Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1245. doi: 10.1107/S1600536808016863

[(1S,2S,3R,4R)-3-Hydr­oxy-4,7,7-tri­methyl­bicyclo­[2.2.1]heptan-2-yl]methyl[(E)-3-(trimethyl­silyl)prop-2-enyl]selen­onium bromide

Hai-Yang Wang a, Qiang Zhang a, Yi-Zhi Li b, Yuan Gui a, Zhi-Zhen Huang a,*
PMCID: PMC2961745  PMID: 21202880

Abstract

The title compound, a seleno­nium bromide, C17H33OSeSi+·Br, was obtained from the reaction of enanti­omerically pure 4,7,7-trimethyl-2-methyl­selanylbicyclo­[2.2.1]heptan-3-ol and (3-bromopropen­yl)trimethyl­silane in acetone. Due to the chiral bicyclic substituent, the crystal structure is not centrosymmetric and has no symmetry plane, with four chiral C atoms in the cation. The asymmetric unit contains one seleno­nium cation and one bromide anion. C–H⋯Br and O–H⋯Br hydrogen bonds link the ions, forming a one-dimensional R-helical chain-like supra­molecular structure.

Related literature

For related literature, see: Li et al. (2005); Goodridge et al. (1988); Reich et al. (1975); Ye et al. (2002). graphic file with name e-64-o1245-scheme1.jpg

Experimental

Crystal data

  • C17H33OSeSi+·Br

  • M r = 440.39

  • Monoclinic, Inline graphic

  • a = 7.555 (2) Å

  • b = 10.023 (2) Å

  • c = 14.423 (3) Å

  • β = 101.29 (3)°

  • V = 1071.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.35, T max = 0.41

  • 4460 measured reflections

  • 3374 independent reflections

  • 1732 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.102

  • S = 1.07

  • 3374 reflections

  • 170 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.74 e Å−3

  • Absolute structure: Flack (1983), 1140 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016863/im2070sup1.cif

e-64-o1245-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016863/im2070Isup2.hkl

e-64-o1245-Isup2.hkl (193.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯Br1 0.87 (8) 2.28 (8) 3.143 (5) 175 (7)
C5—H5⋯Br1i 0.98 2.88 3.827 (5) 164
C11—H11C⋯Br1ii 0.96 2.94 3.874 (7) 165
C12—H12B⋯Br1i 0.97 2.97 3.855 (5) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the National Natural Science Foundation of China for its financial support of projects 20332050 and 20572042

supplementary crystallographic information

Comment

Recently, an efficient asymmetric synthesis of cyclopropanes via camphor-derived sulfonium ylides was reported (Ye et al., 2002). Thus, we expected that camphor-derived selenonium ylides could be used in the highly enantioselective synthesis of cyclopropanes, epoxides and aziridines. First, the camphor-derived selenide (1) was prepared from commercially available D-camphor according to a literature method (Reich et al., 1975; Goodridge et al., 1988, and Li et al., 2005). Then compound (1) was reacted with (3-bromo-propenyl)-trimethylsilane (3) to give the selenonium salt (2). We performed the X-ray crystallographic analysis of (2) in order to elucidate the conformation and configuration.

The structural analysis shows that the selenonium ion of the title compound, (2) (Fig. 1), is not centrosymmetric and has no symmetry plane, showing the four chiral C atoms, C4, C5, C6, and C7, with the R, R, S, and S configuration preserved from the enatiomerically pure starting compound (1). The asymmetric unit contains one selenonium salt cation, and one bromide ion. In the crystal packing, the Br atom plays an important role, acting as a bridge linking neighboring molecules via C–H···Br and O–H···Br hydrogen bonds (O1—H1D···Br1, C5—H5···Br1ii, C11—H11c···Br1i, and C12—H12B···Br1ii; symmetry code i: x,-1 + y,z; ii: 1 - x,-1/2 + y, -z), forming a one dimensional R-helical chains-like structure along [010] axis (Fig. 2).

Experimental

A solution of 4,7,7-trimethyl-2-methylselanyl-bicyclo[2.2.1]heptan-3-ol (1) (2.4 g, 9.7 mmol) and (3-bromo-propenyl)-trimethylsilane (3) (1.9 g, 9.7 mmol) in acetone (5 mL) was stirred at 273 K. The solid was collected and washed with ethyl ether to afford the selenonium salt (2) in 91% yield. Single crystals of (2) were obtained by slow evaporation from 10 mL of a methanolic solution containing 50 mg (2).

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.87 (10), and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.96–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

: View of the title compound, showing the labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity, except for H1D which is involved in hydrogen bonding.

Fig. 2.

Fig. 2.

: A view of the onedimensional R-helical chains along the [010] axis. H atoms have been omitted for clarity, except for H1D, H5, H11c, and H12B which are involved in hydrogen bonding.

Fig. 3.

Fig. 3.

: Reaction scheme.

Crystal data

C17H33OSeSi+·Br F000 = 452
Mr = 440.39 Dx = 1.366 Mg m3
Monoclinic, P2(1) Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 895 reflections
a = 7.555 (2) Å θ = 2.1–24.5º
b = 10.023 (2) Å µ = 3.67 mm1
c = 14.423 (3) Å T = 291 (2) K
β = 101.29 (3)º Bloc, colourless
V = 1071.0 (4) Å3 0.30 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART Apex CCD diffractometer 3374 independent reflections
Radiation source: sealed tube 1732 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
T = 291(2) K θmax = 26.0º
phi and ω scans θmin = 1.4º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −9→9
Tmin = 0.35, Tmax = 0.41 k = 0→12
4460 measured reflections l = 0→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053   w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.64 e Å3
3374 reflections Δρmin = −0.74 e Å3
170 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 1140 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.32321 (7) 1.05851 (10) 0.09364 (5) 0.0584 (2)
C1 0.6248 (8) 0.4347 (6) 0.3285 (4) 0.0404 (14)
H1A 0.6335 0.3442 0.3079 0.061*
H1B 0.5363 0.4400 0.3679 0.061*
H1C 0.7399 0.4630 0.3637 0.061*
C2 0.7389 (6) 0.5504 (10) 0.2095 (4) 0.0425 (13)
H2A 0.8154 0.6083 0.2529 0.064*
H2B 0.7085 0.5928 0.1488 0.064*
H2C 0.8013 0.4683 0.2036 0.064*
C3 0.5706 (8) 0.5219 (6) 0.2454 (5) 0.0498 (18)
C4 0.4232 (11) 0.4559 (8) 0.1682 (5) 0.0445 (19)
H4 0.4615 0.3724 0.1428 0.053*
C5 0.3867 (6) 0.5695 (8) 0.0960 (4) 0.0361 (12)
H5 0.4822 0.5710 0.0588 0.043*
C6 0.3996 (9) 0.6917 (8) 0.1552 (5) 0.0398 (16)
H6 0.4963 0.7496 0.1422 0.048*
C7 0.4459 (9) 0.6398 (7) 0.2553 (4) 0.0473 (15)
C8 0.2804 (6) 0.5707 (9) 0.2761 (4) 0.0406 (14)
H8A 0.1744 0.6264 0.2578 0.049*
H8B 0.2955 0.5499 0.3428 0.049*
C9 0.2627 (8) 0.4411 (7) 0.2161 (5) 0.0460 (15)
H9A 0.2728 0.3619 0.2555 0.055*
H9B 0.1499 0.4384 0.1704 0.055*
C10 0.5215 (9) 0.7500 (7) 0.3273 (5) 0.047
H10A 0.6407 0.7741 0.3196 0.071*
H10B 0.5262 0.7175 0.3903 0.071*
H10C 0.4444 0.8269 0.3166 0.071*
C11 0.2014 (9) 0.3828 (7) −0.0510 (5) 0.043
H11A 0.3020 0.3955 −0.0816 0.064*
H11B 0.0971 0.3576 −0.0970 0.064*
H11C 0.2294 0.3137 −0.0043 0.064*
C12 0.2030 (8) 0.6908 (7) −0.0809 (4) 0.0415 (15)
H12A 0.1683 0.7780 −0.0614 0.050*
H12B 0.3310 0.6926 −0.0820 0.050*
C13 0.0925 (8) 0.6561 (7) −0.1810 (4) 0.0430 (15)
H13 −0.0322 0.6663 −0.1918 0.052*
C14 0.1643 (8) 0.6141 (6) −0.2502 (4) 0.0385 (13)
H14 0.2893 0.6068 −0.2395 0.046*
C15 −0.0572 (9) 0.3993 (7) −0.3683 (5) 0.047
H15A −0.1696 0.4027 −0.3468 0.071*
H15B 0.0262 0.3436 −0.3267 0.071*
H15C −0.0771 0.3631 −0.4311 0.071*
C16 −0.1393 (8) 0.6949 (7) −0.4057 (5) 0.041
H16A −0.2022 0.6764 −0.4689 0.061*
H16B −0.0837 0.7813 −0.4039 0.061*
H16C −0.2231 0.6937 −0.3636 0.061*
C17 0.1943 (7) 0.5796 (7) −0.4543 (4) 0.049
H17A 0.2631 0.4987 −0.4522 0.073*
H17B 0.2746 0.6536 −0.4372 0.073*
H17C 0.1259 0.5926 −0.5171 0.073*
O1 0.2297 (6) 0.7626 (5) 0.1376 (3) 0.0473 (11)
H1D 0.248 (10) 0.845 (8) 0.125 (5) 0.057*
Se1 0.15165 (6) 0.54982 (7) 0.01059 (4) 0.04094 (15)
Si1 0.03564 (18) 0.5673 (2) −0.36882 (11) 0.0395 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0503 (3) 0.0494 (4) 0.0775 (5) −0.0034 (4) 0.0172 (3) −0.0074 (5)
C1 0.043 (3) 0.043 (4) 0.040 (3) 0.000 (3) 0.020 (3) 0.000 (3)
C2 0.031 (2) 0.049 (3) 0.043 (3) −0.012 (4) −0.0060 (19) −0.021 (5)
C3 0.038 (3) 0.046 (4) 0.053 (4) −0.019 (3) −0.020 (3) 0.003 (3)
C4 0.059 (4) 0.038 (4) 0.034 (4) −0.005 (3) 0.004 (3) 0.008 (3)
C5 0.035 (2) 0.037 (3) 0.035 (3) 0.019 (3) 0.0062 (18) 0.005 (3)
C6 0.034 (3) 0.048 (4) 0.040 (4) −0.005 (3) 0.013 (3) 0.003 (3)
C7 0.052 (3) 0.047 (3) 0.037 (4) 0.001 (3) −0.003 (3) 0.006 (3)
C8 0.042 (2) 0.049 (4) 0.035 (3) 0.016 (3) 0.017 (2) −0.009 (3)
C9 0.034 (3) 0.046 (4) 0.055 (4) −0.004 (3) 0.004 (3) 0.005 (3)
C10 0.049 0.049 0.049 0.000 0.021 0.000
C11 0.044 0.044 0.044 0.000 0.018 0.000
C12 0.039 (3) 0.051 (4) 0.036 (3) 0.020 (3) 0.012 (3) 0.009 (3)
C13 0.045 (3) 0.048 (4) 0.033 (3) 0.005 (3) 0.002 (3) 0.014 (3)
C14 0.044 (3) 0.044 (3) 0.029 (3) −0.004 (2) 0.012 (2) −0.002 (3)
C15 0.049 0.049 0.049 0.000 0.021 0.000
C16 0.043 0.043 0.043 0.000 0.020 0.000
C17 0.050 0.050 0.050 0.000 0.020 0.000
O1 0.046 (2) 0.049 (3) 0.038 (2) −0.010 (2) −0.0126 (19) 0.003 (2)
Se1 0.0358 (2) 0.0516 (3) 0.0339 (3) 0.0028 (4) 0.00292 (19) 0.0086 (4)
Si1 0.0420 (7) 0.0402 (9) 0.0380 (8) 0.0077 (9) 0.0119 (6) −0.0030 (10)

Geometric parameters (Å, °)

Br1—O1 3.143 (5) C10—H10B 0.9600
C1—C3 1.475 (9) C10—H10C 0.9600
C1—H1A 0.9600 C11—Se1 1.965 (7)
C1—H1B 0.9600 C11—H11A 0.9600
C1—H1C 0.9600 C11—H11B 0.9600
C2—C3 1.492 (8) C11—H11C 0.9600
C2—H2A 0.9600 C12—C13 1.560 (9)
C2—H2B 0.9600 C12—Se1 2.022 (6)
C2—H2C 0.9600 C12—H12A 0.9700
C3—C7 1.535 (9) C12—H12B 0.9700
C3—C4 1.559 (9) C13—C14 1.295 (8)
C4—C9 1.515 (10) C13—H13 0.9300
C4—C5 1.531 (10) C14—Si1 1.855 (6)
C4—H4 0.9800 C14—H14 0.9300
C5—C6 1.484 (10) C15—Si1 1.825 (7)
C5—Se1 1.963 (5) C15—H15A 0.9600
C5—H5 0.9800 C15—H15B 0.9600
C6—O1 1.446 (8) C15—H15C 0.9600
C6—C7 1.510 (9) C16—Si1 1.842 (7)
C6—H6 0.9800 C16—H16A 0.9600
C7—C8 1.510 (9) C16—H16B 0.9600
C7—C10 1.546 (9) C16—H16C 0.9600
C8—C9 1.552 (10) C17—Si1 1.884 (5)
C8—H8A 0.9700 C17—H17A 0.9600
C8—H8B 0.9700 C17—H17B 0.9600
C9—H9A 0.9700 C17—H17C 0.9600
C9—H9B 0.9700 O1—H1D 0.87 (8)
C10—H10A 0.9600
C3—C1—H1A 109.5 C7—C10—H10A 109.5
C3—C1—H1B 109.5 C7—C10—H10B 109.5
H1A—C1—H1B 109.5 H10A—C10—H10B 109.5
C3—C1—H1C 109.5 C7—C10—H10C 109.5
H1A—C1—H1C 109.5 H10A—C10—H10C 109.5
H1B—C1—H1C 109.5 H10B—C10—H10C 109.5
C3—C2—H2A 109.5 Se1—C11—H11A 109.5
C3—C2—H2B 109.5 Se1—C11—H11B 109.5
H2A—C2—H2B 109.5 H11A—C11—H11B 109.5
C3—C2—H2C 109.5 Se1—C11—H11C 109.5
H2A—C2—H2C 109.5 H11A—C11—H11C 109.5
H2B—C2—H2C 109.5 H11B—C11—H11C 109.5
C1—C3—C2 106.0 (5) C13—C12—Se1 108.2 (4)
C1—C3—C7 117.3 (6) C13—C12—H12A 110.1
C2—C3—C7 117.8 (6) Se1—C12—H12A 110.1
C1—C3—C4 112.0 (5) C13—C12—H12B 110.1
C2—C3—C4 111.8 (6) Se1—C12—H12B 110.1
C7—C3—C4 91.6 (5) H12A—C12—H12B 108.4
C9—C4—C5 109.2 (6) C14—C13—C12 123.8 (5)
C9—C4—C3 103.9 (6) C14—C13—H13 118.1
C5—C4—C3 100.3 (5) C12—C13—H13 118.1
C9—C4—H4 114.0 C13—C14—Si1 124.7 (5)
C5—C4—H4 114.0 C13—C14—H14 117.6
C3—C4—H4 114.0 Si1—C14—H14 117.6
C6—C5—C4 103.8 (5) Si1—C15—H15A 109.5
C6—C5—Se1 113.2 (4) Si1—C15—H15B 109.5
C4—C5—Se1 111.9 (5) H15A—C15—H15B 109.5
C6—C5—H5 109.3 Si1—C15—H15C 109.5
C4—C5—H5 109.3 H15A—C15—H15C 109.5
Se1—C5—H5 109.3 H15B—C15—H15C 109.5
O1—C6—C5 110.4 (5) Si1—C16—H16A 109.5
O1—C6—C7 111.6 (5) Si1—C16—H16B 109.5
C5—C6—C7 104.1 (6) H16A—C16—H16B 109.5
O1—C6—H6 110.2 Si1—C16—H16C 109.5
C5—C6—H6 110.2 H16A—C16—H16C 109.5
C7—C6—H6 110.2 H16B—C16—H16C 109.5
C6—C7—C8 107.5 (5) Si1—C17—H17A 109.5
C6—C7—C3 102.0 (5) Si1—C17—H17B 109.5
C8—C7—C3 102.2 (5) H17A—C17—H17B 109.5
C6—C7—C10 112.5 (6) Si1—C17—H17C 109.5
C8—C7—C10 114.0 (6) H17A—C17—H17C 109.5
C3—C7—C10 117.4 (5) H17B—C17—H17C 109.5
C7—C8—C9 105.0 (5) C6—O1—Br1 105.8 (4)
C7—C8—H8A 110.8 C6—O1—H1D 109 (5)
C9—C8—H8A 110.8 C5—Se1—C11 98.0 (3)
C7—C8—H8B 110.8 C5—Se1—C12 94.2 (3)
C9—C8—H8B 110.8 C11—Se1—C12 102.9 (3)
H8A—C8—H8B 108.8 C15—Si1—C16 112.8 (3)
C4—C9—C8 100.5 (5) C15—Si1—C14 111.2 (3)
C4—C9—H9A 111.7 C16—Si1—C14 107.9 (3)
C8—C9—H9A 111.7 C15—Si1—C17 110.9 (3)
C4—C9—H9B 111.7 C16—Si1—C17 106.1 (3)
C8—C9—H9B 111.7 C14—Si1—C17 107.6 (3)
H9A—C9—H9B 109.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1D···Br1 0.87 (8) 2.28 (8) 3.143 (5) 175 (7)
C5—H5···Br1i 0.98 2.88 3.827 (5) 164
C11—H11C···Br1ii 0.96 2.94 3.874 (7) 165
C12—H12B···Br1i 0.97 2.97 3.855 (5) 152

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2070).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Goodridge, R. J., Hambley, T. W., Hayes, R. K. & Ridley, D. D. (1988). J. Org. Chem.53, 2881–2889.
  4. Li, X. L., Wang, Y. & Huang, Z. Z. (2005). Aust. J. Chem.58, 749–752.
  5. Reich, H. J., Renga, J. M. & Reich, I. J. (1975). J. Am. Chem. Soc.97, 5434–5447.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Ye, S., Huang, Z. Z., Xia, C. A., Tang, Y. & Dai, L. X. (2002). J. Am. Chem. Soc.124, 2432–2433. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016863/im2070sup1.cif

e-64-o1245-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016863/im2070Isup2.hkl

e-64-o1245-Isup2.hkl (193.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES