Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1215–o1216. doi: 10.1107/S1600536808016577

Cytenamide trifluoro­acetic acid solvate

Andrea Johnston a, Alastair J Florence a,*, Francesca J A Fabbiani b, Kenneth Shankland c, Colin T Bedford d, Julie Bardin a
PMCID: PMC2961719  PMID: 21202853

Abstract

Cytenamide forms a 1:1 solvate with trifluoro­acetic acid (systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide trifluoro­acetic acid solvate), C16H13NO·C2HF3O2. The compound crystallizes with one mol­ecule of cytenamide and one of trifluoro­acetic acid in the asymmetric unit; these are linked by O—H⋯O and N—H⋯O hydrogen bonds to form an R 2 2(8) motif. The trifluoro­methyl group of the solvent mol­ecule displays rotational disorder over two sites, with site-occupancy factors of 0.964 (4) and 0.036 (4).

Related literature

For details on the experimental methods used to obtain this form, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For literature on carbamazepine and other related structures, see: Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2006); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2007); Florence, Bedford et al. (2008); Florence, Shankland et al. (2008); Fernandes et al. (2007). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).graphic file with name e-64-o1215-scheme1.jpg

Experimental

Crystal data

  • C16H13NO·C2HF3O2

  • M r = 349.31

  • Monoclinic, Inline graphic

  • a = 12.1673 (11) Å

  • b = 6.3235 (6) Å

  • c = 21.4525 (15) Å

  • β = 101.932 (8)°

  • V = 1614.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 160 K

  • 0.16 × 0.13 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (ABSPACK/CrysAlis RED; Oxford Diffraction, 2006) T min = 0.83, T max = 0.99

  • 10796 measured reflections

  • 2995 independent reflections

  • 1423 reflections with I > 2σ(I)

  • R int = 0.094

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.178

  • S = 1.04

  • 2984 reflections

  • 236 parameters

  • 24 restraints

  • H-atom parameters not refined

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808016577/cf2202sup1.cif

e-64-o1215-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016577/cf2202Isup2.hkl

e-64-o1215-Isup2.hkl (149.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H5⋯O2i 0.89 1.58 2.462 (4) 173
N1—H11⋯O1ii 0.86 2.23 2.976 (4) 144
N1—H12⋯O1iii 0.87 2.16 2.982 (5) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk).

supplementary crystallographic information

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). Cytenamide-trifluoroacetic acid solvate (CYT-TFAA) was produced during an automated parallel crystallization study (Florence, Johnston, Fernandes et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2006) and its closely related analogues: CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated TFAA solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The compound crystallizes in space group P21/n with one molecule of CBZ and one molecule of TFAA in the asymmetric unit. As in the structure of CBZ-TFAA solvate (Fernandes et al., 2007) the solvent molecule displays rotational disorder and the fluorine atoms were refined over two sites yielding site occupancy factors 0.964 (4), 0.036 (4) and 0.53 (1), 0.47 (1) for CYT-TFAA and CBZ-TFAA respectively. The molecules also adopt a hydrogen-bonded arrangement similar to that observed in CBZ-TFAA solvate whereby the amide group of each CYT molecule is connected to the carboxylic acid group of a TFAA molecule by N–H···O and O–H···O contacts (Table 1) to form an R22(8) hydrogen-bonded motif (Etter, 1990; Bernstein et al., 1995). CYT also forms a second N—H···O contact with an adjacent solvent molecule to form a chain extending along the [010] direction.

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-TFAA was grown from a saturated TFAA solution by isothermal solvent evaporation at 278 K.

Refinement

Owing to the weak scattering, data were integrated applying a theta cut off of 25°. All non-hydrogen atoms were modelled with anisotropic displacement parameters with the exception of the minor component of the disordered site in the TFAA molecule, for which one common isotropic displacement parameter was calculated and fixed during refinement. Bond-length restraints were applied to C—F bond lengths involving atoms F1, F4, F5 and F6. 3-Fold symmetry was imposed on the disordered minor site of the the TFAA molecule by the use of restraints. H-atoms were found in a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were fixed. Eleven reflections were suppressed as outliers in an analysis of the data.

Figures

Fig. 1.

Fig. 1.

The molecular structure of CYT-TFAA, showing 50% probablility displacement ellipsoids. The lower occupancy fluorine atoms have beem omitted for clarity.

Fig. 2.

Fig. 2.

Hydrogen-bonded contacts in CYT-TFAA, showing the adjacent R22(8) CYT-TFAA units further linked by an N—H···O interaction. Minor ocupancy components have been omitted for clarity. CYT and TFAA molecules are coloured according to symmetry equivalence (green and blue respectively) and hydrogen bonds are shown as dashed lines.

Crystal data

C16H13NO·C2HF3O2 F000 = 720
Mr = 349.31 Dx = 1.437 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1137 reflections
a = 12.1673 (11) Å θ = 3–25º
b = 6.3235 (6) Å µ = 0.12 mm1
c = 21.4525 (15) Å T = 160 K
β = 101.932 (8)º Block, colourless
V = 1614.9 (2) Å3 0.16 × 0.13 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Gemini S diffractometer 2995 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1423 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.094
Detector resolution: 15.9745 pixels mm-1 θmax = 25.5º
T = 160 K θmin = 3.1º
φ and ω scans h = −14→14
Absorption correction: multi-scan(ABSPACK/CrysAlis RED; Oxford Diffraction, 2006) k = 0→7
Tmin = 0.83, Tmax = 0.99 l = 0→25
10796 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080 H-atom parameters not refined
wR(F2) = 0.178   Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.42P] ,where P = (max(Fo2,0) + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.0004
2984 reflections Δρmax = 0.73 e Å3
236 parameters Δρmin = −0.60 e Å3
24 restraints Extinction correction: None

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6284 (3) 0.6720 (7) 0.3296 (2) 0.0461
C2 0.5488 (4) 0.4854 (7) 0.31163 (18) 0.0431
C3 0.4806 (3) 0.4971 (7) 0.24379 (18) 0.0380
C4 0.4965 (4) 0.3481 (7) 0.1996 (2) 0.0507
C5 0.4406 (4) 0.3618 (8) 0.1366 (2) 0.0578
C6 0.3726 (4) 0.5332 (9) 0.1180 (2) 0.0576
C7 0.3553 (4) 0.6826 (8) 0.16104 (19) 0.0519
C8 0.4077 (3) 0.6646 (7) 0.22567 (17) 0.0393
C9 0.3794 (4) 0.8214 (7) 0.2691 (2) 0.0475
C10 0.3773 (3) 0.7968 (7) 0.33147 (19) 0.0456
C11 0.4028 (3) 0.6095 (7) 0.37105 (18) 0.0369
C12 0.3488 (4) 0.5854 (7) 0.42250 (19) 0.0470
C13 0.3646 (4) 0.4094 (8) 0.45999 (18) 0.0515
C14 0.4337 (4) 0.2524 (8) 0.4474 (2) 0.0570
C15 0.4912 (4) 0.2755 (7) 0.3988 (2) 0.0497
C16 0.4774 (3) 0.4536 (7) 0.36104 (17) 0.0374
C17 0.8909 (4) 0.3112 (8) 0.4387 (2) 0.0572
C18 0.8197 (3) 0.1386 (7) 0.4008 (2) 0.0461
N1 0.6679 (3) 0.7697 (6) 0.28446 (15) 0.0533
O1 0.7936 (2) 0.1490 (5) 0.34338 (13) 0.0564
O2 0.6593 (2) 0.7215 (5) 0.38684 (12) 0.0591
O3 0.7904 (3) −0.0019 (5) 0.43735 (12) 0.0618
F1 0.9217 (4) 0.4524 (6) 0.40116 (15) 0.1040 0.964 (4)
F2 0.9828 (2) 0.2331 (5) 0.47540 (13) 0.0714 0.964 (4)
F3 0.8361 (3) 0.4082 (5) 0.47792 (16) 0.0845 0.964 (4)
F4 0.846 (3) 0.502 (2) 0.429 (3) 0.0800* 0.036 (4)
F5 0.992 (2) 0.330 (8) 0.425 (3) 0.0800* 0.036 (4)
F6 0.910 (5) 0.282 (6) 0.5010 (4) 0.0800* 0.036 (4)
H11 0.6461 0.7332 0.2450 0.0619*
H12 0.7150 0.8730 0.2945 0.0619*
H21 0.5969 0.3601 0.3139 0.0495*
H41 0.5449 0.2331 0.2125 0.0596*
H51 0.4499 0.2559 0.1077 0.0680*
H61 0.3386 0.5487 0.0754 0.0651*
H71 0.3068 0.7953 0.1473 0.0581*
H91 0.3579 0.9563 0.2521 0.0539*
H101 0.3556 0.9169 0.3516 0.0541*
H121 0.3022 0.6959 0.4312 0.0539*
H131 0.3278 0.3947 0.4943 0.0619*
H141 0.4423 0.1260 0.4713 0.0647*
H151 0.5414 0.1676 0.3914 0.0557*
H5 0.7404 −0.0935 0.4169 0.0888*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.033 (2) 0.065 (3) 0.040 (3) −0.002 (2) 0.005 (2) 0.003 (2)
C2 0.036 (2) 0.047 (3) 0.044 (2) 0.008 (2) 0.002 (2) −0.006 (2)
C3 0.028 (2) 0.046 (3) 0.041 (2) −0.007 (2) 0.0095 (19) −0.007 (2)
C4 0.044 (3) 0.056 (3) 0.052 (3) 0.000 (2) 0.011 (2) −0.009 (2)
C5 0.056 (3) 0.072 (4) 0.048 (3) −0.012 (3) 0.015 (2) −0.021 (3)
C6 0.053 (3) 0.081 (4) 0.036 (3) −0.011 (3) 0.002 (2) −0.003 (3)
C7 0.044 (3) 0.070 (3) 0.041 (3) −0.004 (2) 0.004 (2) 0.002 (3)
C8 0.030 (2) 0.049 (3) 0.038 (2) −0.003 (2) 0.0052 (19) 0.000 (2)
C9 0.047 (3) 0.041 (3) 0.055 (3) 0.002 (2) 0.009 (2) −0.001 (2)
C10 0.047 (3) 0.045 (3) 0.047 (3) 0.003 (2) 0.013 (2) −0.006 (2)
C11 0.036 (2) 0.037 (3) 0.035 (2) −0.006 (2) 0.0022 (19) −0.006 (2)
C12 0.047 (3) 0.056 (3) 0.038 (2) −0.005 (2) 0.008 (2) −0.011 (2)
C13 0.050 (3) 0.069 (4) 0.035 (2) −0.014 (3) 0.007 (2) 0.006 (3)
C14 0.058 (3) 0.057 (3) 0.050 (3) −0.010 (3) −0.004 (2) 0.011 (3)
C15 0.043 (3) 0.055 (3) 0.048 (3) −0.003 (2) 0.001 (2) 0.002 (2)
C16 0.040 (3) 0.036 (3) 0.032 (2) −0.002 (2) −0.0011 (19) −0.003 (2)
C17 0.054 (3) 0.064 (4) 0.055 (3) −0.003 (3) 0.014 (3) −0.002 (3)
C18 0.034 (3) 0.060 (3) 0.044 (3) 0.002 (2) 0.007 (2) 0.008 (3)
N1 0.043 (2) 0.078 (3) 0.038 (2) −0.017 (2) 0.0045 (17) −0.009 (2)
O1 0.0488 (19) 0.082 (2) 0.0375 (17) −0.0082 (17) 0.0064 (14) 0.0091 (17)
O2 0.054 (2) 0.090 (3) 0.0300 (17) −0.0283 (18) 0.0024 (14) −0.0002 (16)
O3 0.060 (2) 0.085 (2) 0.0362 (17) −0.0297 (19) −0.0009 (15) 0.0067 (17)
F1 0.132 (3) 0.101 (3) 0.074 (2) −0.059 (3) 0.008 (2) 0.020 (2)
F2 0.0448 (18) 0.091 (2) 0.0715 (19) −0.0066 (16) −0.0045 (14) −0.0160 (17)
F3 0.075 (2) 0.086 (2) 0.095 (2) 0.0090 (19) 0.0230 (19) −0.027 (2)

Geometric parameters (Å, °)

C1—C2 1.525 (6) C11—C16 1.386 (5)
C1—N1 1.321 (5) C12—C13 1.363 (6)
C1—O2 1.247 (4) C12—H121 0.942
C2—C3 1.521 (5) C13—C14 1.364 (6)
C2—C16 1.517 (6) C13—H131 0.942
C2—H21 0.980 C14—C15 1.378 (6)
C3—C4 1.379 (6) C14—H141 0.945
C3—C8 1.384 (5) C15—C16 1.376 (5)
C4—C5 1.383 (6) C15—H151 0.951
C4—H41 0.941 C17—C18 1.520 (5)
C5—C6 1.372 (7) C17—F1 1.307 (4)
C5—H51 0.936 C17—F2 1.322 (5)
C6—C7 1.368 (6) C17—F3 1.328 (5)
C6—H61 0.928 C17—C18 1.520 (5)
C7—C8 1.406 (5) C17—F4 1.323 (7)
C7—H71 0.934 C17—F5 1.323 (7)
C8—C9 1.451 (5) C17—F6 1.323 (7)
C9—C10 1.352 (5) C18—O1 1.209 (4)
C9—H91 0.944 C18—O3 1.283 (5)
C10—C11 1.453 (6) N1—H11 0.865
C10—H101 0.938 N1—H12 0.867
C11—C12 1.405 (5) O3—H5 0.887
C2—C1—N1 119.0 (4) C12—C11—C16 118.2 (4)
C2—C1—O2 119.3 (4) C11—C12—C13 121.4 (4)
N1—C1—O2 121.6 (4) C11—C12—H121 118.3
C1—C2—C3 113.4 (4) C13—C12—H121 120.4
C1—C2—C16 110.5 (3) C12—C13—C14 119.6 (4)
C3—C2—C16 113.4 (3) C12—C13—H131 120.7
C1—C2—H21 105.8 C14—C13—H131 119.7
C3—C2—H21 106.9 C13—C14—C15 120.2 (4)
C16—C2—H21 106.2 C13—C14—H141 120.7
C2—C3—C4 119.9 (4) C15—C14—H141 119.0
C2—C3—C8 119.8 (4) C14—C15—C16 120.8 (4)
C4—C3—C8 120.2 (4) C14—C15—H151 119.6
C3—C4—C5 121.2 (4) C16—C15—H151 119.6
C3—C4—H41 119.6 C2—C16—C11 120.1 (4)
C5—C4—H41 119.2 C2—C16—C15 120.1 (4)
C4—C5—C6 118.6 (4) C11—C16—C15 119.7 (4)
C4—C5—H51 120.0 C18—C17—F1 111.5 (4)
C6—C5—H51 121.3 C18—C17—F2 111.6 (4)
C5—C6—C7 121.1 (4) F1—C17—F2 107.9 (4)
C5—C6—H61 119.4 C18—C17—F3 111.4 (4)
C7—C6—H61 119.5 F1—C17—F3 108.7 (4)
C6—C7—C8 120.6 (4) F2—C17—F3 105.6 (4)
C6—C7—H71 119.3 C18—C17—F4 113.56 (6)
C8—C7—H71 120.1 C18—C17—F5 113.57 (6)
C7—C8—C3 118.2 (4) F4—C17—F5 105.08 (7)
C7—C8—C9 117.4 (4) C18—C17—F6 113.57 (6)
C3—C8—C9 124.4 (4) F4—C17—F6 105.08 (7)
C8—C9—C10 127.8 (4) F5—C17—F6 105.08 (7)
C8—C9—H91 116.8 C17—C18—O1 120.4 (4)
C10—C9—H91 115.3 C17—C18—O3 111.8 (4)
C9—C10—C11 128.8 (4) O1—C18—O3 127.8 (4)
C9—C10—H101 115.3 C1—N1—H11 120.6
C11—C10—H101 115.9 C1—N1—H12 119.5
C10—C11—C12 118.0 (4) H11—N1—H12 119.9
C10—C11—C16 123.9 (4) C18—O3—H5 113.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H5···O2i 0.89 1.58 2.462 (4) 173
N1—H11···O1ii 0.86 2.23 2.976 (4) 144
N1—H12···O1iii 0.87 2.16 2.982 (5) 159

Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2202).

References

  1. Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr.22, 177–183.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  5. Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem.30, 421–426. [PubMed]
  6. Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem.7, 88–94. [DOI] [PubMed]
  7. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Fernandes, P., Bardin, J., Johnston, A., Florence, A. J., Leech, C. K., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4269.
  10. Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  11. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [DOI] [PubMed]
  12. Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm, DOI: 10.1039/b719717a.
  13. Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst.39, 922–924.
  14. Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci.95, 1918–1930. [DOI] [PubMed]
  15. Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
  16. Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.
  17. Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. [DOI] [PubMed]
  18. Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677. [DOI] [PubMed]
  19. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  20. Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and ABSPACK Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  23. Westrip, S. P. (2008). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808016577/cf2202sup1.cif

e-64-o1215-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016577/cf2202Isup2.hkl

e-64-o1215-Isup2.hkl (149.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES