Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 21;64(Pt 7):m948–m949. doi: 10.1107/S1600536808018515

catena-Poly[[[aqua­bis(1H-imidazole-κN 3)copper(II)]-μ-naphthalene-1,4-dicarboxyl­ato-κ2 O 1:O 4] dihydrate]

Jun-Hua Li a, Jing-Jing Nie a, Duan-Jun Xu a,*
PMCID: PMC2961746  PMID: 21202799

Abstract

In the title compound, {[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O}n, the CuII cation is coordinated by two naphthalene-1,4-dicarboxyl­ate (naph) dianions, two imidazole mol­ecules and one water mol­ecule in a distorted square-pyramidal geometry. The Cu—O bond distance in the apical direction is 0.509 (3) Å longer than the mean Cu—O bond distance in the basal plane. The naph dianion bridges two CuII cations, forming a one-dimensional polymeric chain. The coordinated water mol­ecule is hydrogen-bonded to the carboxylate groups and imidazole ligands of adjacent polymeric chains, forming a three-dimensional supra­molecular structure. No π–π stacking is observed in the crystal structure. One solvent water molecule is disordered equally over two positions.

Related literature

For general background, see: Su & Xu (2004); Li et al. (2005). For related structures, see: Derissen et al. (1979); Li et al. (2008).graphic file with name e-64-0m948-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O

  • M r = 467.92

  • Monoclinic, Inline graphic

  • a = 12.571 (2) Å

  • b = 14.698 (3) Å

  • c = 12.636 (2) Å

  • β = 119.011 (6)°

  • V = 2041.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 295 (2) K

  • 0.33 × 0.30 × 0.24 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.660, T max = 0.765

  • 23205 measured reflections

  • 3989 independent reflections

  • 3251 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.097

  • S = 1.06

  • 3989 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018515/sg2252sup1.cif

e-64-0m948-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018515/sg2252Isup2.hkl

e-64-0m948-Isup2.hkl (191.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—N1 1.992 (2)
Cu—N3 1.990 (2)
Cu—O1 1.9819 (17)
Cu—O3i 2.0116 (17)
Cu—O5 2.506 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O3 0.87 1.99 2.846 (3) 170
O1W—H1B⋯O4ii 0.89 1.93 2.789 (3) 162
O2WA—H2A⋯O1W 0.91 1.97 2.828 (13) 155
O2WB—H2C⋯O2WA 0.85 1.55 2.156 (16) 126
N2—H2N⋯O1Wiii 0.86 1.96 2.798 (4) 165
N4—H4N⋯O5iv 0.86 2.02 2.866 (3) 166
O5—H5A⋯O2ii 0.85 1.90 2.716 (3) 162
O5—H5B⋯O4v 0.85 1.95 2.791 (3) 172
C17—H17⋯O2vi 0.93 2.50 3.389 (4) 160

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our investigation on the nature of π-π stacking between aromatic rings (Li et al., 2005), the title polymeric complex of CuII incorporating imidazole and naphthalenedicarboxylate (naph) ligands has been prepared and its crystal structure is reported here.

The CuII cation is coordinated by two naph dianions, two imidazole molecules and one water molecule in a distorted square pyramidal geometry. The Cu—O(water) bond distance in the apical direction is longer than mean Cu—O(carboxyl) bond distance in the basal plane by 0.509 (3) Å. The naph dianion bridges two CuII cations by two carboxyl groups to form the one dimensional polymeric chain (Fig. 1). Two carboxyl groups of the naph dianion are twisted with respect to the C1-benzene ring with the dihedral angles of 32.0 (2)° and 38.2 (2)°, which are close to that found in the free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979) but are much smaller than those [52.5 (3)° and 48.7 (3)°] found in a MnII complex with the uncoordinated naph dianion (Li et al., 2008). The coordinated water molecule (O5) is hydrogen bonded to carboxyl groups and imidazole ligand of adjacent polymeric chains (Table 2) to form the three dimensional supra-molecular structure.

The parallel C8-benzene and C8iii-benzene rings from the adjacent polymeric chains overlap as shown in Fig. 2 [symmetry code: (iii) 1 - x, 1 - y, 2 - z] with a face-to-face separation of 3.67 (2) Å indicating no π-π stacking existing between benzene rings, a similar situation to that found in the MnII complex with uncoordinated naph dianion (Li et al., 2008). The face-to-face distances between parallel N1-imidazole and N1iv-imidazole rings and between parallel N3-imidazole and N3v-imidazole rings are 3.310 (4) and 3.050 (17) Å, respectively [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z]. However the imidazole rings are not overlapping each other in the crystal structure (Fig. 3), therefore no π-p\ stacking exists between parallel imidazole rings too.

Experimental

A water-ethanol solution (12 ml, 1:1) containing naphthalene-1,4-dicarboxyllic acid (0.162 g, 0.75 mmol), sodium hydroxide (0.053 g, 1.3 mmol), sodium acetate trihydrate (0.204 g, 1.5 mmol), cupric chloride dihydrate (0.085 g, 0.5 mmol) and imidazole (0.034 g, 0.5 mmol) was refluxed for 3 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 8 d.

Refinement

The lattice water O2WB is close to an inversion center, while the lattice O2WA is ca 1.5 Å apart from O2WBvi [symmetry code: (vi) -x, 1 - y, 1 - z]. The site occupancy factors of the O2WA and O2WB atoms were initially refined and converged to 0.48 and 0.45, and fixed as 0.50 for each at final cycles of refinemens. Water H atoms were placed in a difference Fourier map and refined in riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

A segment of the polymeric chain of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate hydrogen bonding [symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) x - 1/2, -y + 1/2, z + 1/2].

Fig. 2.

Fig. 2.

A digram showing the ovelapped arrangement of adjacent naphthaline ligands [symmetry code: (iii) 1 - x, 1 - y, 2 - z].

Fig. 3.

Fig. 3.

A diagram showing the contacts between imidazole rings [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z].

Crystal data

[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O F000 = 964
Mr = 467.92 Dx = 1.522 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5466 reflections
a = 12.571 (2) Å θ = 2.0–24.5º
b = 14.698 (3) Å µ = 1.12 mm1
c = 12.636 (2) Å T = 295 (2) K
β = 119.011 (6)º Prism, blue
V = 2041.8 (6) Å3 0.33 × 0.30 × 0.24 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer 3989 independent reflections
Radiation source: fine-focus sealed tube 3251 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.043
Detector resolution: 10.0 pixels mm-1 θmax = 26.0º
T = 295(2) K θmin = 1.9º
ω scans h = −15→15
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) k = −18→17
Tmin = 0.660, Tmax = 0.765 l = −15→15
23205 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.097   w = 1/[σ2(Fo2) + (0.0469P)2 + 1.2324P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3989 reflections Δρmax = 0.50 e Å3
280 parameters Δρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu 0.61473 (3) 0.26395 (2) 0.57692 (3) 0.02692 (12)
N1 0.60619 (19) 0.13328 (15) 0.6141 (2) 0.0324 (5)
N2 0.5581 (2) 0.00805 (16) 0.6757 (2) 0.0408 (6)
H2N 0.5252 −0.0276 0.7056 0.049*
N3 0.64575 (19) 0.39456 (14) 0.56052 (19) 0.0310 (5)
N4 0.6481 (2) 0.54324 (16) 0.5765 (2) 0.0423 (6)
H4N 0.6401 0.5966 0.5997 0.051*
O1 0.52250 (17) 0.29662 (13) 0.66172 (17) 0.0356 (4)
O2 0.69612 (18) 0.29561 (17) 0.8353 (2) 0.0515 (6)
O3 0.19639 (16) 0.27227 (12) 0.98022 (16) 0.0311 (4)
O4 0.37130 (19) 0.25600 (14) 1.14909 (18) 0.0436 (5)
O5 0.41477 (17) 0.27662 (13) 0.38636 (17) 0.0387 (5)
H5A 0.3510 0.2580 0.3861 0.058*
H5B 0.4082 0.2721 0.3166 0.058*
O1W 0.0571 (2) 0.37164 (15) 0.7624 (2) 0.0548 (6)
H1A 0.1072 0.3426 0.8274 0.082*
H1B 0.0011 0.3328 0.7129 0.082*
O2WA 0.1105 (11) 0.4187 (8) 0.5762 (10) 0.181 (5) 0.50
H2A 0.0710 0.4002 0.6169 0.271* 0.50
H2B 0.1794 0.3868 0.6144 0.271* 0.50
O2WB −0.0010 (9) 0.5394 (6) 0.5243 (9) 0.127 (3) 0.50
H2C 0.0693 0.5188 0.5711 0.190* 0.50
H2D −0.0381 0.5579 0.5650 0.190* 0.50
C1 0.5111 (2) 0.30793 (18) 0.8430 (2) 0.0294 (6)
C2 0.3978 (2) 0.26894 (18) 0.7913 (2) 0.0325 (6)
H2 0.3638 0.2466 0.7127 0.039*
C3 0.3324 (2) 0.26212 (18) 0.8547 (2) 0.0327 (6)
H3 0.2564 0.2343 0.8181 0.039*
C4 0.3787 (2) 0.29591 (18) 0.9699 (2) 0.0283 (5)
C5 0.5331 (3) 0.3954 (2) 1.1323 (2) 0.0376 (6)
H5 0.4903 0.3923 1.1750 0.045*
C6 0.6357 (3) 0.4476 (2) 1.1762 (3) 0.0441 (7)
H6 0.6605 0.4810 1.2468 0.053*
C7 0.7035 (3) 0.4508 (2) 1.1152 (3) 0.0452 (7)
H7 0.7740 0.4856 1.1463 0.054*
C8 0.6671 (3) 0.4035 (2) 1.0115 (3) 0.0399 (7)
H8 0.7144 0.4053 0.9733 0.048*
C9 0.5581 (2) 0.35118 (17) 0.9593 (2) 0.0287 (5)
C10 0.4903 (2) 0.34582 (17) 1.0226 (2) 0.0284 (5)
C11 0.5842 (3) 0.30043 (18) 0.7771 (3) 0.0329 (6)
C12 0.3125 (2) 0.27394 (17) 1.0399 (2) 0.0289 (6)
C13 0.6235 (2) 0.46473 (19) 0.6125 (2) 0.0352 (6)
H13 0.5945 0.4598 0.6674 0.042*
C14 0.6877 (3) 0.5244 (2) 0.4974 (3) 0.0585 (9)
H14 0.7112 0.5661 0.4572 0.070*
C15 0.6865 (3) 0.4329 (2) 0.4878 (3) 0.0561 (9)
H15 0.7099 0.4006 0.4391 0.067*
C16 0.5431 (3) 0.0979 (2) 0.6621 (3) 0.0418 (7)
H16 0.4940 0.1315 0.6838 0.050*
C17 0.6345 (3) −0.0168 (2) 0.6339 (3) 0.0405 (7)
H17 0.6612 −0.0754 0.6316 0.049*
C18 0.6642 (3) 0.05965 (19) 0.5964 (3) 0.0389 (6)
H18 0.7161 0.0627 0.5635 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.03055 (19) 0.02963 (19) 0.03180 (19) 0.00027 (12) 0.02397 (15) −0.00133 (13)
N1 0.0350 (12) 0.0336 (13) 0.0378 (12) 0.0004 (10) 0.0250 (10) −0.0019 (10)
N2 0.0484 (14) 0.0342 (14) 0.0467 (14) −0.0069 (11) 0.0287 (12) 0.0010 (11)
N3 0.0341 (12) 0.0315 (12) 0.0365 (12) 0.0011 (9) 0.0241 (10) 0.0009 (9)
N4 0.0448 (14) 0.0314 (13) 0.0511 (15) −0.0005 (10) 0.0234 (12) −0.0021 (11)
O1 0.0446 (11) 0.0381 (11) 0.0412 (11) 0.0005 (8) 0.0344 (10) −0.0015 (8)
O2 0.0333 (12) 0.0736 (15) 0.0599 (14) 0.0010 (10) 0.0323 (11) −0.0102 (11)
O3 0.0295 (10) 0.0387 (10) 0.0359 (10) −0.0006 (8) 0.0243 (9) 0.0022 (8)
O4 0.0398 (11) 0.0662 (14) 0.0322 (11) 0.0016 (10) 0.0233 (9) 0.0083 (9)
O5 0.0379 (11) 0.0476 (12) 0.0360 (10) −0.0086 (9) 0.0222 (9) −0.0074 (9)
O1W 0.0509 (13) 0.0544 (14) 0.0585 (14) 0.0047 (11) 0.0261 (11) −0.0028 (11)
O2WA 0.216 (12) 0.203 (12) 0.214 (12) −0.016 (9) 0.175 (11) 0.029 (9)
O2WB 0.117 (6) 0.131 (8) 0.126 (7) −0.021 (6) 0.054 (6) −0.012 (6)
C1 0.0315 (14) 0.0311 (14) 0.0351 (14) 0.0024 (11) 0.0236 (12) 0.0008 (11)
C2 0.0341 (15) 0.0403 (16) 0.0315 (14) −0.0037 (11) 0.0225 (12) −0.0070 (11)
C3 0.0287 (14) 0.0423 (16) 0.0350 (14) −0.0053 (11) 0.0218 (12) −0.0046 (12)
C4 0.0290 (13) 0.0336 (14) 0.0311 (13) 0.0035 (10) 0.0215 (11) 0.0028 (11)
C5 0.0421 (16) 0.0464 (17) 0.0325 (14) −0.0013 (13) 0.0245 (13) −0.0036 (12)
C6 0.0501 (18) 0.0453 (18) 0.0374 (16) −0.0077 (14) 0.0217 (14) −0.0098 (13)
C7 0.0369 (16) 0.0500 (19) 0.0490 (18) −0.0146 (13) 0.0211 (14) −0.0088 (14)
C8 0.0360 (15) 0.0437 (17) 0.0478 (17) −0.0077 (13) 0.0265 (14) −0.0009 (13)
C9 0.0290 (13) 0.0304 (14) 0.0329 (13) 0.0021 (10) 0.0200 (11) 0.0016 (10)
C10 0.0309 (13) 0.0295 (14) 0.0304 (13) 0.0027 (10) 0.0192 (11) 0.0016 (10)
C11 0.0417 (17) 0.0273 (14) 0.0469 (17) −0.0020 (11) 0.0351 (14) −0.0013 (11)
C12 0.0332 (14) 0.0292 (14) 0.0345 (14) 0.0018 (11) 0.0245 (12) −0.0001 (11)
C13 0.0354 (15) 0.0381 (16) 0.0348 (14) −0.0012 (12) 0.0192 (12) −0.0017 (12)
C14 0.080 (2) 0.0393 (19) 0.087 (3) 0.0010 (16) 0.065 (2) 0.0105 (17)
C15 0.087 (3) 0.0380 (18) 0.081 (2) 0.0069 (16) 0.070 (2) 0.0094 (16)
C16 0.0528 (18) 0.0339 (16) 0.0551 (18) −0.0020 (13) 0.0390 (16) −0.0023 (13)
C17 0.0414 (16) 0.0339 (16) 0.0454 (16) 0.0028 (12) 0.0206 (14) 0.0011 (13)
C18 0.0403 (16) 0.0370 (16) 0.0467 (17) 0.0057 (12) 0.0268 (14) 0.0023 (13)

Geometric parameters (Å, °)

Cu—N1 1.992 (2) C1—C2 1.371 (4)
Cu—N3 1.990 (2) C1—C9 1.439 (4)
Cu—O1 1.9819 (17) C1—C11 1.515 (3)
Cu—O3i 2.0116 (17) C2—C3 1.404 (4)
Cu—O5 2.506 (2) C2—H2 0.9300
N1—C16 1.317 (3) C3—C4 1.372 (4)
N1—C18 1.382 (3) C3—H3 0.9300
N2—C16 1.333 (4) C4—C10 1.430 (4)
N2—C17 1.351 (4) C4—C12 1.514 (3)
N2—H2N 0.8600 C5—C6 1.365 (4)
N3—C13 1.323 (3) C5—C10 1.421 (4)
N3—C15 1.372 (4) C5—H5 0.9300
N4—C13 1.331 (4) C6—C7 1.400 (4)
N4—C14 1.344 (4) C6—H6 0.9300
N4—H4N 0.8600 C7—C8 1.352 (4)
O1—C11 1.278 (3) C7—H7 0.9300
O2—C11 1.234 (3) C8—C9 1.424 (4)
O3—C12 1.277 (3) C8—H8 0.9300
O3—Cuii 2.0116 (17) C9—C10 1.426 (3)
O4—C12 1.237 (3) C13—H13 0.9300
O5—H5A 0.8450 C14—C15 1.351 (5)
O5—H5B 0.8478 C14—H14 0.9300
O1W—H1A 0.8670 C15—H15 0.9300
O1W—H1B 0.8864 C16—H16 0.9300
O2WA—H2A 0.9128 C17—C18 1.340 (4)
O2WA—H2B 0.8933 C17—H17 0.9300
O2WB—H2C 0.8461 C18—H18 0.9300
O2WB—H2D 0.8876
O1—Cu—N3 91.04 (8) C6—C5—H5 119.3
O1—Cu—N1 89.64 (8) C10—C5—H5 119.3
N3—Cu—N1 172.02 (9) C5—C6—C7 120.2 (3)
O1—Cu—O3i 175.67 (8) C5—C6—H6 119.9
N3—Cu—O3i 90.49 (8) C7—C6—H6 119.9
N1—Cu—O3i 89.41 (8) C8—C7—C6 120.4 (3)
O5—Cu—N1 98.89 (8) C8—C7—H7 119.8
O5—Cu—N3 89.09 (8) C6—C7—H7 119.8
O5—Cu—O1 85.66 (7) C7—C8—C9 121.6 (3)
O5—Cu—O3i 90.32 (7) C7—C8—H8 119.2
C16—N1—C18 104.3 (2) C9—C8—H8 119.2
C16—N1—Cu 127.07 (19) C8—C9—C10 118.2 (2)
C18—N1—Cu 128.61 (18) C8—C9—C1 122.6 (2)
C16—N2—C17 107.4 (2) C10—C9—C1 119.1 (2)
C16—N2—H2N 126.3 C5—C10—C9 118.2 (2)
C17—N2—H2N 126.3 C5—C10—C4 122.6 (2)
C13—N3—C15 104.5 (2) C9—C10—C4 119.1 (2)
C13—N3—Cu 126.94 (18) O2—C11—O1 124.2 (2)
C15—N3—Cu 128.44 (19) O2—C11—C1 119.8 (2)
C13—N4—C14 107.9 (3) O1—C11—C1 115.9 (2)
C13—N4—H4N 126.0 O4—C12—O3 123.3 (2)
C14—N4—H4N 126.0 O4—C12—C4 119.7 (2)
C11—O1—Cu 115.93 (16) O3—C12—C4 117.0 (2)
C12—O3—Cuii 114.83 (16) N3—C13—N4 111.5 (2)
H5A—O5—H5B 110.9 N3—C13—H13 124.3
H1A—O1W—H1B 108.4 N4—C13—H13 124.3
H2A—O2WA—H2B 100.9 N4—C14—C15 106.2 (3)
H2C—O2WB—H2D 111.6 N4—C14—H14 126.9
C2—C1—C9 119.3 (2) C15—C14—H14 126.9
C2—C1—C11 118.3 (2) C14—C15—N3 109.9 (3)
C9—C1—C11 122.4 (2) C14—C15—H15 125.0
C1—C2—C3 121.2 (2) N3—C15—H15 125.0
C1—C2—H2 119.4 N1—C16—N2 111.8 (3)
C3—C2—H2 119.4 N1—C16—H16 124.1
C4—C3—C2 121.0 (2) N2—C16—H16 124.1
C4—C3—H3 119.5 C18—C17—N2 106.5 (3)
C2—C3—H3 119.5 C18—C17—H17 126.7
C3—C4—C10 119.7 (2) N2—C17—H17 126.7
C3—C4—C12 118.1 (2) C17—C18—N1 109.9 (2)
C10—C4—C12 122.1 (2) C17—C18—H18 125.1
C6—C5—C10 121.4 (2) N1—C18—H18 125.1

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1A···O3 0.87 1.99 2.846 (3) 170
O1W—H1B···O4iii 0.89 1.93 2.789 (3) 162
O2WA—H2A···O1W 0.91 1.97 2.828 (13) 155
O2WB—H2C···O2WA 0.85 1.55 2.156 (16) 126
N2—H2N···O1Wiv 0.86 1.96 2.798 (4) 165
N4—H4N···O5v 0.86 2.02 2.866 (3) 166
O5—H5A···O2iii 0.85 1.90 2.716 (3) 162
O5—H5B···O4vi 0.85 1.95 2.791 (3) 172
C17—H17···O2vii 0.93 2.50 3.389 (4) 160

Symmetry codes: (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+1; (vi) x, y, z−1; (vii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2252).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun.8, 533–536.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729. [DOI] [PMC free article] [PubMed]
  7. Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [DOI] [PubMed]
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018515/sg2252sup1.cif

e-64-0m948-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018515/sg2252Isup2.hkl

e-64-0m948-Isup2.hkl (191.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES