 (10) 0.0030 (11)
C3 0.0185 (12) 0.0136 (14) 0.0215 (14) −0.0009 (10) 0.0051 (10) −0.0018 (11)
C4 0.0145 (12) 0.0148 (14) 0.0177 (13) −0.0020 (10) 0.0041 (10) −0.0015 (10)
C5 0.0195 (12) 0.0156 (14) 0.0186 (14) −0.0021 (11) 0.0063 (10) −0.0052 (11)
C6 0.0188 (13) 0.0201 (15) 0.0132 (12) −0.0036 (11) 0.0057 (10) −0.0029 (11)
C7 0.0114 (11) 0.0175 (14) 0.0161 (13) −0.0023 (10) 0.0037 (10) 0.0012 (10)
C8 0.0179 (12) 0.0231 (16) 0.0124 (12) −0.0011 (11) 0.0050 (10) 0.0001 (11)
C9 0.0186 (12) 0.0168 (14) 0.0169 (13) 0.0029 (11) 0.0061 (10) 0.0049 (11)
C10 0.0178 (12) 0.0156 (14) 0.0192 (14) 0.0003 (10) 0.0051 (10) 0.0016 (11)
C11 0.0117 (11) 0.0158 (14) 0.0129 (12) −0.0002 (10) 0.0036 (9) 0.0003 (10)
C12 0.0106 (11) 0.0158 (14) 0.0146 (12) −0.0014 (10) 0.0029 (9) −0.0004 (10)
C13 0.0217 (13) 0.0172 (14) 0.0169 (13) −0.0012 (11) 0.0049 (11) 0.0023 (11)
C14 0.0204 (13) 0.0166 (15) 0.0273 (15) 0.0001 (11) 0.0035 (11) 0.0076 (12)
C15 0.0200 (13) 0.0126 (14) 0.0323 (16) 0.0011 (11) 0.0082 (12) 0.0014 (12)
C16 0.0150 (12) 0.0134 (14) 0.0230 (14) −0.0016 (10) 0.0055 (10) −0.0028 (11)
C17 0.0231 (14) 0.0183 (15) 0.0278 (16) −0.0015 (11) 0.0105 (12) −0.0087 (12)
C18 0.0211 (13) 0.0265 (17) 0.0200 (14) −0.0023 (12) 0.0076 (11) −0.0068 (12)
C19 0.0139 (12) 0.0244 (16) 0.0154 (13) −0.0031 (11) 0.0070 (10) −0.0032 (11)
C20 0.0167 (12) 0.0327 (18) 0.0158 (13) −0.0016 (12) 0.0047 (10) 0.0007 (12)
C21 0.0174 (13) 0.0283 (17) 0.0198 (14) 0.0002 (12) 0.0037 (11) 0.0096 (12)
C22 0.0151 (12) 0.0168 (14) 0.0249 (15) 0.0011 (10) 0.0032 (11) 0.0037 (11)
C23 0.0095 (11) 0.0140 (13) 0.0207 (14) −0.0018 (10) 0.0050 (10) 0.0001 (11)
C24 0.0126 (11) 0.0153 (14) 0.0185 (13) −0.0011 (10) 0.0046 (10) −0.0013 (11)
C25 0.0203 (13) 0.0126 (13) 0.0126 (12) 0.0040 (10) 0.0057 (10) −0.0022 (10)
C26 0.0320 (15) 0.0161 (15) 0.0144 (13) 0.0025 (12) 0.0074 (11) −0.0004 (11)
C27 0.0360 (17) 0.0264 (18) 0.0236 (16) −0.0043 (14) 0.0123 (13) 0.0038 (13)
C28 0.0358 (17) 0.049 (2) 0.0148 (15) −0.0023 (16) 0.0033 (13) 0.0019 (14)
C29 0.0221 (13) 0.0141 (14) 0.0112 (12) −0.0001 (10) 0.0064 (10) −0.0007 (10)
C30 0.0257 (13) 0.0118 (14) 0.0131 (12) 0.0001 (11) 0.0070 (10) −0.0012 (10)
C31 0.0300 (15) 0.0200 (16) 0.0223 (15) 0.0028 (12) 0.0021 (12) 0.0014 (12)
C32 0.0322 (15) 0.0127 (14) 0.0220 (15) 0.0021 (12) 0.0042 (12) 0.0008 (11)
N5 0.0199 (12) 0.0205 (13) 0.0249 (13) −0.0021 (10) 0.0027 (10) 0.0013 (10)
O5 0.0235 (10) 0.0409 (14) 0.0254 (12) −0.0094 (10) 0.0079 (9) −0.0029 (10)
O6 0.0219 (11) 0.0613 (18) 0.0318 (13) −0.0054 (11) 0.0121 (10) −0.0084 (12)
O7 0.0180 (10) 0.0423 (15) 0.0346 (13) 0.0063 (10) −0.0014 (9) −0.0056 (11)
N6 0.0287 (13) 0.0129 (12) 0.0192 (12) 0.0035 (10) 0.0059 (10) 0.0011 (10)
O8 0.0217 (10) 0.0276 (12) 0.0204 (10) −0.0028 (9) 0.0013 (8) 0.0010 (9)
O9 0.0585 (15) 0.0297 (13) 0.0170 (11) 0.0008 (11) 0.0099 (10) 0.0075 (9)
O10 0.0257 (10) 0.0229 (12) 0.0325 (12) −0.0071 (9) −0.0003 (9) 0.0062 (9)
O3W 0.0227 (10) 0.0271 (12) 0.0234 (11) −0.0011 (9) 0.0065 (8) 0.0033 (9)
O4W 0.0298 (11) 0.0450 (15) 0.0206 (11) −0.0054 (10) 0.0050 (9) −0.0043 (10)

Geometric parameters (Å, °)

Cu1—O4 1.9446 (18) C13—C14 1.396 (4)
Cu1—O1 1.9641 (19) C13—H13A 0.93
Cu1—N1 2.014 (2) C14—C15 1.364 (4)
Cu1—N2 2.018 (2) C14—H14A 0.93
Cu1—O1W 2.1525 (19) C15—C16 1.412 (4)
Cu2—O2 1.9440 (19) C15—H15A 0.93
Cu2—O3 1.956 (2) C16—C24 1.398 (4)
Cu2—N3 2.008 (2) C16—C17 1.436 (4)
Cu2—N4 2.019 (2) C17—C18 1.361 (4)
Cu2—O2W 2.1538 (18) C17—H17A 0.93
O1—C29 1.259 (3) C18—C19 1.427 (4)
O2—C29 1.266 (3) C18—H18A 0.93
O3—C25 1.263 (3) C19—C20 1.404 (4)
O4—C25 1.261 (3) C19—C23 1.406 (4)
O1W—H1W1 0.85 C20—C21 1.371 (4)
O1W—H2W1 0.85 C20—H20A 0.93
O2W—H1W2 0.85 C21—C22 1.394 (4)
O2W—H2W2 0.85 C21—H21A 0.93
N1—C1 1.337 (3) C22—H22A 0.93
N1—C12 1.357 (3) C23—C24 1.424 (4)
N2—C10 1.325 (3) C25—C26 1.504 (4)
N2—C11 1.364 (3) C26—C28 1.358 (4)
N3—C13 1.331 (3) C26—C27 1.459 (4)
N3—C24 1.361 (3) C27—H27A 0.96
N4—C22 1.334 (3) C27—H27B 0.96
N4—C23 1.357 (3) C27—H27C 0.96
C1—C2 1.405 (4) C28—H28A 0.93
C1—H1A 0.93 C28—H28B 0.93
C2—C3 1.365 (4) C29—C30 1.495 (4)
C2—H2A 0.93 C30—C32 1.381 (4)
C3—C4 1.414 (4) C30—C31 1.446 (4)
C3—H3A 0.93 C31—H31A 0.96
C4—C12 1.401 (4) C31—H31B 0.96
C4—C5 1.431 (4) C31—H31C 0.96
C5—C6 1.359 (4) C32—H32A 0.93
C5—H5A 0.93 C32—H32B 0.93
C6—C7 1.434 (4) N5—O6 1.225 (3)
C6—H6A 0.93 N5—O7 1.245 (3)
C7—C11 1.399 (4) N5—O5 1.278 (3)
C7—C8 1.410 (4) N6—O8 1.248 (3)
C8—C9 1.375 (4) N6—O10 1.249 (3)
C8—H8A 0.93 N6—O9 1.251 (3)
C9—C10 1.402 (4) O3W—H1W3 0.86
C9—H9A 0.93 O3W—H2W3 0.91
C10—H10A 0.93 O4W—H1W4 0.93
C11—C12 1.436 (4) O4W—H2W4 0.84
O4—Cu1—O1 95.60 (8) N1—C12—C11 116.4 (2)
O4—Cu1—N1 91.08 (8) C4—C12—C11 119.7 (2)
O1—Cu1—N1 159.63 (8) N3—C13—C14 122.1 (3)
O4—Cu1—N2 172.86 (8) N3—C13—H13A 118.9
O1—Cu1—N2 90.85 (8) C14—C13—H13A 118.9
N1—Cu1—N2 81.82 (9) C15—C14—C13 119.9 (3)
O4—Cu1—O1W 90.17 (7) C15—C14—H14A 120.1
O1—Cu1—O1W 90.99 (8) C13—C14—H14A 120.1
N1—Cu1—O1W 108.26 (8) C14—C15—C16 119.6 (3)
N2—Cu1—O1W 92.77 (8) C14—C15—H15A 120.2
O2—Cu2—O3 94.59 (8) C16—C15—H15A 120.2
O2—Cu2—N3 174.38 (9) C24—C16—C15 117.0 (3)
O3—Cu2—N3 90.33 (9) C24—C16—C17 118.3 (3)
O2—Cu2—N4 92.74 (9) C15—C16—C17 124.8 (3)
O3—Cu2—N4 159.13 (8) C18—C17—C16 121.1 (3)
N3—Cu2—N4 81.71 (9) C18—C17—H17A 119.4
O2—Cu2—O2W 92.09 (8) C16—C17—H17A 119.4
O3—Cu2—O2W 97.23 (7) C17—C18—C19 121.2 (3)
N3—Cu2—O2W 89.97 (8) C17—C18—H18A 119.4
N4—Cu2—O2W 102.00 (8) C19—C18—H18A 119.4
C29—O1—Cu1 133.72 (18) C20—C19—C23 116.5 (3)
C29—O2—Cu2 126.17 (18) C20—C19—C18 125.0 (3)
C25—O3—Cu2 126.70 (17) C23—C19—C18 118.5 (3)
C25—O4—Cu1 131.56 (18) C21—C20—C19 120.1 (3)
Cu1—O1W—H1W1 147.0 C21—C20—H20A 120.0
Cu1—O1W—H2W1 98.9 C19—C20—H20A 120.0
H1W1—O1W—H2W1 107.6 C20—C21—C22 119.6 (3)
Cu2—O2W—H1W2 99.0 C20—C21—H21A 120.2
Cu2—O2W—H2W2 99.1 C22—C21—H21A 120.2
H1W2—O2W—H2W2 104.0 N4—C22—C21 122.2 (3)
C1—N1—C12 117.8 (2) N4—C22—H22A 118.9
C1—N1—Cu1 129.24 (19) C21—C22—H22A 118.9
C12—N1—Cu1 112.87 (17) N4—C23—C19 123.4 (2)
C10—N2—C11 118.1 (2) N4—C23—C24 116.5 (2)
C10—N2—Cu1 129.25 (19) C19—C23—C24 120.1 (2)
C11—N2—Cu1 112.66 (17) N3—C24—C16 123.1 (2)
C13—N3—C24 118.3 (2) N3—C24—C23 116.3 (2)
C13—N3—Cu2 128.63 (19) C16—C24—C23 120.6 (2)
C24—N3—Cu2 112.89 (17) O4—C25—O3 125.3 (2)
C22—N4—C23 118.2 (2) O4—C25—C26 116.8 (2)
C22—N4—Cu2 129.2 (2) O3—C25—C26 117.8 (2)
C23—N4—Cu2 112.52 (17) C28—C26—C27 123.4 (3)
N1—C1—C2 122.1 (2) C28—C26—C25 118.6 (3)
N1—C1—H1A 118.9 C27—C26—C25 117.8 (2)
C2—C1—H1A 118.9 C26—C27—H27A 109.5
C3—C2—C1 119.9 (3) C26—C27—H27B 109.5
C3—C2—H2A 120.1 H27A—C27—H27B 109.5
C1—C2—H2A 120.1 C26—C27—H27C 109.5
C2—C3—C4 119.6 (3) H27A—C27—H27C 109.5
C2—C3—H3A 120.2 H27B—C27—H27C 109.5
C4—C3—H3A 120.2 C26—C28—H28A 120.0
C12—C4—C3 116.7 (2) C26—C28—H28B 120.0
C12—C4—C5 119.0 (2) H28A—C28—H28B 120.0
C3—C4—C5 124.3 (3) O1—C29—O2 124.9 (3)
C6—C5—C4 121.2 (3) O1—C29—C30 117.8 (2)
C6—C5—H5A 119.4 O2—C29—C30 117.3 (2)
C4—C5—H5A 119.4 C32—C30—C31 123.0 (3)
C5—C6—C7 120.8 (3) C32—C30—C29 118.1 (2)
C5—C6—H6A 119.6 C31—C30—C29 118.8 (2)
C7—C6—H6A 119.6 C30—C31—H31A 109.5
C11—C7—C8 116.9 (2) C30—C31—H31B 109.5
C11—C7—C6 118.9 (2) H31A—C31—H31B 109.5
C8—C7—C6 124.2 (2) C30—C31—H31C 109.5
C9—C8—C7 119.2 (3) H31A—C31—H31C 109.5
C9—C8—H8A 120.4 H31B—C31—H31C 109.5
C7—C8—H8A 120.4 C30—C32—H32A 120.0
C8—C9—C10 120.0 (3) C30—C32—H32B 120.0
C8—C9—H9A 120.0 H32A—C32—H32B 120.0
C10—C9—H9A 120.0 O6—N5—O7 122.2 (3)
N2—C10—C9 122.2 (3) O6—N5—O5 119.1 (2)
N2—C10—H10A 118.9 O7—N5—O5 118.6 (2)
C9—C10—H10A 118.9 O8—N6—O10 119.9 (2)
N2—C11—C7 123.7 (2) O8—N6—O9 119.9 (2)
N2—C11—C12 116.1 (2) O10—N6—O9 120.2 (2)
C7—C11—C12 120.2 (2) H1W3—O3W—H2W3 96.1
N1—C12—C4 123.8 (2) H1W4—O4W—H2W4 136.4
O4—Cu1—O1—C29 −84.4 (2) C6—C7—C11—C12 2.0 (4)
N1—Cu1—O1—C29 24.2 (4) C1—N1—C12—C4 1.8 (4)
N2—Cu1—O1—C29 92.6 (2) Cu1—N1—C12—C4 −175.84 (19)
O1W—Cu1—O1—C29 −174.7 (2) C1—N1—C12—C11 −178.7 (2)
O3—Cu2—O2—C29 75.1 (2) Cu1—N1—C12—C11 3.7 (3)
N4—Cu2—O2—C29 −85.4 (2) C3—C4—C12—N1 0.4 (4)
O2W—Cu2—O2—C29 172.5 (2) C5—C4—C12—N1 −178.6 (2)
O2—Cu2—O3—C25 −95.0 (2) C3—C4—C12—C11 −179.2 (2)
N3—Cu2—O3—C25 82.3 (2) C5—C4—C12—C11 1.9 (4)
N4—Cu2—O3—C25 15.3 (4) N2—C11—C12—N1 −1.6 (3)
O2W—Cu2—O3—C25 172.3 (2) C7—C11—C12—N1 177.4 (2)
O1—Cu1—O4—C25 67.2 (2) N2—C11—C12—C4 178.0 (2)
N1—Cu1—O4—C25 −93.5 (2) C7—C11—C12—C4 −3.1 (4)
O1W—Cu1—O4—C25 158.2 (2) C24—N3—C13—C14 −0.2 (4)
O4—Cu1—N1—C1 −1.5 (2) Cu2—N3—C13—C14 175.11 (19)
O1—Cu1—N1—C1 −110.8 (3) N3—C13—C14—C15 1.4 (4)
N2—Cu1—N1—C1 179.3 (2) C13—C14—C15—C16 −0.3 (4)
O1W—Cu1—N1—C1 89.1 (2) C14—C15—C16—C24 −1.7 (4)
O4—Cu1—N1—C12 175.83 (17) C14—C15—C16—C17 177.9 (3)
O1—Cu1—N1—C12 66.5 (3) C24—C16—C17—C18 −2.0 (4)
N2—Cu1—N1—C12 −3.41 (16) C15—C16—C17—C18 178.5 (3)
O1W—Cu1—N1—C12 −93.64 (17) C16—C17—C18—C19 −2.0 (4)
O1—Cu1—N2—C10 22.9 (2) C17—C18—C19—C20 −174.9 (3)
N1—Cu1—N2—C10 −176.2 (2) C17—C18—C19—C23 3.8 (4)
O1W—Cu1—N2—C10 −68.1 (2) C23—C19—C20—C21 −0.1 (4)
O1—Cu1—N2—C11 −158.36 (17) C18—C19—C20—C21 178.5 (3)
N1—Cu1—N2—C11 2.55 (17) C19—C20—C21—C22 1.4 (4)
O1W—Cu1—N2—C11 110.60 (17) C23—N4—C22—C21 −1.1 (4)
O3—Cu2—N3—C13 23.8 (2) Cu2—N4—C22—C21 −179.80 (19)
N4—Cu2—N3—C13 −175.5 (2) C20—C21—C22—N4 −0.8 (4)
O2W—Cu2—N3—C13 −73.4 (2) C22—N4—C23—C19 2.5 (4)
O3—Cu2—N3—C24 −160.65 (17) Cu2—N4—C23—C19 −178.57 (19)
N4—Cu2—N3—C24 −0.01 (17) C22—N4—C23—C24 −176.5 (2)
O2W—Cu2—N3—C24 102.12 (17) Cu2—N4—C23—C24 2.4 (3)
O2—Cu2—N4—C22 −3.5 (2) C20—C19—C23—N4 −1.9 (4)
O3—Cu2—N4—C22 −114.0 (3) C18—C19—C23—N4 179.4 (2)
N3—Cu2—N4—C22 177.5 (2) C20—C19—C23—C24 177.1 (2)
O2W—Cu2—N4—C22 89.3 (2) C18—C19—C23—C24 −1.7 (4)
O2—Cu2—N4—C23 177.76 (17) C13—N3—C24—C16 −2.0 (4)
O3—Cu2—N4—C23 67.2 (3) Cu2—N3—C24—C16 −178.02 (19)
N3—Cu2—N4—C23 −1.32 (17) C13—N3—C24—C23 177.4 (2)
O2W—Cu2—N4—C23 −89.52 (17) Cu2—N3—C24—C23 1.3 (3)
C12—N1—C1—C2 −2.6 (4) C15—C16—C24—N3 2.9 (4)
Cu1—N1—C1—C2 174.57 (18) C17—C16—C24—N3 −176.7 (2)
N1—C1—C2—C3 1.3 (4) C15—C16—C24—C23 −176.4 (2)
C1—C2—C3—C4 1.0 (4) C17—C16—C24—C23 4.0 (4)
C2—C3—C4—C12 −1.7 (4) N4—C23—C24—N3 −2.5 (3)
C2—C3—C4—C5 177.2 (2) C19—C23—C24—N3 178.4 (2)
C12—C4—C5—C6 0.4 (4) N4—C23—C24—C16 176.8 (2)
C3—C4—C5—C6 −178.5 (3) C19—C23—C24—C16 −2.2 (4)
C4—C5—C6—C7 −1.5 (4) Cu1—O4—C25—O3 −5.5 (4)
C5—C6—C7—C11 0.3 (4) Cu1—O4—C25—C26 173.17 (18)
C5—C6—C7—C8 −179.6 (2) Cu2—O3—C25—O4 19.3 (4)
C11—C7—C8—C9 0.4 (4) Cu2—O3—C25—C26 −159.39 (18)
C6—C7—C8—C9 −179.7 (2) O4—C25—C26—C28 −173.6 (3)
C7—C8—C9—C10 −0.9 (4) O3—C25—C26—C28 5.2 (4)
C11—N2—C10—C9 0.8 (4) O4—C25—C26—C27 2.3 (4)
Cu1—N2—C10—C9 179.52 (18) O3—C25—C26—C27 −178.9 (3)
C8—C9—C10—N2 0.3 (4) Cu1—O1—C29—O2 13.8 (4)
C10—N2—C11—C7 −1.4 (4) Cu1—O1—C29—C30 −164.71 (18)
Cu1—N2—C11—C7 179.72 (19) Cu2—O2—C29—O1 −4.5 (4)
C10—N2—C11—C12 177.6 (2) Cu2—O2—C29—C30 174.01 (17)
Cu1—N2—C11—C12 −1.3 (3) O1—C29—C30—C32 6.6 (4)
C8—C7—C11—N2 0.8 (4) O2—C29—C30—C32 −172.0 (3)
C6—C7—C11—N2 −179.1 (2) O1—C29—C30—C31 −175.0 (2)
C8—C7—C11—C12 −178.1 (2) O2—C29—C30—C31 6.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O6i 0.85 2.42 3.115 (3) 140
O1W—H1W1···O8i 0.85 2.32 2.882 (3) 124
O2W—H1W2···O5ii 0.85 2.03 2.761 (3) 144
O3W—H1W3···O5 0.86 1.97 2.811 (3) 163
O4W—H1W4···O10iii 0.93 2.02 2.807 (3) 142
O1W—H2W1···O3Wi 0.85 2.19 2.791 (3) 127
O3W—H2W3···O9iii 0.91 2.00 2.862 (3) 157
O4W—H2W4···O7iii 0.84 2.29 2.860 (3) 125
C1—H1A···O4 0.93 2.56 3.035 (3) 112
C1—H1A···O10iv 0.93 2.53 3.247 (3) 134
C3—H3A···O9v 0.93 2.37 3.186 (4) 146
C14—H14A···O4Wvi 0.93 2.52 3.364 (4) 151
C15—H15A···O2Wii 0.93 2.49 3.357 (3) 155
C21—H21A···O3v 0.93 2.39 3.318 (4) 179
C28—H28B···O3 0.93 2.42 2.747 (4) 100
C32—H32B···O1 0.93 2.42 2.737 (4) 100
C32—H32B···O8i 0.93 2.43 3.345 (3) 168

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x, y+1, z; (v) x, −y+3/2, z+1/2; (vi) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2604).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Besecke, S., Schröder, G. & Gänzler, W. (1989). Ger. Patent DE 3137840.
  3. Blackburn, N. J., Buse, G., Soulimane, T., Steffens, G. C. M. & Nolting, H.-F. (1995). Angew. Chem. Int. Ed. Engl.34, 1488–1495.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, X.-B., Chen, B., Li, Y.-Z. & You, X.-Z. (2007). Appl. Organomet. Chem.21, 777–781.
  6. Chen, F., Lu, W.-M. & Zhu, Y. (2008). Acta Cryst. C64, m167–m169. [DOI] [PubMed]
  7. Dang, Y. (1994). Coord. Chem. Rev.135/136, 93–128.
  8. Houser, R. P., Young, V. G. & Tolman, W. B. (1996). J. Am. Chem. Soc.118, 101–107.
  9. Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1995). Chem. Lett.24, 869–870.
  10. Perlepes, S. P., Huffman, J. C. & Christou, G. (1995). Polyhedron, 14, 1073–1081.
  11. Reza, M. Y., Belayet, H. M. & Islam, M. (2003). Pak. J. Biol. Sci.6, 1494–1496.
  12. Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1998). Bull. Chem. Soc. Jpn, 71, 155–160.
  13. Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1999). Polyhedron, 18, 787–792.
  14. Schubert, U. (1996). J. Chem. Soc. Dalton Trans. pp. 3343–3348.
  15. Schubert, U., Arpac, E., Glaubitt, W., Helmerich, A. & Chau, C. (1992). Chem. Mater.4, 291–295.
  16. Schubert, U., Huesing, N. & Lorenz, A. (1995). Chem. Mater.7, 2010–2027.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  19. Tokii, T., Nagamatsu, M., Hamada, H. & Nakashima, M. (1992). Chem. Lett.21, 1091–1094.
  20. Tokii, T., Nakahara, S., Hoshimoto, N., Koikawa, M., Nakashima, M. & Matsushima, H. (1995). Bull. Chem. Soc. Jpn, 68, 2533–2542.
  21. Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1989). Chem. Lett.18, 1671–1674.
  22. Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016218/ci2604sup1.cif

e-64-0m872-sup1.cif (32.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016218/ci2604Isup2.hkl

e-64-0m872-Isup2.hkl (490.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES