Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1259. doi: 10.1107/S1600536808017170

2-[4-Benzyl-5-(2-fur­yl)-4H-1,2,4-triazol-3-ylsulfan­yl]acetamide

Muhammad Zareef a,*, Rashid Iqbal a, Muhammad Arfan a, Masood Parvez b
PMCID: PMC2961744  PMID: 21202893

Abstract

In the title compound, C15H14N4O2S, the phenyl ring is inclined at 70.25 (6)° with respect to the approximately planar fur­yl–triazolsulfan­yl–acetamide unit. In the crystal structure, mol­ecules related by inversion centers form dimers via inter­molecular N—H⋯O hydrogen bonds between acetamide groups, resulting in eight-membered rings with an R 2 2(8) motif. In addition, the other H atom of the acetamide group is involved in an inter­molecular hydrogen bond with an N atom of the triazole ring, resulting in chains extended along the c axis. The overall effect is the formation of a hydrogen-bonded two-dimensional framework perpendicular to the a axis.

Related literature

For related literature, see: Ahmad et al. (2001); Altman & Solomost (1993); Bernstein et al. (1994); Chai et al. (2003); Dege et al. (2004); Hashimoto et al. (1990); Kanazawa et al. (1988); Yildirim et al. (2004); Zareef, Iqbal & Parvez (2008); Zareef, Iqbal, Mirza et al. (2008); Öztürk et al. (2004).graphic file with name e-64-o1259-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O2S

  • M r = 314.36

  • Monoclinic, Inline graphic

  • a = 15.995 (9) Å

  • b = 7.261 (3) Å

  • c = 13.598 (8) Å

  • β = 105.46 (2)°

  • V = 1522.1 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 (2) K

  • 0.24 × 0.08 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.948, T max = 0.995

  • 5255 measured reflections

  • 3435 independent reflections

  • 2449 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.105

  • S = 1.04

  • 3435 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017170/lh2638sup1.cif

e-64-o1259-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017170/lh2638Isup2.hkl

e-64-o1259-Isup2.hkl (165KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.88 (2) 2.01 (2) 2.880 (2) 172 (2)
N4—H4B⋯N2ii 0.89 (2) 2.01 (2) 2.881 (3) 167 (2)
C9—H9B⋯O1 0.99 2.36 3.007 (3) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Derivatives of 1,2,4-triazole have significant importance for their broad-spectrum biological and pharmacological activities, such as fungicidal, herbicidal, anticonvulsant, antitumoral, inhibition of cholesterol (Chai et al., 2003; Kanazawa et al., 1988; Hashimoto et al., 1990). In addition, they have many applications in the agriculture domain (Altman & Solomost, 1993). In this paper, we report the synthesis and crystal structure of the title compound, (I).

The structure of the title compound (Fig. 1) is composed of a phenyl ring that is inclined at 70.25 (6)° with respect to a somewhat planar furyl-triazol-thio-acetamide moiety. The mean-planes of the furyl and triazole rings lie at 8.34 (13)° with respect to each other while the atoms in the thioacetamide group (S1/C7/C8/O2/N4) also form a plane which is inclined at 9.48 (10) and 3.45 (12)°, respectively, with furyl and triazole rings. Bond distances and bond angles in (I) agree well with the corresponding bond distances and bond angles reported in compounds closely related to (I) (Zareef, Iqbal & Parvez, 2008; Öztürk et al., 2004; Yildirim et al., 2004; Dege et al., 2004); in all these compounds, the mean-planes of the phenyl rings and the furyl-triazole moieties lie close to right angles. The molecules of (I) lying about inversion centers form dimers as a result of intermolecular N—H···O type hydrogen bonding between acetamide groups; the resulting eight membered rings exhibit an R22(8)-type motif (Bernstein et al., 1994). The second H-atom of the acetamide group is involved in an intermolecular hydrogen bond with N2 of the triazole ring thus resulting in a chain structure along the c-axis. The overall effect is the formation of a hydrogen-bonded two-dimensional framework perpendicular to the a-axis (Fig. 2). The structure is further stabilized by non-classical intramolecular interactions of the type C—H···O (Table 1).

Experimental

4-Benzyl-1-(2-furoyl)thiosemicarbazide (10 mmol) was dissolved in aqueous 4 N NaOH solution (50 ml). The solution was heated to reflux for 7 h, cooled and filtered. The filtrate was acidified to pH of 4–5, with 4 N HCl. The solid crude product, 4-benzyl-3-(2-furyl)-1H-1,2,4-triazole-5(4H)-thione, was filtered off, washed with water and recrystallized from aqueous ethanol (60%) (Ahmad et al., 2001). Ethyl S-ester of the triazole was prepared following the procedure reported earlier Zareef, Iqbal, Mirza & et al., 2008). Ethyl-[4-benzyl-5-(2-furyl)-(1,2,4-triazol-3-ylthio)]acetate (10 mmol) was dissolved in dry ethanol (60 ml). Dry ammonia gas was bubbled through the ester solution, with continuous stirring, for 5 hr. The progress of the reaction was monitored by TLC (silica; methanol: chloroform; 1:2). The excess solvent was distilled off under reduced pressure. The crude product was washed with cold water and recrystallized from aqueous ethanol (30%). Crystals of the title compound (I) were grown by slow evaporation of an ethanol solution over 9 days at room temperature (yield 77%).

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl and methylene C—H distances were set to 0.95 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). The H-atoms bonded to N4 were allowed to refine with Uiso(H) = 1.2 Ueq(N4). The final difference map was free of any chemically significant features.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding interactions in the unit cell of (I) shown by dashed lines; H-atoms not involved in H-bonds have been omitted.

Crystal data

C15H14N4O2S F000 = 656
Mr = 314.36 Dx = 1.372 Mg m3
Monoclinic, P21/c Melting point = 417–419 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 15.995 (9) Å Cell parameters from 5255 reflections
b = 7.261 (3) Å θ = 3.2–27.5º
c = 13.598 (8) Å µ = 0.23 mm1
β = 105.46 (2)º T = 173 (2) K
V = 1522.1 (14) Å3 Plate, colorless
Z = 4 0.24 × 0.08 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer 3435 independent reflections
Radiation source: fine-focus sealed tube 2449 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
T = 173(2) K θmax = 27.5º
ω and φ scans θmin = 3.2º
Absorption correction: Multi-scan(SORTAV; Blessing, 1997) h = −20→20
Tmin = 0.948, Tmax = 0.995 k = −9→7
5255 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.034P)2 + 0.75P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.28 e Å3
3435 reflections Δρmin = −0.26 e Å3
206 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0052 (16)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.12862 (3) 0.04606 (6) 0.49096 (4) 0.02689 (16)
O1 0.29228 (9) 0.72417 (18) 0.45345 (11) 0.0318 (4)
O2 0.07346 (10) −0.29345 (18) 0.53495 (11) 0.0330 (4)
N1 0.14752 (11) 0.4036 (2) 0.28542 (12) 0.0290 (4)
N2 0.11490 (11) 0.2402 (2) 0.31391 (12) 0.0287 (4)
N3 0.19418 (10) 0.3766 (2) 0.45331 (11) 0.0219 (4)
N4 −0.01125 (12) −0.3863 (2) 0.38142 (14) 0.0280 (4)
H4A −0.0253 (14) −0.489 (3) 0.4074 (17) 0.034*
H4B −0.0375 (14) −0.358 (3) 0.3169 (18) 0.034*
C1 0.23596 (13) 0.6584 (3) 0.36615 (16) 0.0279 (5)
C2 0.22942 (15) 0.7781 (3) 0.28834 (17) 0.0335 (5)
H2 0.1947 0.7646 0.2202 0.040*
C3 0.28508 (15) 0.9285 (3) 0.32900 (18) 0.0367 (5)
H3 0.2950 1.0347 0.2929 0.044*
C4 0.32076 (15) 0.8915 (3) 0.42773 (18) 0.0355 (5)
H4 0.3602 0.9699 0.4736 0.043*
C5 0.19400 (13) 0.4820 (3) 0.36896 (15) 0.0239 (4)
C6 0.14400 (13) 0.2270 (2) 0.41377 (15) 0.0236 (4)
C7 0.05176 (13) −0.0836 (2) 0.39448 (15) 0.0243 (4)
H7A −0.0038 −0.0160 0.3718 0.029*
H7B 0.0747 −0.1049 0.3346 0.029*
C8 0.03843 (13) −0.2653 (3) 0.44313 (15) 0.0246 (4)
C9 0.23541 (13) 0.4072 (3) 0.56249 (14) 0.0250 (4)
H9A 0.1943 0.3721 0.6023 0.030*
H9B 0.2486 0.5399 0.5742 0.030*
C10 0.31828 (13) 0.2975 (3) 0.60034 (14) 0.0250 (4)
C11 0.32270 (15) 0.1562 (3) 0.66992 (16) 0.0355 (5)
H11 0.2734 0.1278 0.6934 0.043*
C12 0.39864 (17) 0.0557 (3) 0.70563 (19) 0.0484 (6)
H12 0.4012 −0.0407 0.7536 0.058*
C13 0.47022 (17) 0.0959 (4) 0.6714 (2) 0.0501 (7)
H13 0.5222 0.0273 0.6959 0.060*
C14 0.46651 (15) 0.2352 (3) 0.6017 (2) 0.0437 (6)
H14 0.5159 0.2621 0.5779 0.052*
C15 0.39075 (14) 0.3365 (3) 0.56616 (17) 0.0344 (5)
H15 0.3885 0.4329 0.5183 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0291 (3) 0.0266 (3) 0.0229 (3) −0.0040 (2) 0.0033 (2) 0.0036 (2)
O1 0.0348 (8) 0.0264 (7) 0.0321 (8) −0.0040 (6) 0.0055 (7) 0.0003 (6)
O2 0.0390 (9) 0.0298 (7) 0.0253 (8) −0.0067 (7) 0.0000 (7) 0.0067 (6)
N1 0.0328 (10) 0.0305 (8) 0.0239 (9) −0.0027 (8) 0.0080 (8) 0.0029 (7)
N2 0.0326 (10) 0.0296 (8) 0.0227 (9) −0.0040 (8) 0.0051 (8) 0.0024 (7)
N3 0.0218 (9) 0.0233 (8) 0.0198 (8) 0.0000 (7) 0.0041 (7) 0.0006 (6)
N4 0.0366 (11) 0.0223 (8) 0.0234 (9) −0.0018 (8) 0.0050 (8) 0.0033 (7)
C1 0.0263 (11) 0.0291 (10) 0.0292 (11) 0.0009 (9) 0.0093 (9) −0.0014 (8)
C2 0.0378 (13) 0.0334 (11) 0.0302 (12) −0.0015 (10) 0.0106 (10) 0.0049 (9)
C3 0.0428 (14) 0.0289 (11) 0.0433 (14) −0.0009 (10) 0.0203 (11) 0.0070 (10)
C4 0.0368 (13) 0.0225 (10) 0.0505 (15) −0.0056 (9) 0.0176 (12) −0.0035 (9)
C5 0.0244 (10) 0.0256 (9) 0.0225 (10) 0.0027 (8) 0.0077 (9) 0.0012 (8)
C6 0.0224 (10) 0.0257 (9) 0.0224 (11) 0.0002 (8) 0.0053 (9) −0.0011 (8)
C7 0.0263 (11) 0.0229 (9) 0.0230 (10) −0.0020 (8) 0.0053 (9) 0.0013 (8)
C8 0.0253 (11) 0.0241 (9) 0.0241 (11) 0.0041 (8) 0.0060 (9) 0.0028 (8)
C9 0.0256 (11) 0.0289 (10) 0.0205 (10) −0.0023 (9) 0.0060 (9) −0.0022 (8)
C10 0.0251 (11) 0.0272 (10) 0.0200 (10) −0.0004 (8) 0.0012 (9) −0.0052 (8)
C11 0.0348 (13) 0.0403 (12) 0.0285 (12) 0.0038 (11) 0.0036 (10) 0.0031 (10)
C12 0.0476 (16) 0.0499 (14) 0.0406 (15) 0.0118 (13) −0.0004 (12) 0.0127 (11)
C13 0.0333 (14) 0.0514 (14) 0.0559 (17) 0.0104 (12) −0.0050 (13) −0.0021 (13)
C14 0.0252 (12) 0.0450 (13) 0.0591 (17) −0.0014 (11) 0.0081 (12) −0.0083 (12)
C15 0.0284 (12) 0.0326 (11) 0.0412 (14) −0.0018 (10) 0.0076 (10) 0.0009 (9)

Geometric parameters (Å, °)

S1—C6 1.740 (2) C3—H3 0.9500
S1—C7 1.805 (2) C4—H4 0.9500
O1—C1 1.371 (2) C7—C8 1.516 (3)
O1—C4 1.375 (2) C7—H7A 0.9900
O2—C8 1.242 (2) C7—H7B 0.9900
N1—C5 1.310 (3) C9—C10 1.514 (3)
N1—N2 1.392 (2) C9—H9A 0.9900
N2—C6 1.316 (3) C9—H9B 0.9900
N3—C6 1.372 (2) C10—C11 1.385 (3)
N3—C5 1.378 (2) C10—C15 1.388 (3)
N3—C9 1.472 (2) C11—C12 1.389 (3)
N4—C8 1.324 (3) C11—H11 0.9500
N4—H4A 0.88 (2) C12—C13 1.377 (4)
N4—H4B 0.89 (2) C12—H12 0.9500
C1—C2 1.351 (3) C13—C14 1.376 (4)
C1—C5 1.452 (3) C13—H13 0.9500
C2—C3 1.424 (3) C14—C15 1.390 (3)
C2—H2 0.9500 C14—H14 0.9500
C3—C4 1.339 (3) C15—H15 0.9500
C6—S1—C7 97.69 (9) C8—C7—H7B 110.4
C1—O1—C4 105.85 (16) S1—C7—H7B 110.4
C5—N1—N2 107.29 (16) H7A—C7—H7B 108.6
C6—N2—N1 107.04 (15) O2—C8—N4 124.19 (18)
C6—N3—C5 104.00 (16) O2—C8—C7 120.25 (17)
C6—N3—C9 124.93 (15) N4—C8—C7 115.56 (17)
C5—N3—C9 131.06 (16) N3—C9—C10 112.32 (15)
C8—N4—H4A 118.8 (14) N3—C9—H9A 109.1
C8—N4—H4B 121.1 (14) C10—C9—H9A 109.1
H4A—N4—H4B 119 (2) N3—C9—H9B 109.1
C2—C1—O1 110.49 (18) C10—C9—H9B 109.1
C2—C1—C5 130.4 (2) H9A—C9—H9B 107.9
O1—C1—C5 119.10 (17) C11—C10—C15 119.0 (2)
C1—C2—C3 106.2 (2) C11—C10—C9 120.18 (19)
C1—C2—H2 126.9 C15—C10—C9 120.82 (18)
C3—C2—H2 126.9 C10—C11—C12 120.6 (2)
C4—C3—C2 106.91 (19) C10—C11—H11 119.7
C4—C3—H3 126.5 C12—C11—H11 119.7
C2—C3—H3 126.5 C13—C12—C11 119.9 (2)
C3—C4—O1 110.53 (19) C13—C12—H12 120.0
C3—C4—H4 124.7 C11—C12—H12 120.0
O1—C4—H4 124.7 C14—C13—C12 120.1 (2)
N1—C5—N3 110.81 (17) C14—C13—H13 120.0
N1—C5—C1 121.34 (18) C12—C13—H13 120.0
N3—C5—C1 127.84 (18) C13—C14—C15 120.1 (2)
N2—C6—N3 110.85 (16) C13—C14—H14 119.9
N2—C6—S1 127.53 (15) C15—C14—H14 119.9
N3—C6—S1 121.56 (14) C10—C15—C14 120.3 (2)
C8—C7—S1 106.52 (13) C10—C15—H15 119.9
C8—C7—H7A 110.4 C14—C15—H15 119.9
S1—C7—H7A 110.4
C5—N1—N2—C6 −0.5 (2) C9—N3—C6—N2 178.80 (17)
C4—O1—C1—C2 0.4 (2) C5—N3—C6—S1 176.91 (14)
C4—O1—C1—C5 −179.59 (18) C9—N3—C6—S1 −3.8 (3)
O1—C1—C2—C3 0.1 (2) C7—S1—C6—N2 −7.9 (2)
C5—C1—C2—C3 −180.0 (2) C7—S1—C6—N3 175.14 (16)
C1—C2—C3—C4 −0.5 (3) C6—S1—C7—C8 172.23 (13)
C2—C3—C4—O1 0.7 (3) S1—C7—C8—O2 4.6 (2)
C1—O1—C4—C3 −0.7 (2) S1—C7—C8—N4 −175.01 (15)
N2—N1—C5—N3 0.2 (2) C6—N3—C9—C10 79.9 (2)
N2—N1—C5—C1 −178.64 (17) C5—N3—C9—C10 −101.0 (2)
C6—N3—C5—N1 0.2 (2) N3—C9—C10—C11 −113.1 (2)
C9—N3—C5—N1 −179.06 (18) N3—C9—C10—C15 66.9 (2)
C6—N3—C5—C1 178.91 (19) C15—C10—C11—C12 0.4 (3)
C9—N3—C5—C1 −0.3 (3) C9—C10—C11—C12 −179.5 (2)
C2—C1—C5—N1 7.9 (3) C10—C11—C12—C13 −0.3 (4)
O1—C1—C5—N1 −172.15 (18) C11—C12—C13—C14 −0.1 (4)
C2—C1—C5—N3 −170.7 (2) C12—C13—C14—C15 0.4 (4)
O1—C1—C5—N3 9.3 (3) C11—C10—C15—C14 −0.2 (3)
N1—N2—C6—N3 0.6 (2) C9—C10—C15—C14 179.81 (19)
N1—N2—C6—S1 −176.61 (15) C13—C14—C15—C10 −0.2 (3)
C5—N3—C6—N2 −0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O2i 0.88 (2) 2.01 (2) 2.880 (2) 172 (2)
N4—H4B···N2ii 0.89 (2) 2.01 (2) 2.881 (3) 167 (2)
C9—H9B···O1 0.99 2.36 3.007 (3) 122

Symmetry codes: (i) −x, −y−1, −z+1; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2638).

References

  1. Ahmad, R., Iqbal, R., Akthar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682. [DOI] [PubMed]
  2. Altman, A. & Solomost, T. (1993). Hortic. Sci.28, 201–203.
  3. Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H. -B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  4. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  5. Chai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc, ii, 141–145.
  6. Dege, N., Andac, O., Cansız, A., Çetin, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1405–o1407.
  7. Fan, H.-F. (1991). SAPI91 Rigaku Corporation, Tokyo, Japan.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Hashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull.38, 2532–2536. [DOI] [PubMed]
  10. Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  11. Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol.8, 644–673. [DOI] [PMC free article] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o425–o427.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Yıldırım, S. Ö., Akkurt, M., Koparır, M., Cansız, A., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o2368–o2370.
  16. Zareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). Arkivoc, ii, 141–152.
  17. Zareef, M., Iqbal, R. & Parvez, M. (2008). Acta Cryst. E64, o952–o953. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017170/lh2638sup1.cif

e-64-o1259-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017170/lh2638Isup2.hkl

e-64-o1259-Isup2.hkl (165KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES