Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1246–o1247. doi: 10.1107/S1600536808014487

2-((E)-{2-[(1E)-(2,4-Dihydroxy­benzyl­idene)amino]phen­yl}iminiometh­yl)-5-hydroxy­phenolate methanol solvate

Naser Eltaher Eltayeb a,, Siang Guan Teoh a, Suchada Chantrapromma b,§, Hoong-Kun Fun c,*, Rohana Adnan a
PMCID: PMC2961737  PMID: 21202881

Abstract

The asymmetric unit of the title compound, C20H16N2O4·CH3OH, contains two Schiff base zwitterions and two methanol solvent mol­ecules. The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 2.57 (7) and 52.30 (7)° in one mol­ecule and 5.83 (7) and 49.82 (7)° in the other mol­ecule. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds generate S(6) ring motifs, whereas intra­molecular N—H⋯N hydrogen bonds generate S(5) ring motifs. In the crystal structure, O—H⋯O, hydrogen bonds and weak C—H⋯O inter­actions link the mol­ecules into one-dimensional chains along the b-axis direction and are further connected by O—H⋯O and weak C—H⋯O inter­actions into a three-dimensional network. C—H⋯π and π–π inter­actions [centroid–centroid distances = 3.6228 (9) and 3.6881 (9) Å] are also observed in the crystal structure.

Related literature

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Eltayeb et al. (2007a ,b ). For background to applications of Schiff base ligands, see, for example: Dao et al. (2000); Eltayeb & Ahmed (2005a ,b ); Fakhari et al. (2005); Karthikeyan et al. (2006); Sriram et al. (2006).graphic file with name e-64-o1246-scheme1.jpg

Experimental

Crystal data

  • C20H16N2O4·CH4O

  • M r = 380.39

  • Triclinic, Inline graphic

  • a = 8.3672 (2) Å

  • b = 11.0813 (2) Å

  • c = 20.3217 (3) Å

  • α = 89.313 (1)°

  • β = 80.309 (1)°

  • γ = 79.641 (1)°

  • V = 1826.73 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.50 × 0.34 × 0.17 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.952, T max = 0.984

  • 42593 measured reflections

  • 10651 independent reflections

  • 7203 reflections with I > 2σ(I)’

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.162

  • S = 1.05

  • 10651 reflections

  • 515 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014487/sj2499sup1.cif

e-64-o1246-sup1.cif (33KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014487/sj2499Isup2.hkl

e-64-o1246-Isup2.hkl (520.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯O5Bi 0.95 1.71 2.6610 (16) 176
O3A—H3OA⋯N2A 0.96 1.78 2.6637 (16) 153
O4A—H4OA⋯O2Aii 0.82 1.83 2.6330 (16) 164
N1A—H1NA⋯O2A 0.92 1.84 2.6021 (16) 138
N1A—H1NA⋯N2A 0.92 2.31 2.7063 (16) 106
O1B—H1OB⋯O5Aiii 0.99 1.64 2.6205 (16) 170
O3B—H3OB⋯N2B 0.94 1.77 2.6526 (16) 154
O4B—H4OB⋯O2Biv 0.89 1.74 2.6241 (16) 174
N1B—H1NB⋯O2B 0.87 1.88 2.6006 (16) 139
N1B—H1NB⋯N2B 0.87 2.32 2.7020 (16) 107
O5A—H5OA⋯O2B 0.84 1.91 2.7145 (16) 162
O5A—H5OA⋯O3B 0.84 2.58 2.9703 (15) 110
O5B—H5OB⋯O2A 0.91 1.83 2.7034 (16) 160
C4A—H4A⋯O5Bi 0.93 2.48 3.165 (2) 131
C4B—H4B⋯O5Aiii 0.93 2.48 3.1596 (19) 130
C7A—H7A⋯O4Biv 0.93 2.36 3.1691 (17) 146
C7B—H7B⋯O4Aii 0.93 2.35 3.1253 (17) 141
C12B—H12B⋯O1Bv 0.93 2.55 3.3603 (18) 146
C21B—H21D⋯O3A 0.96 2.44 3.134 (2) 129
C21B—H21DCg3vi 0.96 2.86 3.568 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg3 is the centroid of the C15A–C20A ring.

Acknowledgments

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for E-Science Fund and RU research grants (PKIMIA/613308, PKIMIA/815002, 203/PKIMIA/671083) and a fellowship for NEE. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

supplementary crystallographic information

Comment

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b) such as nickel in some natural food products (Fakhari et al., 2005). We reported the crystal structures of 5,5'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)diphenol (Eltayeb et al., 2007a) and 4,4'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)diphenol (Eltayeb et al., 2007b) and we report here the structure of the title compound (I), a closely-related Schiff base.

The asymmetric unit of (I) (Fig. 1) contains two Schiff base zwitterions and two methanol molecules (A and B). The zwitterion results from protonation of the imine N1A and N1B atoms with protons from the O2A and O2B hydroxy groups resulting in the formation of iminium and hydroxyphenolate groups. In the structure, the hydroxyphenolate ring (C1–C6/O1-O2) is nearly coplanar with the phenyl ring (C8–C13) as indicated by the dihedral angles between these two rings being 2.57 (7)° in molecule A and 5.83 (7)° in molecule B and the torsion angle C8/N1/C7/C6 = 179.33 (2)° in molecule A and 178.07 (12)° in molecule B. The C8–C13 phenyl ring makes a dihedral angle of 52.30 (7)° with the dihydroxyphenyl ring (C15–C20/O3–O4) in molecule A [49.82 (7)° in molecule B].

Intramolecular hydrogen bonds, O3A—H3OA···N2A, N1A—H1NA···O2A, O3B—H3OB···N2B and N1B—H1NB···O2B (Table 1) generate S(6) ring motifs whereas N1A—H1NA···N2A and N1B—H1NB···N2B generate S(5) ring motifs (Bernstein et al., 1995). Bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Eltayeb et al., 2007a,b). In the crystal packing (Fig. 2), O—H···O, hydrogen bonds and weak C—H···O interactions (Table 1) link the molecules into one dimensional chains along the b direction and are further connected by O—H···O and weak C—H···O interactions (Table 1) into a three-dimensional network (Table 1). The crystal is further stabilized by weak C—H···π interactions (Table 1). π···π interactions were also observed with the distances of Cg1···Cg5 = 3.6228 (9) Å and Cg2···Cg4 = 3.6881 (9) Å (symmetry code : x, y, z in each case); Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C1A–C6A, C8A–C13A, C15A–C20A, C1B–C6B and C8B–C13B benzene rings, respectively.

Experimental

The title compound was synthesized by adding 2,4-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for x-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement

Hydroxyl and imine H atoms were located from the difference map and refined riding on the parent atoms with refinement of the isotropic thermal parameters. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular O—H···N, N—H···O and N—H···N hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the a axis, showing the molecular chains along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C20H16N2O4·CH4O Z = 4
Mr = 380.39 F000 = 800
Triclinic, P1 Dx = 1.383 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.3672 (2) Å Cell parameters from 10651 reflections
b = 11.0813 (2) Å θ = 1.0–30.0º
c = 20.3217 (3) Å µ = 0.10 mm1
α = 89.313 (1)º T = 100.0 (1) K
β = 80.309 (1)º Block, yellow
γ = 79.641 (1)º 0.50 × 0.34 × 0.17 mm
V = 1826.73 (6) Å3

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 10651 independent reflections
Radiation source: fine-focus sealed tube 7203 reflections with I > 2σ(I)'
Monochromator: graphite Rint = 0.034
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 1.0º
ω scans h = −11→10
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −15→15
Tmin = 0.952, Tmax = 0.984 l = −28→28
42593 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.162   w = 1/[σ2(Fo2) + (0.0788P)2 + 0.3402P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
10651 reflections Δρmax = 0.44 e Å3
515 parameters Δρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.38240 (14) 1.21218 (9) 0.37963 (5) 0.0269 (3)
H1OA 0.3231 1.1862 0.4197 0.055 (6)*
O2A 0.70037 (13) 0.81358 (9) 0.39164 (5) 0.0243 (2)
O3A 0.83682 (14) 0.59449 (9) 0.48780 (5) 0.0268 (3)
H3OA 0.8948 0.5957 0.4431 0.054 (6)*
O4A 0.49475 (14) 0.34820 (10) 0.60844 (5) 0.0272 (3)
H4OA 0.4485 0.2903 0.6031 0.061 (7)*
N1A 0.94132 (15) 0.74067 (10) 0.29384 (6) 0.0193 (3)
H1NA 0.8739 0.7270 0.3329 0.042 (5)*
N2A 0.97260 (16) 0.52908 (11) 0.36228 (6) 0.0211 (3)
C1A 0.73415 (19) 1.05359 (13) 0.26751 (7) 0.0220 (3)
H1A 0.7991 1.0678 0.2273 0.026*
C2A 0.60758 (19) 1.14282 (13) 0.29478 (7) 0.0231 (3)
H2A 0.5870 1.2175 0.2736 0.028*
C3A 0.50713 (19) 1.12139 (12) 0.35571 (7) 0.0215 (3)
C4A 0.53930 (19) 1.01151 (12) 0.38853 (7) 0.0213 (3)
H4A 0.4740 0.9996 0.4290 0.026*
C5A 0.66928 (18) 0.91814 (12) 0.36127 (7) 0.0201 (3)
C6A 0.76932 (18) 0.93925 (12) 0.29904 (7) 0.0191 (3)
C7A 0.90059 (18) 0.84951 (12) 0.26841 (7) 0.0198 (3)
H7A 0.9618 0.8679 0.2282 0.024*
C8A 1.06914 (18) 0.64458 (12) 0.26672 (7) 0.0191 (3)
C9A 1.17540 (19) 0.65455 (13) 0.20737 (7) 0.0220 (3)
H9A 1.1653 0.7274 0.1840 0.026*
C10A 1.29635 (19) 0.55566 (14) 0.18314 (8) 0.0251 (3)
H10A 1.3668 0.5620 0.1432 0.030*
C11A 1.31301 (19) 0.44739 (14) 0.21809 (8) 0.0260 (3)
H11A 1.3952 0.3815 0.2017 0.031*
C12A 1.20798 (19) 0.43678 (13) 0.27732 (8) 0.0250 (3)
H12A 1.2205 0.3640 0.3007 0.030*
C13A 1.08334 (18) 0.53462 (13) 0.30223 (7) 0.0204 (3)
C14A 0.90878 (19) 0.43132 (13) 0.37372 (7) 0.0221 (3)
H14A 0.9346 0.3700 0.3408 0.026*
C15A 0.80086 (19) 0.41174 (12) 0.43391 (7) 0.0206 (3)
C16A 0.76986 (19) 0.49236 (12) 0.49003 (7) 0.0206 (3)
C17A 0.67009 (19) 0.46828 (13) 0.54807 (7) 0.0223 (3)
H17A 0.6535 0.5202 0.5851 0.027*
C18A 0.59436 (19) 0.36593 (13) 0.55096 (7) 0.0220 (3)
C19A 0.6219 (2) 0.28485 (13) 0.49599 (7) 0.0243 (3)
H19A 0.5723 0.2159 0.4983 0.029*
C20A 0.72290 (19) 0.30880 (13) 0.43892 (7) 0.0241 (3)
H20A 0.7405 0.2555 0.4024 0.029*
O1B 1.06277 (14) 0.29566 (9) 0.12539 (5) 0.0263 (2)
H1OB 1.1264 0.3111 0.0813 0.060 (7)*
O2B 0.78690 (13) 0.70842 (9) 0.11637 (5) 0.0246 (2)
O3B 0.65725 (14) 0.90440 (9) 0.01575 (5) 0.0263 (2)
H3OB 0.5866 0.9158 0.0575 0.050 (6)*
O4B 1.01686 (14) 1.13045 (10) −0.11108 (5) 0.0269 (2)
H4OB 1.0777 1.1886 −0.1138 0.065 (7)*
N1B 0.53881 (15) 0.78591 (10) 0.21044 (6) 0.0188 (3)
H1NB 0.6050 0.7965 0.1739 0.043 (6)*
N2B 0.50773 (16) 0.98985 (11) 0.13603 (6) 0.0212 (3)
C1B 0.72248 (19) 0.46765 (13) 0.23763 (7) 0.0218 (3)
H1B 0.6540 0.4555 0.2773 0.026*
C2B 0.84138 (19) 0.37362 (13) 0.21012 (7) 0.0227 (3)
H2B 0.8535 0.2978 0.2306 0.027*
C3B 0.94691 (19) 0.39181 (12) 0.14999 (7) 0.0209 (3)
C4B 0.92878 (19) 0.50368 (13) 0.11862 (7) 0.0218 (3)
H4B 0.9983 0.5136 0.0789 0.026*
C5B 0.80678 (18) 0.60236 (12) 0.14599 (7) 0.0195 (3)
C6B 0.70035 (18) 0.58425 (12) 0.20722 (7) 0.0189 (3)
C7B 0.57163 (18) 0.67648 (12) 0.23642 (7) 0.0191 (3)
H7B 0.5062 0.6598 0.2760 0.023*
C8B 0.40985 (18) 0.88345 (12) 0.23481 (7) 0.0186 (3)
C9B 0.30337 (19) 0.87881 (13) 0.29475 (7) 0.0223 (3)
H9B 0.3152 0.8092 0.3208 0.027*
C10B 0.17954 (19) 0.97810 (14) 0.31555 (8) 0.0249 (3)
H10B 0.1086 0.9754 0.3558 0.030*
C11B 0.16100 (19) 1.08150 (14) 0.27664 (8) 0.0264 (3)
H11B 0.0766 1.1474 0.2906 0.032*
C12B 0.26700 (19) 1.08732 (13) 0.21731 (8) 0.0245 (3)
H12B 0.2533 1.1570 0.1914 0.029*
C13B 0.39474 (19) 0.98924 (13) 0.19586 (7) 0.0204 (3)
C14B 0.56811 (19) 1.08790 (13) 0.12067 (7) 0.0222 (3)
H14B 0.5372 1.1544 0.1504 0.027*
C15B 0.68020 (19) 1.09985 (12) 0.06030 (7) 0.0212 (3)
C16B 0.72244 (19) 1.00770 (12) 0.00920 (7) 0.0211 (3)
C17B 0.83261 (19) 1.02095 (13) −0.04789 (7) 0.0225 (3)
H17B 0.8579 0.9607 −0.0814 0.027*
C18B 0.90569 (19) 1.12444 (13) −0.05529 (7) 0.0222 (3)
C19B 0.8645 (2) 1.21803 (13) −0.00595 (7) 0.0253 (3)
H19B 0.9114 1.2883 −0.0115 0.030*
C20B 0.7541 (2) 1.20413 (13) 0.05044 (7) 0.0255 (3)
H20B 0.7275 1.2658 0.0832 0.031*
O5A 0.78442 (15) 0.63854 (10) −0.01097 (6) 0.0355 (3)
H5OA 0.7819 0.6756 0.0250 0.053*
C21A 0.6263 (3) 0.6108 (3) −0.00516 (12) 0.0693 (8)
H21A 0.5458 0.6836 0.0074 0.104*
H21B 0.6128 0.5498 0.0283 0.104*
H21C 0.6116 0.5797 −0.0472 0.104*
O5B 0.77865 (16) 0.87056 (10) 0.50980 (6) 0.0370 (3)
H5OB 0.7381 0.8399 0.4761 0.055*
C21B 0.9533 (3) 0.84547 (17) 0.50003 (11) 0.0475 (5)
H21D 0.9915 0.7584 0.4966 0.071*
H21E 0.9903 0.8780 0.5372 0.071*
H21F 0.9964 0.8831 0.4597 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0347 (7) 0.0192 (5) 0.0245 (6) 0.0013 (5) −0.0056 (5) 0.0008 (4)
O2A 0.0273 (6) 0.0196 (5) 0.0238 (5) −0.0020 (4) −0.0007 (5) 0.0079 (4)
O3A 0.0374 (7) 0.0182 (5) 0.0266 (6) −0.0113 (5) −0.0032 (5) −0.0006 (4)
O4A 0.0351 (7) 0.0275 (6) 0.0202 (5) −0.0114 (5) −0.0025 (5) 0.0051 (4)
N1A 0.0202 (7) 0.0189 (6) 0.0191 (6) −0.0048 (5) −0.0029 (5) 0.0028 (4)
N2A 0.0232 (7) 0.0197 (6) 0.0207 (6) −0.0045 (5) −0.0039 (5) 0.0032 (5)
C1A 0.0274 (8) 0.0213 (7) 0.0196 (7) −0.0087 (6) −0.0065 (6) 0.0048 (5)
C2A 0.0318 (9) 0.0162 (6) 0.0238 (7) −0.0063 (6) −0.0101 (7) 0.0057 (5)
C3A 0.0253 (8) 0.0174 (6) 0.0233 (7) −0.0037 (6) −0.0082 (6) −0.0016 (5)
C4A 0.0250 (8) 0.0200 (7) 0.0193 (7) −0.0052 (6) −0.0033 (6) 0.0028 (5)
C5A 0.0227 (8) 0.0182 (6) 0.0214 (7) −0.0067 (6) −0.0063 (6) 0.0039 (5)
C6A 0.0202 (8) 0.0182 (6) 0.0209 (7) −0.0061 (6) −0.0067 (6) 0.0034 (5)
C7A 0.0225 (8) 0.0217 (7) 0.0177 (7) −0.0086 (6) −0.0054 (6) 0.0030 (5)
C8A 0.0173 (7) 0.0204 (6) 0.0204 (7) −0.0048 (5) −0.0042 (6) −0.0001 (5)
C9A 0.0233 (8) 0.0238 (7) 0.0207 (7) −0.0075 (6) −0.0060 (6) 0.0028 (5)
C10A 0.0214 (8) 0.0304 (8) 0.0236 (7) −0.0080 (6) −0.0007 (6) −0.0029 (6)
C11A 0.0201 (8) 0.0247 (7) 0.0321 (8) −0.0020 (6) −0.0029 (7) −0.0064 (6)
C12A 0.0246 (8) 0.0210 (7) 0.0299 (8) −0.0041 (6) −0.0061 (7) −0.0003 (6)
C13A 0.0227 (8) 0.0206 (7) 0.0194 (7) −0.0061 (6) −0.0054 (6) 0.0018 (5)
C14A 0.0253 (8) 0.0198 (6) 0.0222 (7) −0.0046 (6) −0.0065 (6) 0.0012 (5)
C15A 0.0244 (8) 0.0181 (6) 0.0200 (7) −0.0053 (6) −0.0043 (6) 0.0023 (5)
C16A 0.0239 (8) 0.0169 (6) 0.0228 (7) −0.0051 (6) −0.0076 (6) 0.0036 (5)
C17A 0.0284 (9) 0.0194 (6) 0.0202 (7) −0.0041 (6) −0.0069 (6) 0.0008 (5)
C18A 0.0244 (8) 0.0218 (7) 0.0198 (7) −0.0037 (6) −0.0049 (6) 0.0056 (5)
C19A 0.0290 (9) 0.0210 (7) 0.0246 (8) −0.0096 (6) −0.0042 (6) 0.0033 (6)
C20A 0.0292 (9) 0.0208 (7) 0.0235 (7) −0.0077 (6) −0.0038 (6) −0.0017 (6)
O1B 0.0326 (7) 0.0182 (5) 0.0253 (6) 0.0023 (4) −0.0047 (5) 0.0008 (4)
O2B 0.0270 (6) 0.0182 (5) 0.0257 (5) −0.0024 (4) 0.0011 (5) 0.0069 (4)
O3B 0.0342 (7) 0.0198 (5) 0.0261 (6) −0.0106 (5) −0.0024 (5) −0.0001 (4)
O4B 0.0331 (7) 0.0283 (6) 0.0203 (5) −0.0107 (5) −0.0024 (5) 0.0052 (4)
N1B 0.0196 (6) 0.0179 (5) 0.0188 (6) −0.0040 (5) −0.0019 (5) 0.0013 (4)
N2B 0.0234 (7) 0.0198 (6) 0.0206 (6) −0.0041 (5) −0.0040 (5) 0.0029 (5)
C1B 0.0254 (8) 0.0227 (7) 0.0191 (7) −0.0080 (6) −0.0049 (6) 0.0060 (5)
C2B 0.0290 (9) 0.0174 (6) 0.0234 (7) −0.0065 (6) −0.0072 (6) 0.0059 (5)
C3B 0.0241 (8) 0.0187 (6) 0.0209 (7) −0.0030 (6) −0.0077 (6) 0.0000 (5)
C4B 0.0235 (8) 0.0208 (7) 0.0203 (7) −0.0038 (6) −0.0018 (6) 0.0029 (5)
C5B 0.0209 (8) 0.0178 (6) 0.0210 (7) −0.0061 (6) −0.0042 (6) 0.0043 (5)
C6B 0.0196 (8) 0.0185 (6) 0.0201 (7) −0.0051 (6) −0.0059 (6) 0.0027 (5)
C7B 0.0208 (8) 0.0219 (7) 0.0163 (6) −0.0076 (6) −0.0040 (6) 0.0031 (5)
C8B 0.0170 (7) 0.0192 (6) 0.0207 (7) −0.0042 (5) −0.0048 (6) −0.0014 (5)
C9B 0.0227 (8) 0.0240 (7) 0.0214 (7) −0.0079 (6) −0.0034 (6) 0.0012 (5)
C10B 0.0211 (8) 0.0316 (8) 0.0222 (7) −0.0079 (6) −0.0004 (6) −0.0036 (6)
C11B 0.0196 (8) 0.0255 (7) 0.0335 (8) −0.0029 (6) −0.0036 (7) −0.0063 (6)
C12B 0.0261 (8) 0.0194 (7) 0.0293 (8) −0.0042 (6) −0.0080 (7) 0.0013 (6)
C13B 0.0218 (8) 0.0202 (6) 0.0207 (7) −0.0056 (6) −0.0057 (6) −0.0003 (5)
C14B 0.0262 (8) 0.0197 (7) 0.0213 (7) −0.0041 (6) −0.0063 (6) 0.0003 (5)
C15B 0.0255 (8) 0.0188 (6) 0.0206 (7) −0.0048 (6) −0.0074 (6) 0.0024 (5)
C16B 0.0252 (8) 0.0184 (6) 0.0222 (7) −0.0060 (6) −0.0091 (6) 0.0042 (5)
C17B 0.0280 (9) 0.0200 (7) 0.0202 (7) −0.0042 (6) −0.0063 (6) 0.0004 (5)
C18B 0.0246 (8) 0.0244 (7) 0.0187 (7) −0.0059 (6) −0.0062 (6) 0.0066 (5)
C19B 0.0315 (9) 0.0204 (7) 0.0262 (8) −0.0095 (6) −0.0061 (7) 0.0037 (6)
C20B 0.0323 (9) 0.0221 (7) 0.0234 (8) −0.0085 (6) −0.0045 (7) 0.0005 (6)
O5A 0.0446 (8) 0.0320 (6) 0.0259 (6) −0.0036 (5) 0.0020 (5) −0.0061 (5)
C21A 0.0710 (18) 0.0941 (19) 0.0535 (14) −0.0471 (15) −0.0052 (12) −0.0218 (13)
O5B 0.0476 (8) 0.0312 (6) 0.0264 (6) 0.0059 (6) −0.0035 (6) −0.0034 (5)
C21B 0.0521 (14) 0.0349 (10) 0.0598 (13) −0.0127 (9) −0.0163 (11) 0.0007 (9)

Geometric parameters (Å, °)

O1A—C3A 1.3420 (17) O4B—C18B 1.3493 (18)
O1A—H1OA 0.9500 O4B—H4OB 0.8863
O2A—C5A 1.3113 (16) N1B—C7B 1.3183 (17)
O3A—C16A 1.3473 (16) N1B—C8B 1.4112 (18)
O3A—H3OA 0.9560 N1B—H1NB 0.8691
O4A—C18A 1.3503 (18) N2B—C14B 1.2921 (18)
O4A—H4OA 0.8240 N2B—C13B 1.4097 (19)
N1A—C7A 1.3169 (17) C1B—C2B 1.357 (2)
N1A—C8A 1.4098 (18) C1B—C6B 1.4209 (18)
N1A—H1NA 0.9215 C1B—H1B 0.9300
N2A—C14A 1.2934 (18) C2B—C3B 1.417 (2)
N2A—C13A 1.4105 (19) C2B—H2B 0.9300
C1A—C2A 1.358 (2) C3B—C4B 1.3828 (19)
C1A—C6A 1.4186 (19) C4B—C5B 1.403 (2)
C1A—H1A 0.9300 C4B—H4B 0.9300
C2A—C3A 1.418 (2) C5B—C6B 1.438 (2)
C2A—H2A 0.9300 C6B—C7B 1.400 (2)
C3A—C4A 1.3868 (19) C7B—H7B 0.9300
C4A—C5A 1.402 (2) C8B—C9B 1.389 (2)
C4A—H4A 0.9300 C8B—C13B 1.4053 (19)
C5A—C6A 1.436 (2) C9B—C10B 1.384 (2)
C6A—C7A 1.405 (2) C9B—H9B 0.9300
C7A—H7A 0.9300 C10B—C11B 1.385 (2)
C8A—C9A 1.389 (2) C10B—H10B 0.9300
C8A—C13A 1.4054 (19) C11B—C12B 1.380 (2)
C9A—C10A 1.383 (2) C11B—H11B 0.9300
C9A—H9A 0.9300 C12B—C13B 1.397 (2)
C10A—C11A 1.384 (2) C12B—H12B 0.9300
C10A—H10A 0.9300 C14B—C15B 1.434 (2)
C11A—C12A 1.383 (2) C14B—H14B 0.9300
C11A—H11A 0.9300 C15B—C20B 1.4028 (19)
C12A—C13A 1.396 (2) C15B—C16B 1.4206 (19)
C12A—H12A 0.9300 C16B—C17B 1.379 (2)
C14A—C15A 1.432 (2) C17B—C18B 1.389 (2)
C14A—H14A 0.9300 C17B—H17B 0.9300
C15A—C20A 1.4069 (19) C18B—C19B 1.407 (2)
C15A—C16A 1.4169 (19) C19B—C20B 1.371 (2)
C16A—C17A 1.378 (2) C19B—H19B 0.9300
C17A—C18A 1.391 (2) C20B—H20B 0.9300
C17A—H17A 0.9300 O5A—C21A 1.398 (2)
C18A—C19A 1.404 (2) O5A—H5OA 0.8380
C19A—C20A 1.368 (2) C21A—H21A 0.9600
C19A—H19A 0.9300 C21A—H21B 0.9600
C20A—H20A 0.9300 C21A—H21C 0.9600
O1B—C3B 1.3428 (17) O5B—C21B 1.418 (2)
O1B—H1OB 0.9923 O5B—H5OB 0.9079
O2B—C5B 1.3106 (16) C21B—H21D 0.9600
O3B—C16B 1.3498 (16) C21B—H21E 0.9600
O3B—H3OB 0.9451 C21B—H21F 0.9600
C3A—O1A—H1OA 108.9 C2B—C1B—C6B 121.45 (14)
C16A—O3A—H3OA 104.7 C2B—C1B—H1B 119.3
C18A—O4A—H4OA 109.0 C6B—C1B—H1B 119.3
C7A—N1A—C8A 127.48 (13) C1B—C2B—C3B 119.54 (13)
C7A—N1A—H1NA 114.2 C1B—C2B—H2B 120.2
C8A—N1A—H1NA 118.2 C3B—C2B—H2B 120.2
C14A—N2A—C13A 118.47 (12) O1B—C3B—C4B 122.39 (14)
C2A—C1A—C6A 121.38 (14) O1B—C3B—C2B 116.82 (12)
C2A—C1A—H1A 119.3 C4B—C3B—C2B 120.78 (13)
C6A—C1A—H1A 119.3 C3B—C4B—C5B 120.80 (14)
C1A—C2A—C3A 119.60 (13) C3B—C4B—H4B 119.6
C1A—C2A—H2A 120.2 C5B—C4B—H4B 119.6
C3A—C2A—H2A 120.2 O2B—C5B—C4B 121.44 (13)
O1A—C3A—C4A 122.46 (14) O2B—C5B—C6B 120.08 (13)
O1A—C3A—C2A 116.87 (12) C4B—C5B—C6B 118.46 (12)
C4A—C3A—C2A 120.67 (13) C7B—C6B—C1B 118.99 (13)
C3A—C4A—C5A 120.66 (14) C7B—C6B—C5B 122.01 (12)
C3A—C4A—H4A 119.7 C1B—C6B—C5B 118.96 (13)
C5A—C4A—H4A 119.7 N1B—C7B—C6B 123.07 (13)
O2A—C5A—C4A 121.24 (13) N1B—C7B—H7B 118.5
O2A—C5A—C6A 120.17 (13) C6B—C7B—H7B 118.5
C4A—C5A—C6A 118.59 (12) C9B—C8B—C13B 120.41 (13)
C7A—C6A—C1A 119.15 (13) C9B—C8B—N1B 122.93 (12)
C7A—C6A—C5A 121.77 (12) C13B—C8B—N1B 116.65 (13)
C1A—C6A—C5A 119.08 (13) C10B—C9B—C8B 119.76 (14)
N1A—C7A—C6A 123.28 (13) C10B—C9B—H9B 120.1
N1A—C7A—H7A 118.4 C8B—C9B—H9B 120.1
C6A—C7A—H7A 118.4 C9B—C10B—C11B 120.23 (15)
C9A—C8A—C13A 120.45 (13) C9B—C10B—H10B 119.9
C9A—C8A—N1A 122.92 (12) C11B—C10B—H10B 119.9
C13A—C8A—N1A 116.61 (13) C12B—C11B—C10B 120.40 (14)
C10A—C9A—C8A 119.76 (13) C12B—C11B—H11B 119.8
C10A—C9A—H9A 120.1 C10B—C11B—H11B 119.8
C8A—C9A—H9A 120.1 C11B—C12B—C13B 120.44 (14)
C9A—C10A—C11A 120.34 (15) C11B—C12B—H12B 119.8
C9A—C10A—H10A 119.8 C13B—C12B—H12B 119.8
C11A—C10A—H10A 119.8 C12B—C13B—C8B 118.71 (14)
C12A—C11A—C10A 120.27 (14) C12B—C13B—N2B 123.18 (13)
C12A—C11A—H11A 119.9 C8B—C13B—N2B 118.09 (13)
C10A—C11A—H11A 119.9 N2B—C14B—C15B 123.63 (13)
C11A—C12A—C13A 120.43 (14) N2B—C14B—H14B 118.2
C11A—C12A—H12A 119.8 C15B—C14B—H14B 118.2
C13A—C12A—H12A 119.8 C20B—C15B—C16B 117.67 (14)
C12A—C13A—C8A 118.72 (14) C20B—C15B—C14B 120.20 (13)
C12A—C13A—N2A 122.94 (13) C16B—C15B—C14B 122.12 (13)
C8A—C13A—N2A 118.32 (13) O3B—C16B—C17B 118.42 (12)
N2A—C14A—C15A 124.04 (13) O3B—C16B—C15B 120.78 (13)
N2A—C14A—H14A 118.0 C17B—C16B—C15B 120.79 (13)
C15A—C14A—H14A 118.0 C16B—C17B—C18B 119.86 (13)
C20A—C15A—C16A 117.79 (13) C16B—C17B—H17B 120.1
C20A—C15A—C14A 119.92 (13) C18B—C17B—H17B 120.1
C16A—C15A—C14A 122.29 (13) O4B—C18B—C17B 117.28 (13)
O3A—C16A—C17A 118.50 (12) O4B—C18B—C19B 122.12 (13)
O3A—C16A—C15A 120.74 (13) C17B—C18B—C19B 120.60 (14)
C17A—C16A—C15A 120.76 (13) C20B—C19B—C18B 118.98 (13)
C16A—C17A—C18A 119.73 (13) C20B—C19B—H19B 120.5
C16A—C17A—H17A 120.1 C18B—C19B—H19B 120.5
C18A—C17A—H17A 120.1 C19B—C20B—C15B 122.06 (13)
O4A—C18A—C17A 117.35 (13) C19B—C20B—H20B 119.0
O4A—C18A—C19A 121.91 (13) C15B—C20B—H20B 119.0
C17A—C18A—C19A 120.74 (14) C21A—O5A—H5OA 103.6
C20A—C19A—C18A 119.01 (13) O5A—C21A—H21A 109.5
C20A—C19A—H19A 120.5 O5A—C21A—H21B 109.5
C18A—C19A—H19A 120.5 H21A—C21A—H21B 109.5
C19A—C20A—C15A 121.93 (13) O5A—C21A—H21C 109.5
C19A—C20A—H20A 119.0 H21A—C21A—H21C 109.5
C15A—C20A—H20A 119.0 H21B—C21A—H21C 109.5
C3B—O1B—H1OB 113.4 C21B—O5B—H5OB 112.5
C16B—O3B—H3OB 103.5 O5B—C21B—H21D 109.5
C18B—O4B—H4OB 118.9 O5B—C21B—H21E 109.5
C7B—N1B—C8B 127.42 (13) H21D—C21B—H21E 109.5
C7B—N1B—H1NB 114.3 O5B—C21B—H21F 109.5
C8B—N1B—H1NB 118.3 H21D—C21B—H21F 109.5
C14B—N2B—C13B 118.92 (12) H21E—C21B—H21F 109.5
C6A—C1A—C2A—C3A −0.6 (2) C6B—C1B—C2B—C3B 0.4 (2)
C1A—C2A—C3A—O1A −178.94 (13) C1B—C2B—C3B—O1B 179.61 (13)
C1A—C2A—C3A—C4A 1.6 (2) C1B—C2B—C3B—C4B −0.8 (2)
O1A—C3A—C4A—C5A 178.95 (12) O1B—C3B—C4B—C5B −179.67 (12)
C2A—C3A—C4A—C5A −1.6 (2) C2B—C3B—C4B—C5B 0.8 (2)
C3A—C4A—C5A—O2A −179.61 (13) C3B—C4B—C5B—O2B −179.15 (13)
C3A—C4A—C5A—C6A 0.6 (2) C3B—C4B—C5B—C6B −0.4 (2)
C2A—C1A—C6A—C7A 179.34 (13) C2B—C1B—C6B—C7B 177.55 (13)
C2A—C1A—C6A—C5A −0.4 (2) C2B—C1B—C6B—C5B 0.0 (2)
O2A—C5A—C6A—C7A 0.9 (2) O2B—C5B—C6B—C7B 1.3 (2)
C4A—C5A—C6A—C7A −179.35 (13) C4B—C5B—C6B—C7B −177.51 (13)
O2A—C5A—C6A—C1A −179.39 (12) O2B—C5B—C6B—C1B 178.79 (12)
C4A—C5A—C6A—C1A 0.36 (19) C4B—C5B—C6B—C1B 0.00 (19)
C8A—N1A—C7A—C6A 179.33 (12) C8B—N1B—C7B—C6B 178.07 (12)
C1A—C6A—C7A—N1A −179.54 (13) C1B—C6B—C7B—N1B −177.73 (13)
C5A—C6A—C7A—N1A 0.2 (2) C5B—C6B—C7B—N1B −0.2 (2)
C7A—N1A—C8A—C9A 1.4 (2) C7B—N1B—C8B—C9B 4.9 (2)
C7A—N1A—C8A—C13A −177.32 (13) C7B—N1B—C8B—C13B −176.36 (13)
C13A—C8A—C9A—C10A −0.2 (2) C13B—C8B—C9B—C10B 1.3 (2)
N1A—C8A—C9A—C10A −178.88 (12) N1B—C8B—C9B—C10B 179.98 (13)
C8A—C9A—C10A—C11A −0.7 (2) C8B—C9B—C10B—C11B 0.4 (2)
C9A—C10A—C11A—C12A 0.5 (2) C9B—C10B—C11B—C12B −0.9 (2)
C10A—C11A—C12A—C13A 0.5 (2) C10B—C11B—C12B—C13B −0.2 (2)
C11A—C12A—C13A—C8A −1.3 (2) C11B—C12B—C13B—C8B 1.9 (2)
C11A—C12A—C13A—N2A 179.96 (13) C11B—C12B—C13B—N2B −179.56 (13)
C9A—C8A—C13A—C12A 1.2 (2) C9B—C8B—C13B—C12B −2.4 (2)
N1A—C8A—C13A—C12A 179.95 (12) N1B—C8B—C13B—C12B 178.80 (12)
C9A—C8A—C13A—N2A 179.95 (12) C9B—C8B—C13B—N2B 178.95 (12)
N1A—C8A—C13A—N2A −1.28 (18) N1B—C8B—C13B—N2B 0.20 (18)
C14A—N2A—C13A—C12A −43.96 (19) C14B—N2B—C13B—C12B 43.0 (2)
C14A—N2A—C13A—C8A 137.33 (14) C14B—N2B—C13B—C8B −138.49 (14)
C13A—N2A—C14A—C15A 177.04 (13) C13B—N2B—C14B—C15B −178.21 (13)
N2A—C14A—C15A—C20A 172.92 (14) N2B—C14B—C15B—C20B −173.14 (14)
N2A—C14A—C15A—C16A −7.8 (2) N2B—C14B—C15B—C16B 5.9 (2)
C20A—C15A—C16A—O3A −178.04 (13) C20B—C15B—C16B—O3B 179.28 (13)
C14A—C15A—C16A—O3A 2.7 (2) C14B—C15B—C16B—O3B 0.2 (2)
C20A—C15A—C16A—C17A 1.7 (2) C20B—C15B—C16B—C17B 0.1 (2)
C14A—C15A—C16A—C17A −177.56 (13) C14B—C15B—C16B—C17B −178.99 (13)
O3A—C16A—C17A—C18A 177.61 (13) O3B—C16B—C17B—C18B −178.07 (13)
C15A—C16A—C17A—C18A −2.2 (2) C15B—C16B—C17B—C18B 1.1 (2)
C16A—C17A—C18A—O4A −178.44 (13) C16B—C17B—C18B—O4B 177.70 (12)
C16A—C17A—C18A—C19A 1.8 (2) C16B—C17B—C18B—C19B −2.0 (2)
O4A—C18A—C19A—C20A 179.29 (13) O4B—C18B—C19B—C20B −178.04 (13)
C17A—C18A—C19A—C20A −0.9 (2) C17B—C18B—C19B—C20B 1.7 (2)
C18A—C19A—C20A—C15A 0.5 (2) C18B—C19B—C20B—C15B −0.4 (2)
C16A—C15A—C20A—C19A −0.9 (2) C16B—C15B—C20B—C19B −0.5 (2)
C14A—C15A—C20A—C19A 178.42 (14) C14B—C15B—C20B—C19B 178.67 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1OA···O5Bi 0.95 1.71 2.6610 (16) 176
O3A—H3OA···N2A 0.96 1.78 2.6637 (16) 153
O4A—H4OA···O2Aii 0.82 1.83 2.6330 (16) 164
N1A—H1NA···O2A 0.92 1.84 2.6021 (16) 138
N1A—H1NA···N2A 0.92 2.31 2.7063 (16) 106
O1B—H1OB···O5Aiii 0.99 1.64 2.6205 (16) 170
O3B—H3OB···N2B 0.94 1.77 2.6526 (16) 154
O4B—H4OB···O2Biv 0.89 1.74 2.6241 (16) 174
N1B—H1NB···O2B 0.87 1.88 2.6006 (16) 139
N1B—H1NB···N2B 0.87 2.32 2.7020 (16) 107
O5A—H5OA···O2B 0.84 1.91 2.7145 (16) 162
O5A—H5OA···O3B 0.84 2.58 2.9703 (15) 110
O5B—H5OB···O2A 0.91 1.83 2.7034 (16) 160
C4A—H4A···O5Bi 0.93 2.48 3.165 (2) 131
C4B—H4B···O5Aiii 0.93 2.48 3.1596 (19) 130
C7A—H7A···O4Biv 0.93 2.36 3.1691 (17) 146
C7B—H7B···O4Aii 0.93 2.35 3.1253 (17) 141
C12B—H12B···O1Bv 0.93 2.55 3.3603 (18) 146
C21B—H21D···O3A 0.96 2.44 3.134 (2) 129
C21B—H21D···Cg3vi 0.96 2.86 3.568 (2) 132

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) −x+2, −y+2, −z; (v) x−1, y+1, z; (vi) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2499).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem 35, 805–813. [DOI] [PubMed]
  5. Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech 6, 51–59.
  6. Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci 7, 97–108.
  7. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094–o3095.
  8. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o3234–o3235.
  9. Fakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813–817. [DOI] [PubMed]
  10. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem 14, 7482–7489. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett 16, 2127–2129. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014487/sj2499sup1.cif

e-64-o1246-sup1.cif (33KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014487/sj2499Isup2.hkl

e-64-o1246-Isup2.hkl (520.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES