Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 21;64(Pt 7):m945. doi: 10.1107/S1600536808018382

Tris(1-ethyl-3-methyl­imidazolium) hexa­bromidoeuropate(III)

Michael Pellens a, Ben Thijs a, Kristof Van Hecke b, Luc Van Meervelt b, Koen Binnemans a, Peter Nockemann a,*
PMCID: PMC2961749  PMID: 21202797

Abstract

The crystal structure of the title compound, (C6H11N2)3[EuBr6], consists of 1-ethyl-3-methyl­imidazolium cations and centrosymmetric octa­hedral hexa­bromido­europate anions. The [EuBr6]3− anions are located at the corners and face-centres of the monoclinic unit cell. Characteristic hydrogen-bonding inter­actions can be observed between the bromide anions and the acidic H atoms of the imidazolium cations.

Related literature

For related literature, see: Arenz et al. (2005); Binnemans (2007); Chaumont & Wipff (2003); Driesen et al. (2004); Matsumoto et al. (2002); Nockemann et al. (2005, 2006, 2008); Reichert et al. (2006); Taubert (2004); Tsuda et al. (2001); Zhao et al. (2004).graphic file with name e-64-0m945-scheme1.jpg

Experimental

Crystal data

  • (C6H11N2)3[EuBr6]

  • M r = 964.87

  • Monoclinic, Inline graphic

  • a = 15.765 (1) Å

  • b = 12.729 (1) Å

  • c = 14.920 (1) Å

  • β = 90.36 (1)°

  • V = 2994.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.12 mm−1

  • T = 100 (2) K

  • 0.18 × 0.17 × 0.16 mm

Data collection

  • Oxford Diffraction Gemini A Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.148, T max = 0.200

  • 17678 measured reflections

  • 7019 independent reflections

  • 5043 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.099

  • S = 1.07

  • 7019 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −1.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018382/hg2399sup1.cif

e-64-0m945-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018382/hg2399Isup2.hkl

e-64-0m945-Isup2.hkl (343.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the FWO-Flanders for financial support (project No. G.0508.07). Financial support by the Katholieke Universiteit Leuven is also acknowledged (project Nos. GOA08/05 and IDO/05/005). Dr Oliver Presly from Oxford Diffraction Ltd is greatly acknowledged for the collection and processing of the diffraction data.

supplementary crystallographic information

Comment

Ionic liquids are increasingly attracting the attention of inorganic and materials chemists (Taubert, 2004; Reichert et al., 2006; Nockemann et al., 2008). Lanthanide compounds dissolved in ionic liquids have been of interest especially due to their photoluminescence behavior (Driesen et al., 2004; Binnemans, 2007; Nockemann et al., 2005). Experimental and theoretical studies on lanthanide ions in halide containing imidazolium ionic liquids have been investigated regarding electrochemical and spectroscopic properties (Arenz et al., 2005; Chaumont & Wipff, 2003; Tsuda et al., 2001). Imidazolium cations have been reported to yield low-melting lanthanide-containing ionic liquids like [BMIM]5[Eu(SCN)8] (Nockemann et al., 2006). An analogue structure to the title compound, [EMIM]3[LaCl6], has been reported previously (Matsumoto et al., 2002). The title compound crystallized unexpectedly after dissolving europium bis(trifluoromethylsulfonyl)imide hexahydrate, Eu(Tf2N)3.6H2O in a mixture of [EMIM]Br and a nitrile functionalized imidazolium ionic liquid, 1-butyronitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C3CNMIM][Tf2N]. The crystal structure of [EMIM]3[EuBr6] (Fig. 1) consists of 1-ethyl-3-methylimidazolium cations and octahedral [EuBr6]3- anions. The Eu—Br distances are in the range of 2.7793 (6) Å to 2.8187 (6) Å. The octahedral geometry of the two crystallographically independent [EuBr6]3- anions is slightly distorted with the surrounding of Eu1 more distorted than Eu2 with Br—Eu—Br angles ranging from 86.90 (2)° to 93.10 (2)° for Eu1, compared to angles ranging from 89.11 (2)° to 90.89 (2)° for Eu2. All bromine anions exhibit short contacts to neighboring H-atoms of imidazolium rings ranging from 2.76 Å to 2.90 Å. All three H-atoms of each of the three crystallographically independent imidazolium cations form hydrogen bonds with bromide atoms, which is exemplarily shown in Fig. 2 for one cation. In the packing of [EMIM]3[EuBr6], the [EuBr6]3- anions are located on the corners and face-centers of the monoclinic unit cell (Fig. 3).

Experimental

[EMIM]3[EuBr6] crystallized unintentionally after dissolving europium(III) bis(trifluoromethylsulfonyl)imide hexahydrate, Eu(Tf2N)3.6H2O (0.5 g, 0.454 mmol) in a mixture of 5 ml of [EMIM]Br and 5 ml of a nitrile functionalized imidazolium ionic liquid, 1-butyronitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C3CNMIM][Tf2N]. [EMIM]Br was purchased from IoLiTec. The nitrile functionalized imidazolium ionic liquid has been synthesized following a procedure that has been reported in the literature (Zhao et al. 2004). The title compound crystallized as small slightly yellow blocks.

Refinement

Hydrogen atoms were refined in the riding mode with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 times for methyl groups).

Figures

Fig. 1.

Fig. 1.

Structure of the [EuBr6]3- anion and interactions to two exemplary [EMIM]+ cations around Eu1 in the crystal structure of [EMIM]3[EuBr6]. The dashed lines indicate the hydrogen bonding interactions. Displacement ellipsoids are shown at the 50% probability level and H-atoms are drawn as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

Surrounding of an [EMIM]+ cation in the crystal structure of [EMIM]3[EuBr6]. The dashed lines indicate the hydrogen bonding interactions. Displacement ellipsoids are shown at the 50% probability level and H-atoms are drawn as small circles of arbitrary radii.

Fig. 3.

Fig. 3.

Packing of the structure of [EMIM]3[EuBr6] viewed along the b axis. The [EuBr6]3- anions are located on the corners and face-centers of the monoclinic unit cell.

Crystal data

(C6H11N2)3[Eu1Br6] F000 = 1824
Mr = 964.87 Dx = 2.141 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9203 reflections
a = 15.765 (1) Å θ = 3.0–29.1º
b = 12.729 (1) Å µ = 10.12 mm1
c = 14.920 (1) Å T = 100 (2) K
β = 90.36 (1)º Block, yellow
V = 2994.0 (4) Å3 0.18 × 0.17 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Gemini A Ultra diffractometer 7019 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5043 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
Detector resolution: 10.3310 pixels mm-1 θmax = 29.1º
T = 100(2) K θmin = 3.0º
ω and φ scans h = −21→13
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2008) k = −14→17
Tmin = 0.148, Tmax = 0.200 l = −19→19
17678 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.099   w = 1/[σ2(Fo2) + (0.0541P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
7019 reflections Δρmax = 1.75 e Å3
290 parameters Δρmin = −1.44 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. CrysAlis RED (CrysAlis RED, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9054 (4) 0.1566 (5) 0.4127 (4) 0.0200 (14)
H1 0.9361 0.2068 0.4471 0.024*
C2 0.8011 (5) 0.0618 (5) 0.3547 (4) 0.0257 (15)
H2 0.7459 0.0348 0.3428 0.031*
C3 0.8726 (4) 0.0310 (5) 0.3170 (4) 0.0228 (14)
H3 0.8781 −0.0218 0.2725 0.027*
C4 1.0300 (4) 0.0820 (5) 0.3349 (4) 0.0171 (13)
H4A 1.0576 0.1500 0.3491 0.021*
H4B 1.0379 0.0680 0.2702 0.021*
C5 1.0725 (4) −0.0044 (5) 0.3889 (4) 0.0212 (14)
H5A 1.0614 0.0064 0.4528 0.032*
H5B 1.1338 −0.0029 0.3785 0.032*
H5C 1.0497 −0.0727 0.3703 0.032*
C6 0.7598 (4) 0.2016 (5) 0.4680 (4) 0.0270 (16)
H6A 0.7428 0.1604 0.5204 0.041*
H6B 0.7098 0.2169 0.4309 0.041*
H6C 0.7858 0.2676 0.4880 0.041*
C7 0.6503 (4) 0.3160 (6) 0.2301 (4) 0.0235 (15)
H7 0.5922 0.3054 0.2159 0.028*
C8 0.7896 (4) 0.2961 (5) 0.2383 (4) 0.0243 (15)
H8 0.8454 0.2696 0.2309 0.029*
C9 0.7664 (4) 0.3830 (5) 0.2844 (4) 0.0217 (14)
H9 0.8039 0.4287 0.3156 0.026*
C10 0.6311 (5) 0.4800 (6) 0.3179 (4) 0.0306 (17)
H10A 0.5807 0.4923 0.2794 0.037*
H10B 0.6650 0.5455 0.3189 0.037*
C11 0.6025 (5) 0.4553 (6) 0.4115 (5) 0.0358 (18)
H11A 0.5715 0.3886 0.4114 0.054*
H11B 0.5653 0.5115 0.4329 0.054*
H11C 0.6521 0.4497 0.4512 0.054*
C12 0.7057 (5) 0.1584 (5) 0.1507 (4) 0.0291 (16)
H12A 0.6658 0.1111 0.1805 0.044*
H12B 0.7607 0.1233 0.1444 0.044*
H12C 0.6836 0.1769 0.0912 0.044*
C13 0.7070 (4) 0.8020 (5) 0.3480 (4) 0.0272 (15)
H13 0.6671 0.8381 0.3841 0.033*
C14 0.8247 (5) 0.7279 (7) 0.3036 (5) 0.042 (2)
H14 0.8813 0.7024 0.3025 0.051*
C15 0.7644 (4) 0.7205 (7) 0.2371 (5) 0.037 (2)
H15 0.7720 0.6888 0.1800 0.045*
C16 0.6146 (5) 0.7797 (6) 0.2138 (5) 0.0376 (18)
H16A 0.5698 0.8121 0.2508 0.045*
H16B 0.5942 0.7100 0.1937 0.045*
C17 0.6318 (5) 0.8486 (6) 0.1327 (5) 0.045 (2)
H17A 0.6572 0.9150 0.1524 0.068*
H17B 0.5783 0.8629 0.1011 0.068*
H17C 0.6709 0.8123 0.0923 0.068*
C18 0.8275 (5) 0.8070 (6) 0.4594 (4) 0.0316 (17)
H18A 0.7897 0.8504 0.4959 0.047*
H18B 0.8800 0.8458 0.4476 0.047*
H18C 0.8410 0.7421 0.4917 0.047*
N1 0.9384 (3) 0.0896 (4) 0.3541 (3) 0.0166 (11)
N2 0.8220 (3) 0.1409 (4) 0.4148 (3) 0.0141 (10)
N3 0.6826 (4) 0.3942 (4) 0.2789 (3) 0.0281 (13)
N4 0.7163 (3) 0.2543 (4) 0.2045 (3) 0.0194 (11)
N5 0.6912 (4) 0.7670 (4) 0.2673 (4) 0.0294 (13)
N6 0.7846 (4) 0.7809 (4) 0.3727 (4) 0.0273 (13)
Br1 0.99929 (4) 0.37839 (5) 0.34343 (4) 0.01889 (14)
Br2 0.82537 (4) 0.52642 (5) 0.48677 (4) 0.02342 (15)
Br3 1.03396 (4) 0.68086 (5) 0.39729 (4) 0.01711 (14)
Br4 0.33611 (4) 0.02950 (5) 0.43034 (4) 0.01855 (14)
Br5 0.50481 (4) 0.21190 (5) 0.54969 (4) 0.02105 (14)
Br6 0.56634 (4) 0.05083 (5) 0.33129 (4) 0.02125 (15)
Eu1 1.0000 0.5000 0.5000 0.00923 (9)
Eu2 0.5000 0.0000 0.5000 0.01018 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.031 (4) 0.013 (3) 0.015 (3) −0.001 (3) 0.008 (3) 0.003 (2)
C2 0.036 (4) 0.017 (3) 0.024 (3) −0.003 (3) 0.003 (3) −0.004 (3)
C3 0.025 (3) 0.018 (3) 0.026 (3) 0.000 (3) 0.004 (3) −0.007 (3)
C4 0.017 (3) 0.021 (3) 0.014 (3) −0.001 (3) 0.000 (2) 0.000 (3)
C5 0.014 (3) 0.021 (3) 0.029 (3) 0.001 (3) −0.003 (3) 0.002 (3)
C6 0.036 (4) 0.018 (3) 0.028 (3) 0.005 (3) 0.015 (3) −0.005 (3)
C7 0.016 (3) 0.039 (4) 0.015 (3) 0.000 (3) −0.006 (2) 0.004 (3)
C8 0.028 (4) 0.026 (4) 0.019 (3) −0.004 (3) −0.001 (3) 0.005 (3)
C9 0.023 (3) 0.026 (4) 0.017 (3) −0.005 (3) −0.008 (3) 0.002 (3)
C10 0.036 (4) 0.028 (4) 0.028 (4) 0.013 (3) −0.003 (3) 0.002 (3)
C11 0.026 (4) 0.047 (5) 0.035 (4) −0.003 (3) 0.006 (3) −0.009 (4)
C12 0.043 (4) 0.023 (4) 0.021 (3) −0.005 (3) 0.009 (3) −0.004 (3)
C13 0.029 (4) 0.027 (4) 0.026 (3) −0.001 (3) 0.000 (3) −0.007 (3)
C14 0.050 (5) 0.054 (6) 0.023 (4) 0.023 (4) 0.000 (3) −0.014 (4)
C15 0.014 (3) 0.063 (6) 0.035 (4) 0.015 (3) −0.005 (3) −0.014 (4)
C16 0.029 (4) 0.037 (5) 0.047 (5) 0.004 (3) −0.009 (3) −0.017 (4)
C17 0.054 (5) 0.044 (5) 0.037 (4) 0.000 (4) −0.026 (4) −0.005 (4)
C18 0.036 (4) 0.034 (4) 0.025 (3) 0.012 (3) −0.007 (3) −0.008 (3)
N1 0.017 (3) 0.016 (3) 0.017 (2) −0.002 (2) 0.001 (2) −0.002 (2)
N2 0.009 (2) 0.017 (3) 0.016 (2) −0.001 (2) 0.0001 (19) −0.004 (2)
N3 0.044 (4) 0.021 (3) 0.019 (3) 0.003 (3) 0.006 (3) 0.000 (2)
N4 0.019 (3) 0.026 (3) 0.014 (2) −0.004 (2) 0.002 (2) 0.001 (2)
N5 0.030 (3) 0.023 (3) 0.036 (3) −0.004 (3) 0.005 (3) −0.007 (3)
N6 0.034 (3) 0.021 (3) 0.027 (3) 0.010 (3) 0.008 (3) 0.000 (2)
Br1 0.0281 (3) 0.0149 (3) 0.0137 (3) −0.0037 (3) 0.0016 (2) −0.0014 (2)
Br2 0.0153 (3) 0.0261 (4) 0.0288 (3) 0.0010 (3) −0.0015 (3) −0.0004 (3)
Br3 0.0229 (3) 0.0138 (3) 0.0146 (3) −0.0018 (2) −0.0001 (2) 0.0010 (2)
Br4 0.0137 (3) 0.0225 (3) 0.0195 (3) 0.0012 (2) −0.0022 (2) 0.0004 (3)
Br5 0.0235 (3) 0.0168 (3) 0.0228 (3) −0.0011 (3) −0.0039 (2) 0.0003 (3)
Br6 0.0185 (3) 0.0301 (4) 0.0152 (3) −0.0005 (3) 0.0030 (2) 0.0040 (3)
Eu1 0.01068 (18) 0.00812 (19) 0.00889 (18) −0.00080 (16) −0.00038 (14) 0.00018 (15)
Eu2 0.00931 (18) 0.0124 (2) 0.00889 (18) 0.00017 (16) 0.00048 (14) 0.00114 (16)

Geometric parameters (Å, °)

C1—N1 1.329 (7) C12—H12A 0.9800
C1—N2 1.331 (8) C12—H12B 0.9800
C1—H1 0.9500 C12—H12C 0.9800
C2—C3 1.322 (9) C13—N6 1.304 (9)
C2—N2 1.388 (8) C13—N5 1.306 (8)
C2—H2 0.9500 C13—H13 0.9500
C3—N1 1.390 (8) C14—C15 1.373 (10)
C3—H3 0.9500 C14—N6 1.387 (8)
C4—N1 1.478 (7) C14—H14 0.9500
C4—C5 1.517 (8) C15—N5 1.375 (8)
C4—H4A 0.9900 C15—H15 0.9500
C4—H4B 0.9900 C16—N5 1.452 (9)
C5—H5A 0.9800 C16—C17 1.520 (11)
C5—H5B 0.9800 C16—H16A 0.9900
C5—H5C 0.9800 C16—H16B 0.9900
C6—N2 1.482 (7) C17—H17A 0.9800
C6—H6A 0.9800 C17—H17B 0.9800
C6—H6B 0.9800 C17—H17C 0.9800
C6—H6C 0.9800 C18—N6 1.495 (9)
C7—N3 1.332 (8) C18—H18A 0.9800
C7—N4 1.360 (8) C18—H18B 0.9800
C7—H7 0.9500 C18—H18C 0.9800
C8—C9 1.355 (9) Br1—Eu1 2.8024 (6)
C8—N4 1.365 (8) Br2—Eu1 2.7793 (6)
C8—H8 0.9500 Br3—Eu1 2.8188 (6)
C9—N3 1.330 (8) Br4—Eu2 2.8041 (6)
C9—H9 0.9500 Br5—Eu2 2.7982 (6)
C10—N3 1.483 (8) Br6—Eu2 2.8074 (5)
C10—C11 1.503 (9) Eu1—Br2i 2.7794 (6)
C10—H10A 0.9900 Eu1—Br1i 2.8023 (6)
C10—H10B 0.9900 Eu1—Br3i 2.8187 (6)
C11—H11A 0.9800 Eu2—Br5ii 2.7982 (6)
C11—H11B 0.9800 Eu2—Br4ii 2.8041 (6)
C11—H11C 0.9800 Eu2—Br6ii 2.8073 (5)
C12—N4 1.470 (8)
N1—C1—N2 108.1 (5) C17—C16—H16A 109.6
N1—C1—H1 125.9 N5—C16—H16B 109.6
N2—C1—H1 125.9 C17—C16—H16B 109.6
C3—C2—N2 106.8 (6) H16A—C16—H16B 108.1
C3—C2—H2 126.6 C16—C17—H17A 109.5
N2—C2—H2 126.6 C16—C17—H17B 109.5
C2—C3—N1 108.0 (6) H17A—C17—H17B 109.5
C2—C3—H3 126.0 C16—C17—H17C 109.5
N1—C3—H3 126.0 H17A—C17—H17C 109.5
N1—C4—C5 111.9 (5) H17B—C17—H17C 109.5
N1—C4—H4A 109.2 N6—C18—H18A 109.5
C5—C4—H4A 109.2 N6—C18—H18B 109.5
N1—C4—H4B 109.2 H18A—C18—H18B 109.5
C5—C4—H4B 109.2 N6—C18—H18C 109.5
H4A—C4—H4B 107.9 H18A—C18—H18C 109.5
C4—C5—H5A 109.5 H18B—C18—H18C 109.5
C4—C5—H5B 109.5 C1—N1—C3 108.2 (5)
H5A—C5—H5B 109.5 C1—N1—C4 123.8 (5)
C4—C5—H5C 109.5 C3—N1—C4 128.0 (5)
H5A—C5—H5C 109.5 C1—N2—C2 108.9 (5)
H5B—C5—H5C 109.5 C1—N2—C6 126.3 (5)
N2—C6—H6A 109.5 C2—N2—C6 124.7 (5)
N2—C6—H6B 109.5 C9—N3—C7 109.3 (5)
H6A—C6—H6B 109.5 C9—N3—C10 126.9 (6)
N2—C6—H6C 109.5 C7—N3—C10 123.8 (6)
H6A—C6—H6C 109.5 C7—N4—C8 108.5 (5)
H6B—C6—H6C 109.5 C7—N4—C12 123.2 (6)
N3—C7—N4 107.1 (5) C8—N4—C12 128.2 (6)
N3—C7—H7 126.4 C13—N5—C15 107.1 (6)
N4—C7—H7 126.4 C13—N5—C16 128.4 (6)
C9—C8—N4 106.0 (6) C15—N5—C16 124.3 (6)
C9—C8—H8 127.0 C13—N6—C14 108.8 (6)
N4—C8—H8 127.0 C13—N6—C18 128.1 (5)
N3—C9—C8 109.1 (6) C14—N6—C18 123.1 (6)
N3—C9—H9 125.5 Br2—Eu1—Br2i 180.0
C8—C9—H9 125.5 Br2—Eu1—Br1i 89.496 (19)
N3—C10—C11 112.2 (6) Br2i—Eu1—Br1i 90.505 (18)
N3—C10—H10A 109.2 Br2—Eu1—Br1 90.505 (19)
C11—C10—H10A 109.2 Br2i—Eu1—Br1 89.494 (18)
N3—C10—H10B 109.2 Br1i—Eu1—Br1 180.0
C11—C10—H10B 109.2 Br2—Eu1—Br3i 86.905 (18)
H10A—C10—H10B 107.9 Br2i—Eu1—Br3i 93.095 (18)
C10—C11—H11A 109.5 Br1i—Eu1—Br3i 89.872 (16)
C10—C11—H11B 109.5 Br1—Eu1—Br3i 90.129 (16)
H11A—C11—H11B 109.5 Br2—Eu1—Br3 93.096 (18)
C10—C11—H11C 109.5 Br2i—Eu1—Br3 86.904 (18)
H11A—C11—H11C 109.5 Br1i—Eu1—Br3 90.128 (16)
H11B—C11—H11C 109.5 Br1—Eu1—Br3 89.871 (16)
N4—C12—H12A 109.5 Br3i—Eu1—Br3 180.0
N4—C12—H12B 109.5 Br5—Eu2—Br5ii 180.0
H12A—C12—H12B 109.5 Br5—Eu2—Br4ii 90.431 (18)
N4—C12—H12C 109.5 Br5ii—Eu2—Br4ii 89.569 (18)
H12A—C12—H12C 109.5 Br5—Eu2—Br4 89.568 (18)
H12B—C12—H12C 109.5 Br5ii—Eu2—Br4 90.432 (18)
N6—C13—N5 111.3 (6) Br4ii—Eu2—Br4 180.0
N6—C13—H13 124.4 Br5—Eu2—Br6ii 89.668 (18)
N5—C13—H13 124.4 Br5ii—Eu2—Br6ii 90.332 (18)
C15—C14—N6 104.7 (7) Br4ii—Eu2—Br6ii 89.105 (17)
C15—C14—H14 127.6 Br4—Eu2—Br6ii 90.895 (17)
N6—C14—H14 127.6 Br5—Eu2—Br6 90.331 (18)
C14—C15—N5 108.2 (6) Br5ii—Eu2—Br6 89.668 (18)
C14—C15—H15 125.9 Br4ii—Eu2—Br6 90.896 (17)
N5—C15—H15 125.9 Br4—Eu2—Br6 89.104 (17)
N5—C16—C17 110.5 (6) Br6ii—Eu2—Br6 180.0
N5—C16—H16A 109.6

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2399).

References

  1. Arenz, S., Babai, A., Binnemans, K., Driesen, K., Giernoth, R., Mudring, A. V. & Nockemann, P. (2005). Chem. Phys. Lett.402, 75–79.
  2. Binnemans, K. (2007). Chem. Rev.107, 2592–2614. [DOI] [PubMed]
  3. Brandenburg, K. (2007). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Chaumont, A. & Wipff, G. (2003). Phys. Chem. Chem. Phys.5, 3481–3488.
  5. Driesen, K., Nockemann, P. & Binnemans, K. (2004). Chem. Phys. Lett.395, 306–310.
  6. Matsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186–m187. [DOI] [PubMed]
  7. Nockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). Chem. Commun. pp. 4354–4355. [DOI] [PubMed]
  8. Nockemann, P., Thijs, B., Postelmans, N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2006). J. Am. Chem. Soc.128, 13658–13659. [DOI] [PubMed]
  9. Nockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2008). Cryst. Growth Des.8, 1353–1363.
  10. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  11. Reichert, W. M., Holbrey, J. D., Vigour, K. B., Morgan, T. D., Broker, G. A. & Rogers, R. D. (2006). Chem. Commun. pp. 4767–4779. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Taubert, A. (2004). Angew. Chem. Int. Ed.43, 5380–5382. [DOI] [PubMed]
  15. Tsuda, T., Nohira, T. & Ito, Y. (2001). Electrochim. Acta, 46, 1891–1897.
  16. Zhao, D. B., Fei, Z. F., Scopelliti, R. & Dyson, P. J. (2004). Inorg. Chem.43, 2197–2205. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018382/hg2399sup1.cif

e-64-0m945-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018382/hg2399Isup2.hkl

e-64-0m945-Isup2.hkl (343.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES