Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1191. doi: 10.1107/S1600536808016103

rac-(4aR,8aR)-2,3-Diphenyl-4a,5,6,7,8,8a-hexa­hydro­quinoxaline

Fang Chen a, Heng-Yun Ye a,*
PMCID: PMC2961730  PMID: 21202833

Abstract

The structure of the title racemic compound, C20H20N2, shows close similarity to that of the enanti­omerically pure (4aR,8aR)-2,3-diphenyl-4a,5,6,7,8,8a-hexa­hydro­quinoxaline [Wang & Ye (2008). Acta Cryst. E64, o359–o359]. The similarity applies to the unit-cell parameters as well as to the packing of the constituent mol­ecules. Similar packing is conditioned by a lack of directed inter­molecular inter­actions such as hydrogen bonds in either structure.

Related literature

For examples of the synthesis of non-centrosymmetric solid materials by the reaction of chiral organic ligands and inorganic salts, see: Qu et al. (2004). For geometric parameters of C=N bonds, see: Figuet et al. (2001); Kennedy & Reglinski (2001). For our previous work regarding the enanti­omerically pure (4aR,8aR)-2,3-diphenyl-4a,5,6,7,8,8a-hexa­hydro­quin­ox­aline, see: Wang & Ye (2008).graphic file with name e-64-o1191-scheme1.jpg

Experimental

Crystal data

  • C20H20N2

  • M r = 288.38

  • Orthorhombic, Inline graphic

  • a = 15.278 (3) Å

  • b = 18.388 (4) Å

  • c = 5.6638 (11) Å

  • V = 1591.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.10 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.831, T max = 1.000 (expected range = 0.825–0.993)

  • 16117 measured reflections

  • 2004 independent reflections

  • 1558 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.100

  • S = 1.10

  • 2004 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016103/fb2093sup1.cif

e-64-o1191-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016103/fb2093Isup2.hkl

e-64-o1191-Isup2.hkl (98.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant awarded to HYY by Southeast University.

supplementary crystallographic information

Comment

Presence of chiral centres in organic ligands is very important for design and synthesis of noncentrosymmetric or chiral coordination polymers which exhibit desirable physical properties such as a ferroelectric behaviour (Qu et al., 2004). We have recently reported the crystal structure of the enantiomerically pure ligand (4aR,8aR)-2,3-diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline (Wang & Ye, 2008). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound, rac-(4aR,8aR)-2,3- diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline.

The title compound can be regarded as a derivative of hexahydroquinoxaline by substitution of two H atoms in each of the positions 2 and 3 by the phenyl rings. The heterocyclic ring of the quinoxaline system has a twist-boat configuration, while the cyclohexane ring has a chair configuration. The torsion angle N2—C1—C6—N1 is -58.3 (3)°. The C═N double bonds (C7═N1, 1.272 (2) Å; C14═N2, 1.279 (2) Å) are in the range of 1.27–1.38 Å that have been found in other Schiff base complexes (Figuet et al., 2001; Kennedy & Reglinski, 2001; Wang & Ye, 2008). C7, C14 show typical sp2 geometry environment. Comparing the bond angles around sp2 N atoms (N1, N2) with those around the sp2 C atoms (C7, C14), the latter are somewhat more close to 120°. N1C8C7C14 and N2C15C14C7 are almost coplanar with the mean deviations equal to 0.0119 and 0.0052 Å, respectively. The angle (29.76 (14)°) between the planes of N1C7C8C14 and N2C7C14C15 is very close to that (29.65 (14)°) in the enantiomerically pure compound (4aR,8aR)-2,3-diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline (Wang & Ye, 2008). The angle (64.3 (1)°) between both phenyl rings in the title structure equals within the precision of the experiments to that (64.3 (1)°) of the enantiomerically pure compound (4aR,8aR)-2,3-diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline.

The title racemic compound crystallizes in the space group of Pna21. Figs. 2 and 3 contain the respective views of the unit cells of the title compound and its enantiomerically pure counterpart (Wang & Ye, 2008)). [The enantiomerically pure structure in Fig. 3 has been obtained by the following transformations of the published data (Wang & Ye, 2008): (a,b,c)2 = (a,b,c)1(0 1 0/0 0 1/1 0 0) followed by the shift of the origin by -1/4 1/2 -1/4 with the corresponding change in the translational parts of the symmetry operators. (0 1 0/0 0 1/1 0 0) is the transformation matrix where each triplet of the numbers corresponds to its row.]

In spite of the fact that a half of the molecules in the title structure are the opposite enantiomers (Fig. 2) in contrast to the structure composed of the enantiomers of one kind in Wang & Ye (2008) (Fig. 3) both structures look alike when wieved along the shortest unit-cell axis. It can not be excluded that both enantiomers form solid solutions in some composition interval. The experiments that would confirm the hypothesis about the formation of the solid solutions are going to be carried out in near future. The melting point of the enantiomerically pure structure (Wang & Ye, 2008) is 194–198°C.

(Note: The setting P21nb is directly related to that of the reported structure of the enantiomerically pure compound (Wang & Ye, 2008). In the setting P21nb the unit cell axes are ordered according to their length from the minimal to the maximal.)

Experimental

rac-(1R,2R/1S,2S)-diaminocyclohexane was obtained from Adrich. The title compound was prepared by an analogous procedure to that regarding the enantiomerically pure (4aR,8aR)-2,3-diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline (Wang & Ye, 2008) using rac-1,2-diaminocyclohexane instead of (-)-(1R,2R)-diaminocyclohexane. Yellow block-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of the ethanol solution of the crude product.

Refinement

All the H atoms were discernible in difference electron-density map. Nevertheless, they were placed to the idealed positons and refined in a riding atom approximation constrainsts as following: Cmethine—Hmethine = 0.98; Cmethylene—Hmethylene = 0.97; Caryl—Haryl = 0.93 Å; UisoH = 1.2 UeqC in all the cases. In the absence of significant resonant scattering effects, 1639 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The drawing of one enantiomer with RR configuration of the title compound. The atomic numbering scheme is given. The displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The view of the title compound along the axis c (cf. Fig. 3).

Fig. 3.

Fig. 3.

The view of the enantiomerically pure compound (Wang & Ye, 2008) along the axis c (cf. Fig. 2) after suitable transformations (see the comment section).

Crystal data

C20H20N2 Dx = 1.204 Mg m3
Mr = 288.38 Melting point = 447–453 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 13431 reflections
a = 15.278 (3) Å θ = 3.3–27.5°
b = 18.388 (4) Å µ = 0.07 mm1
c = 5.6638 (11) Å T = 293 K
V = 1591.2 (5) Å3 Block, pale yellow
Z = 4 0.25 × 0.15 × 0.10 mm
F(000) = 616

Data collection

Rigaku SCXmini diffractometer 2004 independent reflections
Radiation source: fine-focus sealed tube 1558 reflections with I > 2σ(I)
graphite Rint = 0.071
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.5°
ω scans h = −19→19
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −23→23
Tmin = 0.831, Tmax = 1.000 l = −7→7
16117 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.100 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.1949P] where P = (Fo2 + 2Fc2)/3
2004 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.13 e Å3
1 restraint Δρmin = −0.17 e Å3
80 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2µ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.59529 (17) 0.36737 (13) 0.4260 (5) 0.0432 (6)
H1A 0.5643 0.3988 0.5377 0.052*
C2 0.55215 (16) 0.29231 (13) 0.4296 (6) 0.0531 (7)
H2A 0.5849 0.2594 0.3290 0.064*
H2B 0.5533 0.2731 0.5890 0.064*
C3 0.45847 (19) 0.29648 (16) 0.3444 (7) 0.0626 (9)
H3A 0.4241 0.3243 0.4566 0.075*
H3B 0.4341 0.2478 0.3366 0.075*
C4 0.4523 (2) 0.33176 (15) 0.1036 (7) 0.0666 (10)
H4A 0.3913 0.3367 0.0596 0.080*
H4B 0.4805 0.3008 −0.0123 0.080*
C5 0.49552 (18) 0.40639 (14) 0.1012 (7) 0.0572 (8)
H5A 0.4938 0.4262 −0.0575 0.069*
H5B 0.4635 0.4391 0.2041 0.069*
C6 0.58925 (16) 0.40112 (12) 0.1829 (5) 0.0413 (6)
H6A 0.6214 0.3702 0.0718 0.050*
C7 0.69908 (15) 0.47944 (12) 0.3141 (5) 0.0362 (6)
C8 0.73733 (14) 0.55333 (12) 0.3446 (5) 0.0362 (6)
C9 0.72510 (16) 0.60532 (13) 0.1701 (5) 0.0429 (6)
H9A 0.6967 0.5929 0.0307 0.051*
C10 0.75498 (16) 0.67548 (14) 0.2028 (6) 0.0482 (7)
H10A 0.7464 0.7100 0.0849 0.058*
C11 0.79687 (17) 0.69479 (14) 0.4061 (6) 0.0514 (7)
H11A 0.8164 0.7423 0.4269 0.062*
C12 0.81003 (18) 0.64389 (14) 0.5800 (6) 0.0532 (7)
H12A 0.8391 0.6568 0.7180 0.064*
C13 0.78012 (17) 0.57348 (13) 0.5501 (5) 0.0453 (7)
H13A 0.7888 0.5394 0.6690 0.054*
C14 0.73617 (15) 0.41439 (13) 0.4428 (5) 0.0389 (6)
C15 0.83132 (16) 0.40920 (13) 0.4971 (5) 0.0397 (6)
C16 0.89364 (17) 0.43624 (14) 0.3435 (6) 0.0484 (7)
H16A 0.8761 0.4596 0.2058 0.058*
C17 0.98203 (18) 0.42881 (15) 0.3928 (7) 0.0583 (8)
H17A 1.0234 0.4468 0.2875 0.070*
C18 1.0086 (2) 0.39503 (15) 0.5962 (7) 0.0592 (9)
H18A 1.0680 0.3903 0.6296 0.071*
C19 0.94719 (19) 0.36810 (15) 0.7508 (6) 0.0577 (8)
H19A 0.9652 0.3455 0.8894 0.069*
C20 0.85886 (18) 0.37447 (14) 0.7016 (6) 0.0510 (7)
H20A 0.8178 0.3554 0.8058 0.061*
N1 0.63098 (13) 0.47350 (10) 0.1870 (4) 0.0419 (5)
N2 0.68676 (14) 0.36140 (11) 0.5019 (5) 0.0475 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0398 (14) 0.0371 (14) 0.0528 (17) 0.0033 (11) 0.0011 (13) 0.0030 (13)
C2 0.0423 (15) 0.0418 (15) 0.075 (2) 0.0004 (11) 0.0043 (16) 0.0103 (16)
C3 0.0468 (17) 0.0485 (17) 0.092 (3) −0.0020 (13) −0.0008 (17) 0.0044 (18)
C4 0.0511 (17) 0.0546 (18) 0.094 (3) −0.0083 (14) −0.0200 (19) −0.0023 (19)
C5 0.0517 (18) 0.0482 (17) 0.072 (2) 0.0002 (13) −0.0168 (16) 0.0042 (16)
C6 0.0405 (14) 0.0346 (13) 0.0488 (16) 0.0011 (10) −0.0028 (13) −0.0006 (13)
C7 0.0373 (13) 0.0325 (13) 0.0386 (13) 0.0001 (10) −0.0002 (12) 0.0016 (11)
C8 0.0330 (13) 0.0325 (12) 0.0430 (14) 0.0020 (10) 0.0019 (12) 0.0010 (12)
C9 0.0396 (14) 0.0402 (14) 0.0488 (17) 0.0032 (11) −0.0021 (13) 0.0051 (13)
C10 0.0448 (14) 0.0376 (14) 0.0622 (18) 0.0005 (11) 0.0078 (16) 0.0099 (14)
C11 0.0486 (16) 0.0362 (14) 0.069 (2) −0.0068 (12) 0.0058 (16) −0.0051 (15)
C12 0.0586 (18) 0.0447 (16) 0.0564 (19) −0.0031 (13) −0.0055 (15) −0.0093 (15)
C13 0.0526 (16) 0.0373 (14) 0.0461 (17) 0.0031 (12) −0.0030 (14) 0.0015 (12)
C14 0.0399 (14) 0.0354 (13) 0.0413 (14) 0.0026 (11) −0.0009 (12) 0.0014 (12)
C15 0.0413 (14) 0.0286 (12) 0.0492 (16) 0.0052 (11) −0.0062 (13) 0.0004 (11)
C16 0.0467 (15) 0.0428 (15) 0.0557 (18) 0.0070 (12) 0.0001 (14) 0.0034 (14)
C17 0.0424 (16) 0.0504 (17) 0.082 (3) 0.0058 (13) 0.0053 (16) −0.0001 (18)
C18 0.0454 (17) 0.0453 (16) 0.087 (2) 0.0093 (13) −0.0155 (17) −0.0097 (17)
C19 0.0598 (18) 0.0473 (16) 0.066 (2) 0.0118 (15) −0.0198 (17) −0.0003 (15)
C20 0.0545 (17) 0.0424 (14) 0.0561 (18) 0.0018 (13) −0.0059 (16) 0.0058 (14)
N1 0.0428 (12) 0.0337 (10) 0.0493 (13) 0.0000 (9) −0.0053 (11) 0.0040 (10)
N2 0.0430 (12) 0.0421 (12) 0.0572 (15) 0.0013 (10) −0.0049 (12) 0.0115 (11)

Geometric parameters (Å, °)

C1—N2 1.466 (3) C9—C10 1.381 (3)
C1—C6 1.513 (4) C9—H9A 0.9300
C1—C2 1.530 (3) C10—C11 1.364 (4)
C1—H1A 0.9800 C10—H10A 0.9300
C2—C3 1.512 (4) C11—C12 1.373 (4)
C2—H2A 0.9700 C11—H11A 0.9300
C2—H2B 0.9700 C12—C13 1.384 (3)
C3—C4 1.513 (5) C12—H12A 0.9300
C3—H3A 0.9700 C13—H13A 0.9300
C3—H3B 0.9700 C14—N2 1.277 (3)
C4—C5 1.522 (4) C14—C15 1.489 (3)
C4—H4A 0.9700 C15—C16 1.382 (4)
C4—H4B 0.9700 C15—C20 1.388 (4)
C5—C6 1.508 (4) C16—C17 1.386 (4)
C5—H5A 0.9700 C16—H16A 0.9300
C5—H5B 0.9700 C17—C18 1.370 (5)
C6—N1 1.476 (3) C17—H17A 0.9300
C6—H6A 0.9800 C18—C19 1.376 (5)
C7—N1 1.270 (3) C18—H18A 0.9300
C7—C8 1.489 (3) C19—C20 1.383 (4)
C7—C14 1.511 (3) C19—H19A 0.9300
C8—C13 1.385 (4) C20—H20A 0.9300
C8—C9 1.387 (3)
N2—C1—C6 110.8 (2) C13—C8—C7 121.8 (2)
N2—C1—C2 109.8 (2) C9—C8—C7 119.6 (2)
C6—C1—C2 110.8 (2) C10—C9—C8 120.2 (3)
N2—C1—H1A 108.4 C10—C9—H9A 119.9
C6—C1—H1A 108.4 C8—C9—H9A 119.9
C2—C1—H1A 108.4 C11—C10—C9 120.8 (3)
C3—C2—C1 111.0 (2) C11—C10—H10A 119.6
C3—C2—H2A 109.4 C9—C10—H10A 119.6
C1—C2—H2A 109.4 C10—C11—C12 119.8 (2)
C3—C2—H2B 109.4 C10—C11—H11A 120.1
C1—C2—H2B 109.4 C12—C11—H11A 120.1
H2A—C2—H2B 108.0 C11—C12—C13 120.1 (3)
C2—C3—C4 111.6 (3) C11—C12—H12A 119.9
C2—C3—H3A 109.3 C13—C12—H12A 119.9
C4—C3—H3A 109.3 C12—C13—C8 120.6 (3)
C2—C3—H3B 109.3 C12—C13—H13A 119.7
C4—C3—H3B 109.3 C8—C13—H13A 119.7
H3A—C3—H3B 108.0 N2—C14—C15 118.3 (2)
C3—C4—C5 111.6 (3) N2—C14—C7 120.6 (2)
C3—C4—H4A 109.3 C15—C14—C7 121.1 (2)
C5—C4—H4A 109.3 C16—C15—C20 118.8 (2)
C3—C4—H4B 109.3 C16—C15—C14 121.3 (2)
C5—C4—H4B 109.3 C20—C15—C14 119.9 (2)
H4A—C4—H4B 108.0 C15—C16—C17 120.6 (3)
C6—C5—C4 110.5 (2) C15—C16—H16A 119.7
C6—C5—H5A 109.5 C17—C16—H16A 119.7
C4—C5—H5A 109.5 C18—C17—C16 120.2 (3)
C6—C5—H5B 109.5 C18—C17—H17A 119.9
C4—C5—H5B 109.5 C16—C17—H17A 119.9
H5A—C5—H5B 108.1 C17—C18—C19 119.7 (3)
N1—C6—C5 110.92 (19) C17—C18—H18A 120.1
N1—C6—C1 109.2 (2) C19—C18—H18A 120.1
C5—C6—C1 111.3 (2) C18—C19—C20 120.5 (3)
N1—C6—H6A 108.4 C18—C19—H19A 119.8
C5—C6—H6A 108.4 C20—C19—H19A 119.8
C1—C6—H6A 108.4 C19—C20—C15 120.2 (3)
N1—C7—C8 117.8 (2) C19—C20—H20A 119.9
N1—C7—C14 120.8 (2) C15—C20—H20A 119.9
C8—C7—C14 121.3 (2) C7—N1—C6 116.1 (2)
C13—C8—C9 118.5 (2) C14—N2—C1 115.4 (2)
N2—C1—C6—N1 −58.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2093).

References

  1. Figuet, M., Averbuch-Pouchot, M. T., Moulinet d’Hardemare, A. D. & Jarjayes, O. (2001). Eur. J. Inorg. Chem.2001, 2089–2096.
  2. Kennedy, A. R. & Reglinski, J. (2001). Acta Cryst. E57, o1027–o1028.
  3. Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. H., Liu, Z.-G., Xue, Z.-L. & You, X.-Z. (2004). Chem. Eur. J.10, 54–60.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, o359. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016103/fb2093sup1.cif

e-64-o1191-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016103/fb2093Isup2.hkl

e-64-o1191-Isup2.hkl (98.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES