Abstract
The title compound, a selenonium bromide, C17H33OSeSi+·Br−, was obtained from the reaction of enantiomerically pure 4,7,7-trimethyl-2-methylselanylbicyclo[2.2.1]heptan-3-ol and (3-bromopropenyl)trimethylsilane in acetone. Due to the chiral bicyclic substituent, the crystal structure is not centrosymmetric and has no symmetry plane, with four chiral C atoms in the cation. The asymmetric unit contains one selenonium cation and one bromide anion. C–H⋯Br and O–H⋯Br hydrogen bonds link the ions, forming a one-dimensional R-helical chain-like supramolecular structure.
Related literature
For related literature, see: Li et al. (2005 ▶); Goodridge et al. (1988 ▶); Reich et al. (1975 ▶); Ye et al. (2002 ▶).
Experimental
Crystal data
C17H33OSeSi+·Br−
M r = 440.39
Monoclinic,
a = 7.555 (2) Å
b = 10.023 (2) Å
c = 14.423 (3) Å
β = 101.29 (3)°
V = 1071.0 (4) Å3
Z = 2
Mo Kα radiation
μ = 3.67 mm−1
T = 291 (2) K
0.30 × 0.26 × 0.24 mm
Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000 ▶) T min = 0.35, T max = 0.41
4460 measured reflections
3374 independent reflections
1732 reflections with I > 2σ(I)
R int = 0.035
Refinement
R[F 2 > 2σ(F 2)] = 0.053
wR(F 2) = 0.102
S = 1.07
3374 reflections
170 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.64 e Å−3
Δρmin = −0.74 e Å−3
Absolute structure: Flack (1983 ▶), 1140 Friedel pairs
Flack parameter: 0.01 (2)
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SMART; data reduction: SAINT (Bruker, 2000 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016863/im2070sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016863/im2070Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1D⋯Br1 | 0.87 (8) | 2.28 (8) | 3.143 (5) | 175 (7) |
| C5—H5⋯Br1i | 0.98 | 2.88 | 3.827 (5) | 164 |
| C11—H11C⋯Br1ii | 0.96 | 2.94 | 3.874 (7) | 165 |
| C12—H12B⋯Br1i | 0.97 | 2.97 | 3.855 (5) | 152 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
We thank the National Natural Science Foundation of China for its financial support of projects 20332050 and 20572042
supplementary crystallographic information
Comment
Recently, an efficient asymmetric synthesis of cyclopropanes via camphor-derived sulfonium ylides was reported (Ye et al., 2002). Thus, we expected that camphor-derived selenonium ylides could be used in the highly enantioselective synthesis of cyclopropanes, epoxides and aziridines. First, the camphor-derived selenide (1) was prepared from commercially available D-camphor according to a literature method (Reich et al., 1975; Goodridge et al., 1988, and Li et al., 2005). Then compound (1) was reacted with (3-bromo-propenyl)-trimethylsilane (3) to give the selenonium salt (2). We performed the X-ray crystallographic analysis of (2) in order to elucidate the conformation and configuration.
The structural analysis shows that the selenonium ion of the title compound, (2) (Fig. 1), is not centrosymmetric and has no symmetry plane, showing the four chiral C atoms, C4, C5, C6, and C7, with the R, R, S, and S configuration preserved from the enatiomerically pure starting compound (1). The asymmetric unit contains one selenonium salt cation, and one bromide ion. In the crystal packing, the Br atom plays an important role, acting as a bridge linking neighboring molecules via C–H···Br and O–H···Br hydrogen bonds (O1—H1D···Br1, C5—H5···Br1ii, C11—H11c···Br1i, and C12—H12B···Br1ii; symmetry code i: x,-1 + y,z; ii: 1 - x,-1/2 + y, -z), forming a one dimensional R-helical chains-like structure along [010] axis (Fig. 2).
Experimental
A solution of 4,7,7-trimethyl-2-methylselanyl-bicyclo[2.2.1]heptan-3-ol (1) (2.4 g, 9.7 mmol) and (3-bromo-propenyl)-trimethylsilane (3) (1.9 g, 9.7 mmol) in acetone (5 mL) was stirred at 273 K. The solid was collected and washed with ethyl ether to afford the selenonium salt (2) in 91% yield. Single crystals of (2) were obtained by slow evaporation from 10 mL of a methanolic solution containing 50 mg (2).
Refinement
H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.87 (10), and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.96–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl groups) times Ueq(C).
Figures
Fig. 1.
: View of the title compound, showing the labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity, except for H1D which is involved in hydrogen bonding.
Fig. 2.
: A view of the onedimensional R-helical chains along the [010] axis. H atoms have been omitted for clarity, except for H1D, H5, H11c, and H12B which are involved in hydrogen bonding.
Fig. 3.
: Reaction scheme.
Crystal data
| C17H33OSeSi+·Br– | F000 = 452 |
| Mr = 440.39 | Dx = 1.366 Mg m−3 |
| Monoclinic, P2(1) | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: P 2yb | Cell parameters from 895 reflections |
| a = 7.555 (2) Å | θ = 2.1–24.5º |
| b = 10.023 (2) Å | µ = 3.67 mm−1 |
| c = 14.423 (3) Å | T = 291 (2) K |
| β = 101.29 (3)º | Bloc, colourless |
| V = 1071.0 (4) Å3 | 0.30 × 0.26 × 0.24 mm |
| Z = 2 |
Data collection
| Bruker SMART Apex CCD diffractometer | 3374 independent reflections |
| Radiation source: sealed tube | 1732 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.035 |
| T = 291(2) K | θmax = 26.0º |
| phi and ω scans | θmin = 1.4º |
| Absorption correction: multi-scan(SADABS; Bruker, 2000) | h = −9→9 |
| Tmin = 0.35, Tmax = 0.41 | k = 0→12 |
| 4460 measured reflections | l = 0→17 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
| S = 1.07 | Δρmax = 0.64 e Å−3 |
| 3374 reflections | Δρmin = −0.74 e Å−3 |
| 170 parameters | Extinction correction: none |
| 1 restraint | Absolute structure: Flack (1983), 1140 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.01 (2) |
| Secondary atom site location: difference Fourier map |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.32321 (7) | 1.05851 (10) | 0.09364 (5) | 0.0584 (2) | |
| C1 | 0.6248 (8) | 0.4347 (6) | 0.3285 (4) | 0.0404 (14) | |
| H1A | 0.6335 | 0.3442 | 0.3079 | 0.061* | |
| H1B | 0.5363 | 0.4400 | 0.3679 | 0.061* | |
| H1C | 0.7399 | 0.4630 | 0.3637 | 0.061* | |
| C2 | 0.7389 (6) | 0.5504 (10) | 0.2095 (4) | 0.0425 (13) | |
| H2A | 0.8154 | 0.6083 | 0.2529 | 0.064* | |
| H2B | 0.7085 | 0.5928 | 0.1488 | 0.064* | |
| H2C | 0.8013 | 0.4683 | 0.2036 | 0.064* | |
| C3 | 0.5706 (8) | 0.5219 (6) | 0.2454 (5) | 0.0498 (18) | |
| C4 | 0.4232 (11) | 0.4559 (8) | 0.1682 (5) | 0.0445 (19) | |
| H4 | 0.4615 | 0.3724 | 0.1428 | 0.053* | |
| C5 | 0.3867 (6) | 0.5695 (8) | 0.0960 (4) | 0.0361 (12) | |
| H5 | 0.4822 | 0.5710 | 0.0588 | 0.043* | |
| C6 | 0.3996 (9) | 0.6917 (8) | 0.1552 (5) | 0.0398 (16) | |
| H6 | 0.4963 | 0.7496 | 0.1422 | 0.048* | |
| C7 | 0.4459 (9) | 0.6398 (7) | 0.2553 (4) | 0.0473 (15) | |
| C8 | 0.2804 (6) | 0.5707 (9) | 0.2761 (4) | 0.0406 (14) | |
| H8A | 0.1744 | 0.6264 | 0.2578 | 0.049* | |
| H8B | 0.2955 | 0.5499 | 0.3428 | 0.049* | |
| C9 | 0.2627 (8) | 0.4411 (7) | 0.2161 (5) | 0.0460 (15) | |
| H9A | 0.2728 | 0.3619 | 0.2555 | 0.055* | |
| H9B | 0.1499 | 0.4384 | 0.1704 | 0.055* | |
| C10 | 0.5215 (9) | 0.7500 (7) | 0.3273 (5) | 0.047 | |
| H10A | 0.6407 | 0.7741 | 0.3196 | 0.071* | |
| H10B | 0.5262 | 0.7175 | 0.3903 | 0.071* | |
| H10C | 0.4444 | 0.8269 | 0.3166 | 0.071* | |
| C11 | 0.2014 (9) | 0.3828 (7) | −0.0510 (5) | 0.043 | |
| H11A | 0.3020 | 0.3955 | −0.0816 | 0.064* | |
| H11B | 0.0971 | 0.3576 | −0.0970 | 0.064* | |
| H11C | 0.2294 | 0.3137 | −0.0043 | 0.064* | |
| C12 | 0.2030 (8) | 0.6908 (7) | −0.0809 (4) | 0.0415 (15) | |
| H12A | 0.1683 | 0.7780 | −0.0614 | 0.050* | |
| H12B | 0.3310 | 0.6926 | −0.0820 | 0.050* | |
| C13 | 0.0925 (8) | 0.6561 (7) | −0.1810 (4) | 0.0430 (15) | |
| H13 | −0.0322 | 0.6663 | −0.1918 | 0.052* | |
| C14 | 0.1643 (8) | 0.6141 (6) | −0.2502 (4) | 0.0385 (13) | |
| H14 | 0.2893 | 0.6068 | −0.2395 | 0.046* | |
| C15 | −0.0572 (9) | 0.3993 (7) | −0.3683 (5) | 0.047 | |
| H15A | −0.1696 | 0.4027 | −0.3468 | 0.071* | |
| H15B | 0.0262 | 0.3436 | −0.3267 | 0.071* | |
| H15C | −0.0771 | 0.3631 | −0.4311 | 0.071* | |
| C16 | −0.1393 (8) | 0.6949 (7) | −0.4057 (5) | 0.041 | |
| H16A | −0.2022 | 0.6764 | −0.4689 | 0.061* | |
| H16B | −0.0837 | 0.7813 | −0.4039 | 0.061* | |
| H16C | −0.2231 | 0.6937 | −0.3636 | 0.061* | |
| C17 | 0.1943 (7) | 0.5796 (7) | −0.4543 (4) | 0.049 | |
| H17A | 0.2631 | 0.4987 | −0.4522 | 0.073* | |
| H17B | 0.2746 | 0.6536 | −0.4372 | 0.073* | |
| H17C | 0.1259 | 0.5926 | −0.5171 | 0.073* | |
| O1 | 0.2297 (6) | 0.7626 (5) | 0.1376 (3) | 0.0473 (11) | |
| H1D | 0.248 (10) | 0.845 (8) | 0.125 (5) | 0.057* | |
| Se1 | 0.15165 (6) | 0.54982 (7) | 0.01059 (4) | 0.04094 (15) | |
| Si1 | 0.03564 (18) | 0.5673 (2) | −0.36882 (11) | 0.0395 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0503 (3) | 0.0494 (4) | 0.0775 (5) | −0.0034 (4) | 0.0172 (3) | −0.0074 (5) |
| C1 | 0.043 (3) | 0.043 (4) | 0.040 (3) | 0.000 (3) | 0.020 (3) | 0.000 (3) |
| C2 | 0.031 (2) | 0.049 (3) | 0.043 (3) | −0.012 (4) | −0.0060 (19) | −0.021 (5) |
| C3 | 0.038 (3) | 0.046 (4) | 0.053 (4) | −0.019 (3) | −0.020 (3) | 0.003 (3) |
| C4 | 0.059 (4) | 0.038 (4) | 0.034 (4) | −0.005 (3) | 0.004 (3) | 0.008 (3) |
| C5 | 0.035 (2) | 0.037 (3) | 0.035 (3) | 0.019 (3) | 0.0062 (18) | 0.005 (3) |
| C6 | 0.034 (3) | 0.048 (4) | 0.040 (4) | −0.005 (3) | 0.013 (3) | 0.003 (3) |
| C7 | 0.052 (3) | 0.047 (3) | 0.037 (4) | 0.001 (3) | −0.003 (3) | 0.006 (3) |
| C8 | 0.042 (2) | 0.049 (4) | 0.035 (3) | 0.016 (3) | 0.017 (2) | −0.009 (3) |
| C9 | 0.034 (3) | 0.046 (4) | 0.055 (4) | −0.004 (3) | 0.004 (3) | 0.005 (3) |
| C10 | 0.049 | 0.049 | 0.049 | 0.000 | 0.021 | 0.000 |
| C11 | 0.044 | 0.044 | 0.044 | 0.000 | 0.018 | 0.000 |
| C12 | 0.039 (3) | 0.051 (4) | 0.036 (3) | 0.020 (3) | 0.012 (3) | 0.009 (3) |
| C13 | 0.045 (3) | 0.048 (4) | 0.033 (3) | 0.005 (3) | 0.002 (3) | 0.014 (3) |
| C14 | 0.044 (3) | 0.044 (3) | 0.029 (3) | −0.004 (2) | 0.012 (2) | −0.002 (3) |
| C15 | 0.049 | 0.049 | 0.049 | 0.000 | 0.021 | 0.000 |
| C16 | 0.043 | 0.043 | 0.043 | 0.000 | 0.020 | 0.000 |
| C17 | 0.050 | 0.050 | 0.050 | 0.000 | 0.020 | 0.000 |
| O1 | 0.046 (2) | 0.049 (3) | 0.038 (2) | −0.010 (2) | −0.0126 (19) | 0.003 (2) |
| Se1 | 0.0358 (2) | 0.0516 (3) | 0.0339 (3) | 0.0028 (4) | 0.00292 (19) | 0.0086 (4) |
| Si1 | 0.0420 (7) | 0.0402 (9) | 0.0380 (8) | 0.0077 (9) | 0.0119 (6) | −0.0030 (10) |
Geometric parameters (Å, °)
| Br1—O1 | 3.143 (5) | C10—H10B | 0.9600 |
| C1—C3 | 1.475 (9) | C10—H10C | 0.9600 |
| C1—H1A | 0.9600 | C11—Se1 | 1.965 (7) |
| C1—H1B | 0.9600 | C11—H11A | 0.9600 |
| C1—H1C | 0.9600 | C11—H11B | 0.9600 |
| C2—C3 | 1.492 (8) | C11—H11C | 0.9600 |
| C2—H2A | 0.9600 | C12—C13 | 1.560 (9) |
| C2—H2B | 0.9600 | C12—Se1 | 2.022 (6) |
| C2—H2C | 0.9600 | C12—H12A | 0.9700 |
| C3—C7 | 1.535 (9) | C12—H12B | 0.9700 |
| C3—C4 | 1.559 (9) | C13—C14 | 1.295 (8) |
| C4—C9 | 1.515 (10) | C13—H13 | 0.9300 |
| C4—C5 | 1.531 (10) | C14—Si1 | 1.855 (6) |
| C4—H4 | 0.9800 | C14—H14 | 0.9300 |
| C5—C6 | 1.484 (10) | C15—Si1 | 1.825 (7) |
| C5—Se1 | 1.963 (5) | C15—H15A | 0.9600 |
| C5—H5 | 0.9800 | C15—H15B | 0.9600 |
| C6—O1 | 1.446 (8) | C15—H15C | 0.9600 |
| C6—C7 | 1.510 (9) | C16—Si1 | 1.842 (7) |
| C6—H6 | 0.9800 | C16—H16A | 0.9600 |
| C7—C8 | 1.510 (9) | C16—H16B | 0.9600 |
| C7—C10 | 1.546 (9) | C16—H16C | 0.9600 |
| C8—C9 | 1.552 (10) | C17—Si1 | 1.884 (5) |
| C8—H8A | 0.9700 | C17—H17A | 0.9600 |
| C8—H8B | 0.9700 | C17—H17B | 0.9600 |
| C9—H9A | 0.9700 | C17—H17C | 0.9600 |
| C9—H9B | 0.9700 | O1—H1D | 0.87 (8) |
| C10—H10A | 0.9600 | ||
| C3—C1—H1A | 109.5 | C7—C10—H10A | 109.5 |
| C3—C1—H1B | 109.5 | C7—C10—H10B | 109.5 |
| H1A—C1—H1B | 109.5 | H10A—C10—H10B | 109.5 |
| C3—C1—H1C | 109.5 | C7—C10—H10C | 109.5 |
| H1A—C1—H1C | 109.5 | H10A—C10—H10C | 109.5 |
| H1B—C1—H1C | 109.5 | H10B—C10—H10C | 109.5 |
| C3—C2—H2A | 109.5 | Se1—C11—H11A | 109.5 |
| C3—C2—H2B | 109.5 | Se1—C11—H11B | 109.5 |
| H2A—C2—H2B | 109.5 | H11A—C11—H11B | 109.5 |
| C3—C2—H2C | 109.5 | Se1—C11—H11C | 109.5 |
| H2A—C2—H2C | 109.5 | H11A—C11—H11C | 109.5 |
| H2B—C2—H2C | 109.5 | H11B—C11—H11C | 109.5 |
| C1—C3—C2 | 106.0 (5) | C13—C12—Se1 | 108.2 (4) |
| C1—C3—C7 | 117.3 (6) | C13—C12—H12A | 110.1 |
| C2—C3—C7 | 117.8 (6) | Se1—C12—H12A | 110.1 |
| C1—C3—C4 | 112.0 (5) | C13—C12—H12B | 110.1 |
| C2—C3—C4 | 111.8 (6) | Se1—C12—H12B | 110.1 |
| C7—C3—C4 | 91.6 (5) | H12A—C12—H12B | 108.4 |
| C9—C4—C5 | 109.2 (6) | C14—C13—C12 | 123.8 (5) |
| C9—C4—C3 | 103.9 (6) | C14—C13—H13 | 118.1 |
| C5—C4—C3 | 100.3 (5) | C12—C13—H13 | 118.1 |
| C9—C4—H4 | 114.0 | C13—C14—Si1 | 124.7 (5) |
| C5—C4—H4 | 114.0 | C13—C14—H14 | 117.6 |
| C3—C4—H4 | 114.0 | Si1—C14—H14 | 117.6 |
| C6—C5—C4 | 103.8 (5) | Si1—C15—H15A | 109.5 |
| C6—C5—Se1 | 113.2 (4) | Si1—C15—H15B | 109.5 |
| C4—C5—Se1 | 111.9 (5) | H15A—C15—H15B | 109.5 |
| C6—C5—H5 | 109.3 | Si1—C15—H15C | 109.5 |
| C4—C5—H5 | 109.3 | H15A—C15—H15C | 109.5 |
| Se1—C5—H5 | 109.3 | H15B—C15—H15C | 109.5 |
| O1—C6—C5 | 110.4 (5) | Si1—C16—H16A | 109.5 |
| O1—C6—C7 | 111.6 (5) | Si1—C16—H16B | 109.5 |
| C5—C6—C7 | 104.1 (6) | H16A—C16—H16B | 109.5 |
| O1—C6—H6 | 110.2 | Si1—C16—H16C | 109.5 |
| C5—C6—H6 | 110.2 | H16A—C16—H16C | 109.5 |
| C7—C6—H6 | 110.2 | H16B—C16—H16C | 109.5 |
| C6—C7—C8 | 107.5 (5) | Si1—C17—H17A | 109.5 |
| C6—C7—C3 | 102.0 (5) | Si1—C17—H17B | 109.5 |
| C8—C7—C3 | 102.2 (5) | H17A—C17—H17B | 109.5 |
| C6—C7—C10 | 112.5 (6) | Si1—C17—H17C | 109.5 |
| C8—C7—C10 | 114.0 (6) | H17A—C17—H17C | 109.5 |
| C3—C7—C10 | 117.4 (5) | H17B—C17—H17C | 109.5 |
| C7—C8—C9 | 105.0 (5) | C6—O1—Br1 | 105.8 (4) |
| C7—C8—H8A | 110.8 | C6—O1—H1D | 109 (5) |
| C9—C8—H8A | 110.8 | C5—Se1—C11 | 98.0 (3) |
| C7—C8—H8B | 110.8 | C5—Se1—C12 | 94.2 (3) |
| C9—C8—H8B | 110.8 | C11—Se1—C12 | 102.9 (3) |
| H8A—C8—H8B | 108.8 | C15—Si1—C16 | 112.8 (3) |
| C4—C9—C8 | 100.5 (5) | C15—Si1—C14 | 111.2 (3) |
| C4—C9—H9A | 111.7 | C16—Si1—C14 | 107.9 (3) |
| C8—C9—H9A | 111.7 | C15—Si1—C17 | 110.9 (3) |
| C4—C9—H9B | 111.7 | C16—Si1—C17 | 106.1 (3) |
| C8—C9—H9B | 111.7 | C14—Si1—C17 | 107.6 (3) |
| H9A—C9—H9B | 109.4 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1D···Br1 | 0.87 (8) | 2.28 (8) | 3.143 (5) | 175 (7) |
| C5—H5···Br1i | 0.98 | 2.88 | 3.827 (5) | 164 |
| C11—H11C···Br1ii | 0.96 | 2.94 | 3.874 (7) | 165 |
| C12—H12B···Br1i | 0.97 | 2.97 | 3.855 (5) | 152 |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2070).
References
- Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Goodridge, R. J., Hambley, T. W., Hayes, R. K. & Ridley, D. D. (1988). J. Org. Chem.53, 2881–2889.
- Li, X. L., Wang, Y. & Huang, Z. Z. (2005). Aust. J. Chem.58, 749–752.
- Reich, H. J., Renga, J. M. & Reich, I. J. (1975). J. Am. Chem. Soc.97, 5434–5447.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Ye, S., Huang, Z. Z., Xia, C. A., Tang, Y. & Dai, L. X. (2002). J. Am. Chem. Soc.124, 2432–2433. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016863/im2070sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016863/im2070Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



