Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 21;64(Pt 7):o1325. doi: 10.1107/S1600536808013214

2,4-Dichloro-6-(3-methyl­piperidin-1-yl)-1,3,5-triazine

Wei Wang a,*
PMCID: PMC2961709  PMID: 21202949

Abstract

In the title compound, C9H12Cl2N4, the piperidine ring adopts a chair conformation. The electron delocalization of the molecule is indicated by the similar C⋯N distances within the triazine ring and by the double-bond character of the C=N triazine–piperidine connectivity. Weak intra­molecular C—H⋯N hydrogen bonds link the two rings within the mol­ecule, which exhibits a pseudo-mirror plane if the methyl group is ignored. π–π Inter­actions between pairs of triazine rings with stacking distances of 3.521 (7) Å are observed in the crystal structure, generated via crystallographic inversion centers.

Related literature

For general background and the experimental method, see: Sandford (2003); Masllorens et al. (2004); Ciunik (1997); Hunter & Sanders (1990); Taylor & Kennard (1982); Thalladi et al. (1998).graphic file with name e-64-o1325-scheme1.jpg

Experimental

Crystal data

  • C9H12Cl2N4

  • M r = 247.13

  • Monoclinic, Inline graphic

  • a = 8.086 (16) Å

  • b = 19.19 (3) Å

  • c = 7.813 (15) Å

  • β = 106.18 (3)°

  • V = 1164 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.750, T max = 1.000 (expected range = 0.692–0.923)

  • 11851 measured reflections

  • 2765 independent reflections

  • 1118 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.189

  • S = 0.86

  • 2765 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013214/si2085sup1.cif

e-64-o1325-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013214/si2085Isup2.hkl

e-64-o1325-Isup2.hkl (135.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N4 0.97 2.34 2.787 (6) 108
C9—H9B⋯N2 0.97 2.35 2.794 (6) 107

Acknowledgments

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

supplementary crystallographic information

Comment

2,4,6-Trichloro-1,3,5-triazine is an interesting building block since it shows an unusual ability of replacement of the chlorine atoms by nucleophiles. It is often used for the construction of an array of novel complex derivatives and of a variety of structurally diverse macrocycles by sequential nucleophilic aromatic substitution processes (Sandford, 2003; Masllorens et al., 2004). Besides, it can also be used to construct a target supramolecular network. A series of substituted triazine compounds stabilized by weak intermolecular interactions such as C—H···N hydrogen bonding and π···π interaction were reported before (Thalladi et al., 1998). Crystallographic evidence for the existence of C—H···N hydrogen bonds with H···N ranges between 2.52 and 2.72 Å was communicated by Taylor & Kennard (1982).

In the title compound, C9H12Cl2N4, the methylpiperidine group adopts a chair conformation and the chiral C6 atom is in S* configuration (Figure 1). If the methyl group at the piperidine group is replaced by a hydrogen atom, the molecule is nearly mirror symmetrical. The crystal data shows that the N—C bond lengths of N1—C7, N3—C4 and N3—C8 are 1.330 (5), 1.344 (5) and 1.340 (5) Å respectively. These relative homogeneous bond distances indicate the inflexibility of the molecule. Though no classic hydrogen bond is found, there is evidence of weak C—H···N interactions in the molecule (Table 1). In contrast to these inflexible intramolecular C—H···N hydrogen bonds, an example of intramolecular C—H···N hydrogen bond interactions showed a stabilizing effect in the conformation of flexible pyranoid rings (Ciunik, 1997).

Fig. 2 shows the packing diagram and the stacking between pairs of pyrazine rings. The stacking distance between the ring centroids Cg···Cgi is 3.521 (7) Å, indicating quite strong π···π interactions between the symmetry-related molecules (symmetry code: -x, 1 - y,1 - z). This face to face π···π interaction plays a very important function in stabilizing the crystal structure (Hunter & Sanders, 1990).

Experimental

2,4,6-Trichloro-1,3,5-triazine (1.84 g, 10 mmol) and 3-methylpiperidine (0.99 g, 10 mmol) were dissolved in the mixture of acetone (25 ml) and H2O (5 ml) in the presence of KOH (0.56 g, 10 mmol) and refluxed for 24 h. The conversion of reaction was monitored by TLC. After the mixture was cooled to room temperature, the solution was filtered and rotated in vacuum. A white solid was obtained after purification by column chromatography on silica gel (n-18 hexane). Colorless crystals suitable for single-crystal X-ray diffraction studies were obtained by slow evaporation of a solution in ethanol at room temperature over several days.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, viewed along the a axis.

Crystal data

C9H12Cl2N4 F000 = 512
Mr = 247.13 Dx = 1.409 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2183 reflections
a = 8.086 (16) Å θ = 3.4–27.4º
b = 19.19 (3) Å µ = 0.53 mm1
c = 7.813 (15) Å T = 293 (2) K
β = 106.18 (3)º Block, colorless
V = 1164 (4) Å3 0.40 × 0.20 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 2765 independent reflections
Radiation source: fine-focus sealed tube 1118 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.068
Detector resolution: 13.6612 pixels mm-1 θmax = 27.9º
T = 293(2) K θmin = 2.6º
CCD_Profile_fitting scans h = −10→10
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −25→25
Tmin = 0.750, Tmax = 1.000 l = −10→10
11851 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.189   w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3
S = 0.86 (Δ/σ)max < 0.001
2765 reflections Δρmax = 0.35 e Å3
136 parameters Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The relative large standard uncertainties (s. u.) noted in Alert level B of PLATON may be explained by measurement at room temperature and weak diffraction power of the crystal.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.33512 (12) 0.54293 (6) 0.33576 (14) 0.0794 (4)
Cl1 −0.24201 (14) 0.64892 (6) 0.38583 (16) 0.0890 (4)
N4 −0.2234 (3) 0.52641 (15) 0.2549 (4) 0.0597 (8)
N3 0.0402 (4) 0.59106 (15) 0.3557 (4) 0.0641 (8)
N2 0.0437 (4) 0.47725 (15) 0.2313 (4) 0.0615 (8)
C9 −0.1242 (5) 0.35428 (19) 0.0892 (6) 0.0774 (12)
H9A −0.1644 0.3467 −0.0385 0.093*
H9B −0.0010 0.3627 0.1210 0.093*
C8 0.1142 (4) 0.53582 (19) 0.3024 (4) 0.0598 (9)
N1 −0.2137 (4) 0.41552 (15) 0.1395 (4) 0.0682 (9)
C7 −0.1306 (4) 0.47334 (18) 0.2081 (5) 0.0574 (9)
C6 −0.4391 (5) 0.34335 (18) 0.2078 (5) 0.0681 (10)
H6A −0.3900 0.3513 0.3359 0.082*
C5 −0.4023 (4) 0.4065 (2) 0.1093 (6) 0.0711 (11)
H5A −0.4575 0.4012 −0.0172 0.085*
H5B −0.4496 0.4477 0.1502 0.085*
C4 −0.1300 (5) 0.58034 (19) 0.3233 (5) 0.0600 (9)
C3 −0.3548 (5) 0.27924 (19) 0.1560 (5) 0.0720 (11)
H3A −0.3735 0.2397 0.2257 0.086*
H3B −0.4074 0.2688 0.0312 0.086*
C2 −0.1620 (5) 0.2904 (2) 0.1872 (6) 0.0826 (12)
H2A −0.1078 0.2958 0.3139 0.099*
H2B −0.1127 0.2496 0.1470 0.099*
C1 −0.6342 (6) 0.3354 (2) 0.1702 (7) 0.0919 (14)
H1A −0.6814 0.3769 0.2065 0.138*
H1B −0.6590 0.2962 0.2356 0.138*
H1C −0.6846 0.3279 0.0450 0.138*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0528 (6) 0.0896 (8) 0.0908 (8) −0.0078 (5) 0.0118 (5) 0.0008 (6)
Cl1 0.0794 (8) 0.0676 (7) 0.1162 (10) 0.0117 (5) 0.0206 (7) −0.0158 (6)
N4 0.0487 (16) 0.0527 (17) 0.075 (2) 0.0032 (14) 0.0119 (15) 0.0052 (15)
N3 0.0560 (19) 0.0611 (19) 0.072 (2) −0.0043 (15) 0.0119 (15) −0.0010 (15)
N2 0.0494 (16) 0.0615 (18) 0.0692 (19) −0.0032 (14) 0.0092 (14) 0.0042 (15)
C9 0.064 (2) 0.063 (2) 0.102 (3) 0.004 (2) 0.018 (2) −0.014 (2)
C8 0.0500 (19) 0.067 (2) 0.056 (2) −0.0029 (18) 0.0052 (17) 0.0127 (18)
N1 0.0432 (16) 0.0593 (19) 0.100 (2) −0.0032 (14) 0.0157 (16) −0.0056 (17)
C7 0.0513 (19) 0.053 (2) 0.064 (2) 0.0009 (17) 0.0095 (17) 0.0117 (17)
C6 0.074 (3) 0.060 (2) 0.070 (2) −0.0073 (19) 0.018 (2) −0.0074 (19)
C5 0.052 (2) 0.062 (2) 0.094 (3) −0.0047 (18) 0.012 (2) −0.002 (2)
C4 0.062 (2) 0.056 (2) 0.059 (2) 0.0055 (18) 0.0129 (18) 0.0089 (17)
C3 0.090 (3) 0.054 (2) 0.070 (3) −0.002 (2) 0.019 (2) −0.0021 (18)
C2 0.085 (3) 0.066 (3) 0.092 (3) 0.015 (2) 0.018 (2) −0.001 (2)
C1 0.077 (3) 0.081 (3) 0.125 (4) −0.012 (2) 0.041 (3) −0.010 (3)

Geometric parameters (Å, °)

Cl2—C8 1.737 (5) C6—C5 1.510 (5)
Cl1—C4 1.743 (4) C6—C1 1.529 (6)
N4—C4 1.305 (5) C6—C3 1.516 (5)
N4—C7 1.373 (4) C6—H6A 0.9800
N3—C8 1.340 (5) C5—H5A 0.9700
N3—C4 1.344 (5) C5—H5B 0.9700
N2—C8 1.312 (5) C3—C2 1.524 (6)
N2—C7 1.372 (5) C3—H3A 0.9700
C9—C2 1.521 (6) C3—H3B 0.9700
C9—N1 1.489 (5) C2—H2A 0.9700
C9—H9A 0.9700 C2—H2B 0.9700
C9—H9B 0.9700 C1—H1A 0.9600
N1—C7 1.330 (5) C1—H1B 0.9600
N1—C5 1.487 (5) C1—H1C 0.9600
C4—N4—C7 113.6 (3) C6—C5—H5A 109.5
C8—N3—C4 110.1 (3) N1—C5—H5B 109.5
C8—N2—C7 114.3 (3) C6—C5—H5B 109.5
C2—C9—N1 108.8 (3) H5A—C5—H5B 108.1
C2—C9—H9A 109.9 N4—C4—N3 130.1 (3)
N1—C9—H9A 109.9 N4—C4—Cl1 115.3 (3)
C2—C9—H9B 109.9 N3—C4—Cl1 114.6 (3)
N1—C9—H9B 109.9 C2—C3—C6 111.1 (3)
H9A—C9—H9B 108.3 C2—C3—H3A 109.4
N2—C8—N3 129.1 (3) C6—C3—H3A 109.4
N2—C8—Cl2 116.0 (3) C2—C3—H3B 109.4
N3—C8—Cl2 114.9 (3) C6—C3—H3B 109.4
C7—N1—C5 122.8 (3) H3A—C3—H3B 108.0
C7—N1—C9 122.5 (3) C9—C2—C3 111.9 (3)
C5—N1—C9 114.8 (3) C9—C2—H2A 109.2
N1—C7—N2 118.9 (3) C3—C2—H2A 109.2
N1—C7—N4 118.3 (3) C9—C2—H2B 109.2
N2—C7—N4 122.8 (3) C3—C2—H2B 109.2
C5—C6—C1 108.8 (3) H2A—C2—H2B 107.9
C5—C6—C3 110.4 (3) C6—C1—H1A 109.5
C1—C6—C3 112.6 (3) C6—C1—H1B 109.5
C5—C6—H6A 108.3 H1A—C1—H1B 109.5
C1—C6—H6A 108.3 C6—C1—H1C 109.5
C3—C6—H6A 108.3 H1A—C1—H1C 109.5
N1—C5—C6 110.6 (3) H1B—C1—H1C 109.5
N1—C5—H5A 109.5
C7—N2—C8—N3 0.6 (5) C4—N4—C7—N2 −0.1 (5)
C7—N2—C8—Cl2 179.6 (2) C7—N1—C5—C6 −122.5 (4)
C4—N3—C8—N2 −1.3 (5) C9—N1—C5—C6 56.7 (4)
C4—N3—C8—Cl2 179.7 (2) C1—C6—C5—N1 −178.9 (3)
C2—C9—N1—C7 124.0 (4) C3—C6—C5—N1 −54.9 (4)
C2—C9—N1—C5 −55.2 (4) C7—N4—C4—N3 −0.8 (5)
C5—N1—C7—N2 −179.9 (3) C7—N4—C4—Cl1 −179.7 (2)
C9—N1—C7—N2 0.9 (5) C8—N3—C4—N4 1.4 (5)
C5—N1—C7—N4 0.8 (5) C8—N3—C4—Cl1 −179.7 (2)
C9—N1—C7—N4 −178.3 (3) C5—C6—C3—C2 55.6 (4)
C8—N2—C7—N1 −179.0 (3) C1—C6—C3—C2 177.3 (3)
C8—N2—C7—N4 0.2 (5) N1—C9—C2—C3 53.9 (4)
C4—N4—C7—N1 179.0 (3) C6—C3—C2—C9 −55.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5B···N4 0.97 2.34 2.787 (6) 108
C9—H9B···N2 0.97 2.35 2.794 (6) 107

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2085).

References

  1. Ciunik, Z. (1997). J. Mol. Struct.436–437, 173–179.
  2. Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc.112, 5525–5534.
  3. Masllorens, J., Roglans, A., Moreno-Mañas, M. & Parella, T. (2004). Organometallics, 23, 2533–2540.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sandford, G. (2003). Chem. Eur. J.9, 1464–1469. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc.104, 5063–5070.
  8. Thalladi, V. R., Brasselet, S., Weiss, H.-C., Bläser, D., Katz, A. K., Carrell, H. L., Boese, R., Zyss, J., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc.120, 2563–2577.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013214/si2085sup1.cif

e-64-o1325-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013214/si2085Isup2.hkl

e-64-o1325-Isup2.hkl (135.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES