Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1190. doi: 10.1107/S1600536808015699

5-Chloro-2-methyl-3-phenyl­sulfonyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2961728  PMID: 21202832

Abstract

The title compound, C15H11ClO3S, was prepared by the oxidation of 5-chloro-2-methyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. There are two symmetry-independent mol­ecules in the asymmetric unit. The dihedral angles formed by the phenyl ring and the plane of the benzofuran system are 77.80 (8) and 78.34 (8)°. The crystal structure is stabilized by aromatic π–π stacking inter­actions between the furan ring and the benzene rings of neighbouring benzofuran fragments from two symmetry-independent mol­ecules; the centroid–centroid distances within the stacks are 3.689 (4), 3.702 (4), 3.825 (4) and 3.826 (4) Å. Additionally, the stacked mol­ecules exhibit inter- and intra­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a ,b ).graphic file with name e-64-o1190-scheme1.jpg

Experimental

Crystal data

  • C15H11ClO3S

  • M r = 306.76

  • Triclinic, Inline graphic

  • a = 7.4029 (7) Å

  • b = 9.2669 (9) Å

  • c = 20.889 (2) Å

  • α = 100.953 (2)°

  • β = 95.626 (2)°

  • γ = 104.212 (2)°

  • V = 1348.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 173 (2) K

  • 0.50 × 0.50 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.795, T max = 0.870

  • 9232 measured reflections

  • 4555 independent reflections

  • 4119 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.116

  • S = 1.16

  • 4555 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015699/rk2091sup1.cif

e-64-o1190-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015699/rk2091Isup2.hkl

e-64-o1190-Isup2.hkl (223.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2 0.98 2.44 3.153 (4) 130
C14—H14⋯O3i 0.95 2.51 3.429 (4) 164
C29—H29⋯O5ii 0.95 2.51 3.453 (4) 170
C30—H30A⋯O6 0.98 2.42 3.141 (4) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

This work is related to our communications on the synthesis and structure of 2-methyl-3-phenylsulfonyl-1-benzofuran analogues, viz. 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 2,5-dimethyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b). Herein we report the crystal and molecular structure of the title compound, 5-chloro-2-methyl-3-phenylsulfonyl-1-benzofuran C15H11ClO3S, (I), (Fig. 1).

The benzofuran unit is essentially planar, with a max deviation of 0.015 (2) Å for unit A, and 0.020 (2) Å for unit B, respectively, from the least-squares plane defined by the nine constituent atoms. In the title compound, the dihedral angles formed by the benzofuran fragment and the plane of the phenyl ring are 77.80 (8)° in unit A and 78.34 (8)° in unit B, respectively. The crystal packing (Fig. 2) is stabilized by four different π–π interactions within each stack of molecules; one between the furan ring (Cg1) and an adjacent benzene ring (Cg2i) [distance 3.702 (4) Å], a second between the furan ring (Cg1) and an adjacent benzene ring (Cg2ii) [distance 3.826 (4) Å], a third between the furan ring (Cg3) and an adjacent benzene ring (Cg4iii) [distance 3.689 (4) Å], a fourth between the furan ring (Cg3) and an adjacent benzene ring (Cg4iv) [distance 3.825 (4) Å], (Cg1, Cg2, Cg3, and Cg4 are the centroids of the O1/C8/C1/C2/C7 furan ring, the C2/C3/C4/C5/C6/C7 benzene ring, the O4/C23/C16/C17/C22 furan ring, the C17/C18/C19/C20/C21/C22 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by inter- and intramolecular C—H···O hydrogen bonds (Fig. 3 and Table; symmetry codes as in Fig. 3).

Experimental

77% 3-chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of 5-chloro-2-methyl-3-phenylsulfanyl-1-benzofuran (275 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethylacetate, 2:1 v/v) to afford the I as a colorless solid [yield 81%, m.p. 468–469 K; Rf = 0.61 (hexane–ethylacetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the I in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.80 (s, 3H), 7.28 (d, J = 2.16 Hz, 1H), 7.33 (s, 1H), 7.51–7.55 (m, 2H), 7.58–7.61 (m, 1H), 7.88 (d, J = 2.20 Hz, 1H), 7.98–8.04 (m, 2H); EI-MS 308 [M+2], 306 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The π–π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x, -y, -z.

Fig. 3.

Fig. 3.

C—H···O interactions (dotted lines) in the title compound. Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z.

Crystal data

C15H11ClO3S Z = 4
Mr = 306.76 F000 = 632
Triclinic, P1 Dx = 1.512 Mg m3
Hall symbol: -P 1 Melting point = 468–469 K
a = 7.4029 (7) Å Mo Kα radiation λ = 0.71073 Å
b = 9.2669 (9) Å Cell parameters from 7490 reflections
c = 20.889 (2) Å θ = 2.3–28.2º
α = 100.953 (2)º µ = 0.44 mm1
β = 95.626 (2)º T = 173 (2) K
γ = 104.212 (2)º Block, colourless
V = 1348.0 (2) Å3 0.50 × 0.50 × 0.30 mm

Data collection

Bruker SMART CCD diffractometer 4555 independent reflections
Radiation source: fine-focus sealed tube 4119 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
Detector resolution: 10.0 pixels mm-1 θmax = 25.0º
T = 173(2) K θmin = 1.0º
φ and ω scans h = −8→8
Absorption correction: multi-scan(SADABS; Sheldrick, 2000) k = −11→11
Tmin = 0.795, Tmax = 0.870 l = −24→24
9232 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.116   w = 1/[σ2(Fo2) + (0.0289P)2 + 1.6847P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max < 0.001
4555 reflections Δρmax = 0.36 e Å3
363 parameters Δρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.94027 (12) 0.83729 (9) 0.68782 (4) 0.0390 (2)
S1 0.89392 (10) 0.73758 (8) 0.38915 (3) 0.02487 (18)
O1 0.6676 (3) 0.3633 (2) 0.44767 (10) 0.0285 (4)
O2 0.9367 (3) 0.6705 (3) 0.32655 (10) 0.0344 (5)
O3 1.0381 (3) 0.8528 (2) 0.43567 (10) 0.0327 (5)
C1 0.8078 (4) 0.5920 (3) 0.42946 (13) 0.0235 (6)
C2 0.8110 (4) 0.6091 (3) 0.50012 (13) 0.0219 (6)
C3 0.8793 (4) 0.7294 (3) 0.55589 (13) 0.0242 (6)
H3 0.9389 0.8302 0.5524 0.029*
C4 0.8551 (4) 0.6929 (3) 0.61626 (14) 0.0265 (6)
C5 0.7692 (4) 0.5459 (4) 0.62322 (14) 0.0297 (6)
H5 0.7575 0.5271 0.6660 0.036*
C6 0.7012 (4) 0.4275 (3) 0.56827 (15) 0.0303 (7)
H6 0.6421 0.3266 0.5718 0.036*
C7 0.7242 (4) 0.4643 (3) 0.50790 (14) 0.0242 (6)
C8 0.7201 (4) 0.4438 (3) 0.40081 (14) 0.0262 (6)
C9 0.7018 (4) 0.8137 (3) 0.37439 (14) 0.0246 (6)
C10 0.5757 (4) 0.7514 (4) 0.31622 (15) 0.0311 (7)
H10 0.5941 0.6705 0.2843 0.037*
C11 0.4221 (5) 0.8097 (4) 0.30559 (18) 0.0406 (8)
H11 0.3351 0.7694 0.2659 0.049*
C12 0.3958 (5) 0.9256 (4) 0.3524 (2) 0.0445 (9)
H12 0.2897 0.9641 0.3449 0.053*
C13 0.5210 (5) 0.9865 (4) 0.40995 (19) 0.0421 (8)
H13 0.5015 1.0672 0.4417 0.051*
C14 0.6760 (4) 0.9309 (3) 0.42202 (16) 0.0316 (7)
H14 0.7624 0.9719 0.4619 0.038*
C15 0.6662 (5) 0.3533 (4) 0.33182 (15) 0.0352 (7)
H15A 0.7152 0.4174 0.3017 0.053*
H15B 0.5285 0.3172 0.3212 0.053*
H15C 0.7193 0.2655 0.3270 0.053*
Cl2 0.24348 (13) 0.14348 (9) −0.18646 (4) 0.0400 (2)
S2 0.49179 (10) 0.35480 (8) 0.11049 (3) 0.02486 (18)
O4 0.2303 (3) −0.0834 (2) 0.05447 (10) 0.0303 (5)
O5 0.5910 (3) 0.4231 (2) 0.06317 (10) 0.0315 (5)
O6 0.5927 (3) 0.3559 (3) 0.17302 (10) 0.0339 (5)
C16 0.3752 (4) 0.1665 (3) 0.07152 (14) 0.0236 (6)
C17 0.3089 (4) 0.1109 (3) 0.00122 (13) 0.0225 (6)
C18 0.3154 (4) 0.1733 (3) −0.05452 (13) 0.0241 (6)
H18 0.3716 0.2787 −0.0515 0.029*
C19 0.2356 (4) 0.0736 (3) −0.11451 (14) 0.0274 (6)
C20 0.1522 (4) −0.0821 (3) −0.12108 (15) 0.0309 (7)
H20 0.1012 −0.1456 −0.1635 0.037*
C21 0.1440 (4) −0.1436 (3) −0.06597 (15) 0.0315 (7)
H21 0.0877 −0.2489 −0.0690 0.038*
C22 0.2222 (4) −0.0437 (3) −0.00587 (14) 0.0244 (6)
C23 0.3230 (4) 0.0464 (3) 0.10065 (14) 0.0276 (6)
C24 0.3087 (4) 0.4413 (3) 0.12603 (14) 0.0254 (6)
C25 0.2273 (4) 0.4267 (3) 0.18244 (15) 0.0317 (7)
H25 0.2729 0.3742 0.2126 0.038*
C26 0.0798 (5) 0.4891 (4) 0.19426 (17) 0.0408 (8)
H26 0.0228 0.4797 0.2326 0.049*
C27 0.0152 (5) 0.5653 (4) 0.15001 (19) 0.0447 (9)
H27 −0.0866 0.6083 0.1582 0.054*
C28 0.0965 (5) 0.5797 (4) 0.0943 (2) 0.0442 (9)
H28 0.0508 0.6328 0.0645 0.053*
C29 0.2448 (4) 0.5171 (3) 0.08137 (17) 0.0348 (7)
H29 0.3010 0.5262 0.0428 0.042*
C30 0.3420 (5) 0.0266 (4) 0.16940 (16) 0.0396 (8)
H30A 0.4237 0.1205 0.1984 0.059*
H30B 0.3975 −0.0583 0.1720 0.059*
H30C 0.2173 0.0044 0.1833 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0524 (5) 0.0418 (5) 0.0215 (4) 0.0176 (4) 0.0002 (3) −0.0001 (3)
S1 0.0231 (4) 0.0292 (4) 0.0215 (4) 0.0035 (3) 0.0058 (3) 0.0071 (3)
O1 0.0314 (11) 0.0232 (10) 0.0290 (11) 0.0051 (9) 0.0025 (9) 0.0052 (8)
O2 0.0362 (12) 0.0446 (13) 0.0254 (11) 0.0126 (10) 0.0133 (9) 0.0088 (9)
O3 0.0260 (11) 0.0348 (12) 0.0316 (12) −0.0031 (9) 0.0010 (9) 0.0100 (9)
C1 0.0207 (14) 0.0289 (15) 0.0217 (14) 0.0066 (11) 0.0044 (11) 0.0070 (11)
C2 0.0173 (13) 0.0282 (14) 0.0217 (14) 0.0063 (11) 0.0039 (11) 0.0084 (11)
C3 0.0222 (14) 0.0257 (14) 0.0239 (14) 0.0057 (11) 0.0023 (11) 0.0054 (11)
C4 0.0273 (15) 0.0319 (16) 0.0218 (14) 0.0123 (12) 0.0035 (12) 0.0040 (12)
C5 0.0320 (16) 0.0381 (17) 0.0239 (15) 0.0135 (13) 0.0068 (13) 0.0125 (13)
C6 0.0304 (16) 0.0303 (16) 0.0351 (17) 0.0089 (13) 0.0093 (13) 0.0160 (13)
C7 0.0221 (14) 0.0243 (14) 0.0259 (15) 0.0074 (11) 0.0003 (11) 0.0051 (11)
C8 0.0241 (14) 0.0311 (15) 0.0242 (15) 0.0091 (12) 0.0036 (12) 0.0062 (12)
C9 0.0252 (14) 0.0237 (14) 0.0234 (14) 0.0007 (11) 0.0057 (12) 0.0085 (11)
C10 0.0324 (16) 0.0324 (16) 0.0271 (16) 0.0032 (13) 0.0025 (13) 0.0116 (13)
C11 0.0331 (17) 0.0439 (19) 0.046 (2) 0.0026 (15) −0.0019 (15) 0.0262 (16)
C12 0.0329 (18) 0.0394 (19) 0.073 (3) 0.0131 (15) 0.0128 (18) 0.0329 (19)
C13 0.043 (2) 0.0264 (16) 0.062 (2) 0.0106 (15) 0.0213 (18) 0.0140 (16)
C14 0.0316 (16) 0.0244 (15) 0.0336 (17) −0.0012 (12) 0.0078 (13) 0.0039 (12)
C15 0.0387 (18) 0.0331 (17) 0.0288 (16) 0.0081 (14) −0.0004 (14) −0.0004 (13)
Cl2 0.0602 (5) 0.0376 (4) 0.0227 (4) 0.0147 (4) 0.0028 (4) 0.0079 (3)
S2 0.0220 (4) 0.0284 (4) 0.0208 (4) 0.0028 (3) 0.0013 (3) 0.0037 (3)
O4 0.0357 (12) 0.0243 (10) 0.0332 (11) 0.0074 (9) 0.0082 (9) 0.0119 (9)
O5 0.0284 (11) 0.0342 (12) 0.0263 (11) −0.0016 (9) 0.0059 (9) 0.0053 (9)
O6 0.0291 (11) 0.0441 (13) 0.0258 (11) 0.0092 (10) −0.0025 (9) 0.0057 (9)
C16 0.0195 (14) 0.0266 (14) 0.0247 (14) 0.0060 (11) 0.0040 (11) 0.0054 (11)
C17 0.0191 (13) 0.0224 (14) 0.0255 (14) 0.0060 (11) 0.0042 (11) 0.0033 (11)
C18 0.0246 (14) 0.0217 (14) 0.0245 (14) 0.0040 (11) 0.0029 (12) 0.0051 (11)
C19 0.0316 (16) 0.0287 (15) 0.0229 (15) 0.0099 (12) 0.0046 (12) 0.0057 (12)
C20 0.0308 (16) 0.0271 (15) 0.0286 (16) 0.0059 (13) −0.0029 (13) −0.0023 (12)
C21 0.0296 (16) 0.0244 (15) 0.0378 (17) 0.0057 (12) 0.0035 (13) 0.0031 (13)
C22 0.0233 (14) 0.0239 (14) 0.0278 (15) 0.0075 (11) 0.0060 (12) 0.0074 (12)
C23 0.0282 (15) 0.0306 (16) 0.0282 (15) 0.0125 (12) 0.0084 (12) 0.0085 (12)
C24 0.0204 (14) 0.0215 (14) 0.0290 (15) 0.0004 (11) −0.0008 (12) 0.0018 (11)
C25 0.0331 (16) 0.0329 (16) 0.0251 (15) 0.0065 (13) 0.0018 (13) 0.0011 (12)
C26 0.0364 (18) 0.0406 (19) 0.0387 (19) 0.0082 (15) 0.0091 (15) −0.0068 (15)
C27 0.0289 (17) 0.0283 (17) 0.068 (3) 0.0069 (14) 0.0010 (17) −0.0062 (16)
C28 0.0361 (18) 0.0215 (16) 0.072 (3) 0.0024 (14) −0.0053 (18) 0.0160 (16)
C29 0.0304 (16) 0.0282 (16) 0.0431 (19) −0.0012 (13) 0.0009 (14) 0.0155 (14)
C30 0.054 (2) 0.0414 (19) 0.0314 (17) 0.0169 (16) 0.0119 (15) 0.0183 (14)

Geometric parameters (Å, °)

Cl1—C4 1.750 (3) Cl2—C19 1.746 (3)
S1—O3 1.437 (2) S2—O6 1.437 (2)
S1—O2 1.437 (2) S2—O5 1.438 (2)
S1—C1 1.746 (3) S2—C16 1.742 (3)
S1—C9 1.762 (3) S2—C24 1.762 (3)
O1—C8 1.369 (3) O4—C23 1.368 (4)
O1—C7 1.375 (3) O4—C22 1.378 (3)
C1—C8 1.357 (4) C16—C23 1.361 (4)
C1—C2 1.451 (4) C16—C17 1.452 (4)
C2—C7 1.386 (4) C17—C22 1.392 (4)
C2—C3 1.404 (4) C17—C18 1.395 (4)
C3—C4 1.383 (4) C18—C19 1.386 (4)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.396 (4) C19—C20 1.398 (4)
C5—C6 1.383 (4) C20—C21 1.378 (4)
C5—H5 0.9500 C20—H20 0.9500
C6—C7 1.383 (4) C21—C22 1.386 (4)
C6—H6 0.9500 C21—H21 0.9500
C8—C15 1.484 (4) C23—C30 1.480 (4)
C9—C10 1.388 (4) C24—C29 1.383 (4)
C9—C14 1.391 (4) C24—C25 1.389 (4)
C10—C11 1.391 (4) C25—C26 1.377 (4)
C10—H10 0.9500 C25—H25 0.9500
C11—C12 1.375 (5) C26—C27 1.382 (5)
C11—H11 0.9500 C26—H26 0.9500
C12—C13 1.374 (5) C27—C28 1.374 (5)
C12—H12 0.9500 C27—H27 0.9500
C13—C14 1.389 (5) C28—C29 1.388 (5)
C13—H13 0.9500 C28—H28 0.9500
C14—H14 0.9500 C29—H29 0.9500
C15—H15A 0.9800 C30—H30A 0.9800
C15—H15B 0.9800 C30—H30B 0.9800
C15—H15C 0.9800 C30—H30C 0.9800
O3—S1—O2 119.89 (13) O6—S2—O5 119.93 (13)
O3—S1—C1 106.92 (13) O6—S2—C16 108.60 (13)
O2—S1—C1 108.61 (13) O5—S2—C16 107.16 (13)
O3—S1—C9 107.87 (13) O6—S2—C24 107.79 (13)
O2—S1—C9 108.20 (13) O5—S2—C24 108.08 (13)
C1—S1—C9 104.28 (13) C16—S2—C24 104.18 (13)
C8—O1—C7 106.9 (2) C23—O4—C22 106.9 (2)
C8—C1—C2 107.3 (2) C23—C16—C17 107.4 (2)
C8—C1—S1 126.7 (2) C23—C16—S2 127.1 (2)
C2—C1—S1 126.0 (2) C17—C16—S2 125.5 (2)
C7—C2—C3 119.6 (2) C22—C17—C18 119.4 (3)
C7—C2—C1 104.7 (2) C22—C17—C16 104.4 (2)
C3—C2—C1 135.7 (3) C18—C17—C16 136.2 (3)
C4—C3—C2 116.2 (3) C19—C18—C17 116.5 (3)
C4—C3—H3 121.9 C19—C18—H18 121.7
C2—C3—H3 121.9 C17—C18—H18 121.7
C3—C4—C5 123.4 (3) C18—C19—C20 123.5 (3)
C3—C4—Cl1 118.5 (2) C18—C19—Cl2 118.9 (2)
C5—C4—Cl1 118.1 (2) C20—C19—Cl2 117.6 (2)
C6—C5—C4 120.4 (3) C21—C20—C19 120.0 (3)
C6—C5—H5 119.8 C21—C20—H20 120.0
C4—C5—H5 119.8 C19—C20—H20 120.0
C5—C6—C7 116.2 (3) C20—C21—C22 116.5 (3)
C5—C6—H6 121.9 C20—C21—H21 121.7
C7—C6—H6 121.9 C22—C21—H21 121.7
O1—C7—C6 125.2 (3) O4—C22—C21 125.3 (3)
O1—C7—C2 110.6 (2) O4—C22—C17 110.7 (2)
C6—C7—C2 124.2 (3) C21—C22—C17 124.0 (3)
C1—C8—O1 110.5 (2) C16—C23—O4 110.6 (2)
C1—C8—C15 134.8 (3) C16—C23—C30 134.7 (3)
O1—C8—C15 114.7 (3) O4—C23—C30 114.7 (3)
C10—C9—C14 121.5 (3) C29—C24—C25 121.4 (3)
C10—C9—S1 119.0 (2) C29—C24—S2 120.0 (2)
C14—C9—S1 119.5 (2) C25—C24—S2 118.5 (2)
C9—C10—C11 118.7 (3) C26—C25—C24 119.4 (3)
C9—C10—H10 120.7 C26—C25—H25 120.3
C11—C10—H10 120.7 C24—C25—H25 120.3
C12—C11—C10 120.2 (3) C25—C26—C27 119.6 (3)
C12—C11—H11 119.9 C25—C26—H26 120.2
C10—C11—H11 119.9 C27—C26—H26 120.2
C13—C12—C11 120.8 (3) C28—C27—C26 120.8 (3)
C13—C12—H12 119.6 C28—C27—H27 119.6
C11—C12—H12 119.6 C26—C27—H27 119.6
C12—C13—C14 120.5 (3) C27—C28—C29 120.5 (3)
C12—C13—H13 119.8 C27—C28—H28 119.7
C14—C13—H13 119.8 C29—C28—H28 119.7
C13—C14—C9 118.4 (3) C24—C29—C28 118.3 (3)
C13—C14—H14 120.8 C24—C29—H29 120.9
C9—C14—H14 120.8 C28—C29—H29 120.9
C8—C15—H15A 109.5 C23—C30—H30A 109.5
C8—C15—H15B 109.5 C23—C30—H30B 109.5
H15A—C15—H15B 109.5 H30A—C30—H30B 109.5
C8—C15—H15C 109.5 C23—C30—H30C 109.5
H15A—C15—H15C 109.5 H30A—C30—H30C 109.5
H15B—C15—H15C 109.5 H30B—C30—H30C 109.5
O3—S1—C1—C8 −156.6 (2) O6—S2—C16—C23 23.3 (3)
O2—S1—C1—C8 −25.9 (3) O5—S2—C16—C23 154.3 (2)
C9—S1—C1—C8 89.3 (3) C24—S2—C16—C23 −91.3 (3)
O3—S1—C1—C2 25.9 (3) O6—S2—C16—C17 −159.3 (2)
O2—S1—C1—C2 156.6 (2) O5—S2—C16—C17 −28.4 (3)
C9—S1—C1—C2 −88.2 (3) C24—S2—C16—C17 86.0 (2)
C8—C1—C2—C7 0.8 (3) C23—C16—C17—C22 −0.9 (3)
S1—C1—C2—C7 178.7 (2) S2—C16—C17—C22 −178.7 (2)
C8—C1—C2—C3 179.8 (3) C23—C16—C17—C18 179.9 (3)
S1—C1—C2—C3 −2.3 (5) S2—C16—C17—C18 2.1 (5)
C7—C2—C3—C4 0.4 (4) C22—C17—C18—C19 −1.0 (4)
C1—C2—C3—C4 −178.5 (3) C16—C17—C18—C19 178.1 (3)
C2—C3—C4—C5 0.4 (4) C17—C18—C19—C20 −0.2 (4)
C2—C3—C4—Cl1 179.1 (2) C17—C18—C19—Cl2 −178.6 (2)
C3—C4—C5—C6 −0.7 (4) C18—C19—C20—C21 0.9 (5)
Cl1—C4—C5—C6 −179.4 (2) Cl2—C19—C20—C21 179.3 (2)
C4—C5—C6—C7 0.1 (4) C19—C20—C21—C22 −0.3 (4)
C8—O1—C7—C6 −178.5 (3) C23—O4—C22—C21 178.1 (3)
C8—O1—C7—C2 0.5 (3) C23—O4—C22—C17 −0.2 (3)
C5—C6—C7—O1 179.6 (3) C20—C21—C22—O4 −179.1 (3)
C5—C6—C7—C2 0.7 (4) C20—C21—C22—C17 −1.0 (4)
C3—C2—C7—O1 −180.0 (2) C18—C17—C22—O4 180.0 (2)
C1—C2—C7—O1 −0.8 (3) C16—C17—C22—O4 0.6 (3)
C3—C2—C7—C6 −1.0 (4) C18—C17—C22—C21 1.7 (4)
C1—C2—C7—C6 178.2 (3) C16—C17—C22—C21 −177.7 (3)
C2—C1—C8—O1 −0.5 (3) C17—C16—C23—O4 0.8 (3)
S1—C1—C8—O1 −178.42 (19) S2—C16—C23—O4 178.58 (19)
C2—C1—C8—C15 177.8 (3) C17—C16—C23—C30 −178.2 (3)
S1—C1—C8—C15 −0.1 (5) S2—C16—C23—C30 −0.4 (5)
C7—O1—C8—C1 0.0 (3) C22—O4—C23—C16 −0.4 (3)
C7—O1—C8—C15 −178.6 (2) C22—O4—C23—C30 178.8 (2)
O3—S1—C9—C10 157.2 (2) O6—S2—C24—C29 150.9 (2)
O2—S1—C9—C10 26.1 (3) O5—S2—C24—C29 19.9 (3)
C1—S1—C9—C10 −89.4 (2) C16—S2—C24—C29 −93.8 (3)
O3—S1—C9—C14 −25.0 (3) O6—S2—C24—C25 −31.2 (3)
O2—S1—C9—C14 −156.0 (2) O5—S2—C24—C25 −162.2 (2)
C1—S1—C9—C14 88.5 (2) C16—S2—C24—C25 84.0 (2)
C14—C9—C10—C11 0.8 (4) C29—C24—C25—C26 0.0 (4)
S1—C9—C10—C11 178.6 (2) S2—C24—C25—C26 −177.8 (2)
C9—C10—C11—C12 −0.7 (4) C24—C25—C26—C27 −0.1 (5)
C10—C11—C12—C13 0.6 (5) C25—C26—C27—C28 0.0 (5)
C11—C12—C13—C14 −0.5 (5) C26—C27—C28—C29 0.3 (5)
C12—C13—C14—C9 0.6 (5) C25—C24—C29—C28 0.3 (4)
C10—C9—C14—C13 −0.7 (4) S2—C24—C29—C28 178.0 (2)
S1—C9—C14—C13 −178.5 (2) C27—C28—C29—C24 −0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O2 0.98 2.44 3.153 (4) 130
C14—H14···O3i 0.95 2.51 3.429 (4) 164
C29—H29···O5ii 0.95 2.51 3.453 (4) 170
C30—H30A···O6 0.98 2.42 3.141 (4) 130

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2091).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o850. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015699/rk2091sup1.cif

e-64-o1190-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015699/rk2091Isup2.hkl

e-64-o1190-Isup2.hkl (223.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES