Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m864. doi: 10.1107/S1600536808016140

Aquadi-n-but­yl(5-methyl­pyrazine-2-carboxyl­ato)tin(IV) methanol solvate

Zhongjun Gao a,*
PMCID: PMC2961732  PMID: 21202739

Abstract

In the monomeric title compound, [Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH3OH, the Sn atom is seven-coordinate, displaying a distorted penta­gonal bipyramidal SnC2N2O3 geometry with the two C atoms in the axial sites. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the complex and solvent mol­ecules into infinite chains.

Related literature

For general background, see: Gielen et al. (1988). For a related structure, see: Ma et al. (2004).graphic file with name e-64-0m864-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4O

  • M r = 557.21

  • Monoclinic, Inline graphic

  • a = 20.609 (5) Å

  • b = 17.119 (4) Å

  • c = 14.558 (3) Å

  • β = 98.178 (3)°

  • V = 5084 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 298 (2) K

  • 0.58 × 0.56 × 0.49 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.582, T max = 0.628

  • 12959 measured reflections

  • 4462 independent reflections

  • 2981 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.122

  • S = 1.12

  • 4462 reflections

  • 289 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016140/hb2726sup1.cif

e-64-0m864-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016140/hb2726Isup2.hkl

e-64-0m864-Isup2.hkl (218.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—C17 2.103 (5)
Sn1—C13 2.107 (6)
Sn1—O1 2.161 (4)
Sn1—O3 2.167 (4)
Sn1—N1 2.481 (4)
Sn1—N3 2.635 (5)
Sn1—O5 2.770 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O6 0.85 1.92 2.755 (6) 169
O5—H2⋯O1i 0.85 2.19 3.039 (5) 172
O6—H6⋯O4i 0.82 1.93 2.703 (6) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the financial support of the Science Foundation of Shandong.

supplementary crystallographic information

Comment

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen et al., 1988). 2-Methylpyrazine-5-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures.

The title compound, (I), consists of two butyl, two N,O-bidentate 2-methylpyrazine-5-carboxylate groups and a water molecule bonded to the Sn atom and has a monomeric structure. The Sn atom is seven-coordinate with a distorted pentagonal bipyramidal SnC2N2O3 geometry (Table 1, Fig. 1). Around the central Sn atom, atoms C13 and C17 of the two butyl groups occupy the axial position, while O and N atoms lie in equatorial positions. The sum of the angles between the tin atom and the equatorial atoms is 360.4°. The axial bond angle C17—Sn1—C13 [161.6 (3)°] deviates from linearity by over 18°, which shows that these atoms have significant deviations from ideal pentagonal bipyramidal geometry. Otherwise, the bond lenghts and angles in (I) are similar to those in related structures (Ma et al., 2004).

In the crystal, strong intermolecular O—H···O hydrogen bonds (Table 2) between O atoms of the carboxyl groups, methanol and coordinate water molecules result in the formation of one-dimensional polymeric chains (Fig. 2).

Experimental

A mixture of dibutyltin dichloride (1.0 mmol, 0.304 g), 2-methylpyrazine-5-carboxylic acid (2.0 mmol, 0.276 g) and sodium ethoxide (0.136 g, 2.0 mmol) in ethanol (with 5% water) (80 ml) was heated under reflux for 8 h at 303 K. The resulting clear solution was evaporated under vacuum and the product recrystallized from a mixture of methanol to yield colourless, blocks of (I). Yield 0.452 g, 78%, m.p. 438 K, analysis, calculated for C21H34N4O6Sn: C 45.26, H, 6.15; N 10.05%; found: C 45.39, H 6.29, N, 10.12%.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å, O—H = 0.82–0.85 Å) and refined as riding with Uiso(H) = 1.2Ueq(C/O) or 1.5Ueq(methyl C)

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The hydrogen bond is indicated by a double-dashed line.

Fig. 2.

Fig. 2.

Packing diagram of the crystal structure of (I), showing the one-dimensional chains that form along the c axis. H atoms are omitted for clarity and dashed lines link the donor and acceptor O atoms of the hydrogen bonds.

Crystal data

[Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4O F000 = 2288
Mr = 557.21 Dx = 1.456 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4606 reflections
a = 20.609 (5) Å θ = 2.4–25.3º
b = 17.119 (4) Å µ = 1.05 mm1
c = 14.558 (3) Å T = 298 (2) K
β = 98.178 (3)º Block, colourless
V = 5084 (2) Å3 0.58 × 0.56 × 0.49 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer 4462 independent reflections
Radiation source: fine-focus sealed tube 2981 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.039
T = 298(2) K θmax = 25.0º
ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 1998) h = −15→24
Tmin = 0.582, Tmax = 0.628 k = −20→20
12959 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.122   w = 1/[σ2(Fo2) + (0.0455P)2 + 11.2132P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.002
4462 reflections Δρmax = 0.58 e Å3
289 parameters Δρmin = −0.67 e Å3
12 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.256428 (17) 1.005653 (19) 0.41391 (2) 0.05022 (15)
N1 0.3679 (2) 0.9489 (2) 0.4509 (3) 0.0496 (10)
N2 0.4975 (2) 0.9001 (3) 0.4682 (4) 0.0746 (15)
N3 0.1453 (2) 1.0475 (3) 0.4696 (3) 0.0597 (12)
N4 0.0240 (3) 1.1105 (4) 0.4929 (4) 0.0858 (17)
O1 0.30863 (18) 1.0137 (2) 0.2956 (2) 0.0579 (9)
O2 0.4017 (2) 1.0160 (3) 0.2351 (3) 0.0784 (12)
O3 0.18771 (19) 1.0558 (2) 0.3031 (3) 0.0673 (11)
O4 0.09289 (19) 1.1052 (3) 0.2392 (3) 0.0757 (12)
O5 0.26009 (19) 0.9499 (2) 0.5931 (3) 0.0736 (11)
H1 0.2327 0.9135 0.5983 0.088*
H2 0.2730 0.9647 0.6484 0.088*
C1 0.3704 (3) 1.0012 (3) 0.2976 (4) 0.0529 (13)
C2 0.4039 (3) 0.9618 (3) 0.3833 (4) 0.0513 (13)
C3 0.4686 (3) 0.9380 (4) 0.3940 (4) 0.0679 (16)
H3 0.4932 0.9491 0.3467 0.082*
C4 0.4612 (3) 0.8866 (3) 0.5350 (4) 0.0620 (15)
C5 0.3965 (3) 0.9124 (3) 0.5273 (4) 0.0591 (14)
H5 0.3727 0.9042 0.5762 0.071*
C6 0.4918 (3) 0.8426 (4) 0.6191 (4) 0.090 (2)
H6A 0.5364 0.8300 0.6129 0.135*
H6B 0.4677 0.7953 0.6250 0.135*
H6C 0.4910 0.8743 0.6733 0.135*
C7 0.1295 (3) 1.0804 (3) 0.3063 (4) 0.0586 (14)
C8 0.1057 (3) 1.0790 (3) 0.3989 (4) 0.0532 (13)
C9 0.0454 (3) 1.1085 (4) 0.4106 (5) 0.0747 (18)
H9 0.0183 1.1279 0.3591 0.090*
C10 0.0627 (3) 1.0788 (4) 0.5628 (5) 0.0722 (17)
C11 0.1233 (3) 1.0474 (4) 0.5517 (4) 0.0729 (17)
H11 0.1492 1.0256 0.6027 0.087*
C12 0.0393 (4) 1.0786 (5) 0.6554 (5) 0.103 (3)
H12A −0.0033 1.1022 0.6499 0.155*
H12B 0.0694 1.1076 0.6989 0.155*
H12C 0.0368 1.0258 0.6767 0.155*
C13 0.2915 (4) 1.1117 (4) 0.4756 (5) 0.091 (2)
H13A 0.3165 1.1364 0.4319 0.110*
H13B 0.2532 1.1442 0.4778 0.110*
C14 0.3295 (5) 1.1185 (4) 0.5624 (6) 0.128 (3)
H14A 0.3671 1.0843 0.5633 0.153*
H14B 0.3038 1.0990 0.6084 0.153*
C15 0.3547 (4) 1.1996 (4) 0.5931 (7) 0.111 (3)
H15A 0.3814 1.2197 0.5488 0.133*
H15B 0.3178 1.2346 0.5938 0.133*
C16 0.3937 (5) 1.1977 (5) 0.6860 (7) 0.139 (4)
H16A 0.4091 1.2494 0.7029 0.208*
H16B 0.4305 1.1634 0.6854 0.208*
H16C 0.3670 1.1792 0.7303 0.208*
C17 0.2167 (3) 0.8926 (3) 0.3962 (4) 0.0697 (17)
H17A 0.2404 0.8590 0.4431 0.084*
H17B 0.1716 0.8946 0.4079 0.084*
C18 0.2177 (4) 0.8561 (4) 0.3060 (5) 0.107 (3)
H18A 0.2627 0.8497 0.2950 0.129*
H18B 0.1955 0.8895 0.2577 0.129*
C19 0.1832 (6) 0.7749 (5) 0.3022 (7) 0.148 (4)
H19A 0.2050 0.7431 0.3525 0.178*
H19B 0.1384 0.7826 0.3133 0.178*
C20 0.1821 (7) 0.7340 (7) 0.2212 (9) 0.217 (7)
H20A 0.1597 0.6853 0.2258 0.326*
H20B 0.2262 0.7240 0.2103 0.326*
H20C 0.1596 0.7640 0.1707 0.326*
C21 0.1267 (4) 0.7823 (4) 0.5608 (5) 0.104 (3)
H21A 0.1147 0.7483 0.6081 0.156*
H21B 0.1551 0.7550 0.5249 0.156*
H21C 0.0879 0.7986 0.5210 0.156*
O6 0.1586 (3) 0.8466 (3) 0.6014 (4) 0.123 (2)
H6 0.1340 0.8703 0.6312 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0454 (2) 0.0530 (2) 0.0517 (2) 0.00077 (18) 0.00511 (16) −0.00375 (17)
N1 0.048 (2) 0.050 (2) 0.051 (3) 0.001 (2) 0.006 (2) −0.002 (2)
N2 0.057 (3) 0.092 (4) 0.074 (3) 0.017 (3) 0.004 (3) 0.000 (3)
N3 0.055 (3) 0.062 (3) 0.062 (3) 0.010 (2) 0.010 (2) 0.000 (2)
N4 0.066 (3) 0.111 (5) 0.084 (4) 0.014 (3) 0.024 (3) 0.010 (3)
O1 0.046 (2) 0.077 (2) 0.050 (2) 0.0019 (19) 0.0050 (17) 0.0063 (18)
O2 0.065 (3) 0.114 (3) 0.059 (3) 0.007 (2) 0.018 (2) 0.018 (2)
O3 0.056 (2) 0.088 (3) 0.058 (2) 0.019 (2) 0.0097 (19) 0.005 (2)
O4 0.057 (2) 0.110 (3) 0.058 (3) 0.018 (2) 0.002 (2) 0.011 (2)
O5 0.072 (3) 0.078 (3) 0.069 (3) −0.014 (2) 0.003 (2) 0.000 (2)
C1 0.053 (3) 0.058 (3) 0.047 (3) 0.001 (3) 0.007 (3) −0.003 (3)
C2 0.049 (3) 0.056 (3) 0.049 (3) 0.004 (3) 0.006 (3) −0.007 (2)
C3 0.061 (4) 0.083 (4) 0.061 (4) 0.012 (3) 0.012 (3) −0.006 (3)
C4 0.061 (4) 0.058 (3) 0.063 (4) 0.009 (3) −0.005 (3) −0.001 (3)
C5 0.058 (4) 0.064 (3) 0.054 (3) −0.002 (3) 0.002 (3) −0.007 (3)
C6 0.087 (5) 0.103 (5) 0.077 (5) 0.022 (4) 0.000 (4) 0.009 (4)
C7 0.051 (3) 0.063 (3) 0.060 (4) 0.000 (3) 0.001 (3) −0.004 (3)
C8 0.048 (3) 0.054 (3) 0.058 (3) 0.002 (3) 0.007 (3) −0.004 (3)
C9 0.052 (4) 0.096 (5) 0.075 (4) 0.011 (3) 0.006 (3) 0.009 (4)
C10 0.072 (4) 0.076 (4) 0.073 (4) 0.006 (4) 0.024 (4) 0.002 (3)
C11 0.074 (4) 0.082 (4) 0.062 (4) 0.016 (4) 0.010 (3) 0.001 (3)
C12 0.101 (6) 0.129 (7) 0.090 (5) 0.021 (5) 0.048 (5) 0.011 (5)
C13 0.122 (6) 0.059 (4) 0.084 (5) 0.006 (4) −0.020 (5) −0.013 (3)
C14 0.136 (8) 0.087 (6) 0.148 (8) −0.019 (5) −0.023 (7) −0.027 (5)
C15 0.102 (6) 0.070 (5) 0.157 (8) −0.022 (4) 0.007 (6) −0.034 (5)
C16 0.165 (10) 0.097 (6) 0.153 (9) −0.007 (6) 0.016 (8) −0.028 (6)
C17 0.071 (4) 0.053 (3) 0.083 (4) −0.013 (3) 0.005 (3) −0.003 (3)
C18 0.131 (7) 0.083 (5) 0.108 (6) −0.028 (5) 0.021 (5) −0.037 (4)
C19 0.191 (11) 0.111 (7) 0.142 (9) −0.040 (7) 0.023 (8) −0.055 (6)
C20 0.265 (17) 0.138 (10) 0.244 (16) −0.054 (11) 0.022 (13) −0.074 (11)
C21 0.115 (6) 0.093 (5) 0.107 (6) −0.020 (5) 0.028 (5) −0.019 (5)
O6 0.118 (4) 0.129 (4) 0.134 (4) −0.045 (4) 0.065 (3) −0.047 (3)

Geometric parameters (Å, °)

Sn1—C17 2.103 (5) C10—C12 1.494 (9)
Sn1—C13 2.107 (6) C11—H11 0.9300
Sn1—O1 2.161 (4) C12—H12A 0.9600
Sn1—O3 2.167 (4) C12—H12B 0.9600
Sn1—N1 2.481 (4) C12—H12C 0.9600
Sn1—N3 2.635 (5) C13—C14 1.392 (9)
Sn1—O5 2.770 (4) C13—H13A 0.9700
N1—C2 1.331 (6) C13—H13B 0.9700
N1—C5 1.337 (6) C14—C15 1.526 (8)
N2—C3 1.326 (7) C14—H14A 0.9700
N2—C4 1.330 (8) C14—H14B 0.9700
N3—C8 1.333 (6) C15—C16 1.473 (10)
N3—C11 1.337 (7) C15—H15A 0.9700
N4—C10 1.317 (8) C15—H15B 0.9700
N4—C9 1.334 (8) C16—H16A 0.9600
O1—C1 1.288 (6) C16—H16B 0.9600
O2—C1 1.215 (7) C16—H16C 0.9600
O3—C7 1.278 (6) C17—C18 1.456 (8)
O4—C7 1.223 (6) C17—H17A 0.9700
O5—H2 0.8500 C17—H17B 0.9700
O5—H1 0.8500 C18—C19 1.558 (9)
C1—C2 1.498 (7) C18—H18A 0.9700
C2—C3 1.383 (7) C18—H18B 0.9700
C3—H3 0.9300 C19—C20 1.369 (11)
C4—C5 1.395 (8) C19—H19A 0.9700
C4—C6 1.498 (8) C19—H19B 0.9700
C5—H5 0.9300 C20—H20A 0.9600
C6—H6A 0.9600 C20—H20B 0.9600
C6—H6B 0.9600 C20—H20C 0.9600
C6—H6C 0.9600 C21—O6 1.372 (8)
C7—C8 1.498 (8) C21—H21A 0.9600
C8—C9 1.376 (8) C21—H21B 0.9600
C9—H9 0.9300 C21—H21C 0.9600
C10—C11 1.390 (8) O6—H6 0.8200
C17—Sn1—C13 161.7 (3) N4—C10—C12 117.4 (6)
C17—Sn1—O1 100.9 (2) C11—C10—C12 121.0 (6)
C13—Sn1—O1 96.1 (2) N3—C11—C10 121.9 (6)
C17—Sn1—O3 94.1 (2) N3—C11—H11 119.0
C13—Sn1—O3 97.1 (2) C10—C11—H11 119.0
O1—Sn1—O3 74.24 (14) C10—C12—H12A 109.5
C17—Sn1—N1 89.9 (2) C10—C12—H12B 109.5
C13—Sn1—N1 89.6 (2) H12A—C12—H12B 109.5
O1—Sn1—N1 69.34 (14) C10—C12—H12C 109.5
O3—Sn1—N1 143.46 (14) H12A—C12—H12C 109.5
C17—Sn1—N3 87.0 (2) H12B—C12—H12C 109.5
C13—Sn1—N3 84.0 (2) C14—C13—Sn1 125.0 (5)
O1—Sn1—N3 141.33 (14) C14—C13—H13A 106.1
O3—Sn1—N3 67.44 (15) Sn1—C13—H13A 106.1
N1—Sn1—N3 149.10 (14) C14—C13—H13B 106.1
C17—Sn1—O5 75.89 (18) Sn1—C13—H13B 106.1
C13—Sn1—O5 86.2 (2) H13A—C13—H13B 106.3
O1—Sn1—O5 145.38 (13) C13—C14—C15 117.7 (7)
O3—Sn1—O5 139.93 (13) C13—C14—H14A 107.9
N1—Sn1—O5 76.15 (13) C15—C14—H14A 107.9
N3—Sn1—O5 73.29 (13) C13—C14—H14B 107.9
C2—N1—C5 117.8 (5) C15—C14—H14B 107.9
C2—N1—Sn1 111.8 (3) H14A—C14—H14B 107.2
C5—N1—Sn1 130.4 (4) C16—C15—C14 111.6 (7)
C3—N2—C4 116.5 (5) C16—C15—H15A 109.3
C8—N3—C11 116.3 (5) C14—C15—H15A 109.3
C8—N3—Sn1 109.6 (3) C16—C15—H15B 109.3
C11—N3—Sn1 134.0 (4) C14—C15—H15B 109.3
C10—N4—C9 116.3 (6) H15A—C15—H15B 108.0
C1—O1—Sn1 125.1 (3) C15—C16—H16A 109.5
C7—O3—Sn1 128.4 (4) C15—C16—H16B 109.5
H2—O5—Sn1 138.8 H16A—C16—H16B 109.5
Sn1—O5—H1 113.9 C15—C16—H16C 109.5
Sn1—O5—H2 138.8 H16A—C16—H16C 109.5
H1—O5—H2 105.0 H16B—C16—H16C 109.5
O2—C1—O1 125.3 (5) C18—C17—Sn1 116.8 (4)
O2—C1—C2 119.2 (5) C18—C17—H17A 108.1
O1—C1—C2 115.5 (5) Sn1—C17—H17A 108.1
N1—C2—C3 119.9 (5) C18—C17—H17B 108.1
N1—C2—C1 116.8 (5) Sn1—C17—H17B 108.1
C3—C2—C1 123.3 (5) H17A—C17—H17B 107.3
N2—C3—C2 123.4 (6) C17—C18—C19 110.5 (6)
N2—C3—H3 118.3 C17—C18—H18A 109.6
C2—C3—H3 118.3 C19—C18—H18A 109.6
N2—C4—C5 121.1 (5) C17—C18—H18B 109.6
N2—C4—C6 118.0 (5) C19—C18—H18B 109.6
C5—C4—C6 120.9 (6) H18A—C18—H18B 108.1
N1—C5—C4 121.2 (6) C20—C19—C18 116.0 (9)
N1—C5—H5 119.4 C20—C19—H19A 108.3
C4—C5—H5 119.4 C18—C19—H19A 108.3
C4—C6—H6A 109.5 C20—C19—H19B 108.3
C4—C6—H6B 109.5 C18—C19—H19B 108.3
H6A—C6—H6B 109.5 H19A—C19—H19B 107.4
C4—C6—H6C 109.5 C19—C20—H20A 109.5
H6A—C6—H6C 109.5 C19—C20—H20B 109.5
H6B—C6—H6C 109.5 H20A—C20—H20B 109.5
O4—C7—O3 124.2 (6) C19—C20—H20C 109.5
O4—C7—C8 118.7 (5) H20A—C20—H20C 109.5
O3—C7—C8 117.2 (5) H20B—C20—H20C 109.5
N3—C8—C9 121.1 (5) O6—C21—H21A 109.5
N3—C8—C7 117.3 (5) O6—C21—H21B 109.5
C9—C8—C7 121.6 (5) H21A—C21—H21B 109.5
N4—C9—C8 122.8 (6) O6—C21—H21C 109.5
N4—C9—H9 118.6 H21A—C21—H21C 109.5
C8—C9—H9 118.6 H21B—C21—H21C 109.5
N4—C10—C11 121.6 (6) C21—O6—H6 109.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H1···O6 0.85 1.92 2.755 (6) 169
O5—H2···O1i 0.85 2.19 3.039 (5) 172
O6—H6···O4i 0.82 1.93 2.703 (6) 156

Symmetry codes: (i) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2726).

References

  1. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg.97, 873–876.
  3. Ma, C., Han, Y., Zhang, R. & Wang, D. (2004). J. Chem. Soc. Dalton Trans. pp. 1832–1840. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016140/hb2726sup1.cif

e-64-0m864-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016140/hb2726Isup2.hkl

e-64-0m864-Isup2.hkl (218.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES