Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1251. doi: 10.1107/S1600536808016942

4-(4-Propoxybenzo­yloxy)benzoic acid

Khushi Muhammad a, M Khawar Rauf a, Masahiro Ebihara b, Shahid Hameed a,*
PMCID: PMC2961752  PMID: 21202885

Abstract

The title compound, C17H16O5, is an important inter­mediate for the synthesis of side-chain ligands for polymeric liquid crystals. The prop­oxy and benzoic acid groups subtend dihedral angles of 4.36 (6) and 55.35 (6)°, respectively, with the central benzo­yloxy unit. The crystal structure is stabilized by an inter­molecular O—H⋯O hydrogen bond.

Related literature

For related literature, see: Ahmad et al. (2003); Aranzazu et al. (2006); Cady et al. (2002); Hameed & Rama (2004); Hartung et al. (1997); Hussain et al. (2003, 2005); Kong & Tang (1998); Nazir et al. (2008a ,b ); Ribeiro et al. (2008); Shafiq et al. (2003, 2005); Wu & Hsu (2007); Wu & Lin (2007).graphic file with name e-64-o1251-scheme1.jpg

Experimental

Crystal data

  • C17H16O5

  • M r = 300.30

  • Monoclinic, Inline graphic

  • a = 21.063 (15) Å

  • b = 5.703 (4) Å

  • c = 24.437 (18) Å

  • β = 99.790 (9)°

  • V = 2893 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • 0.30 × 0.19 × 0.15 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: empirical (NUMABS; Higashi, 1999) T min = 0.970, T max = 0.985

  • 11426 measured reflections

  • 3297 independent reflections

  • 2824 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.146

  • S = 1.26

  • 3297 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016942/hg2407sup1.cif

e-64-o1251-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016942/hg2407Isup2.hkl

e-64-o1251-Isup2.hkl (161.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.84 1.77 2.606 (3) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

MKR is grateful to The Higher Education Commission of Pakistan for financial support under the International Support initiative program for Doctoral Fellowships in Gifu University, Japan.

supplementary crystallographic information

Comment

Differently substituted aromatic carboxylic acids having benzene rings either joined directly through a covalent bond (Wu & Hsu 2007) or through some functional group, mostly an ester (Cady et al., 2002; Wu & Lin 2007) or an olefin (Nazir et al., 2008a; 2008b), have been investigated for their liquid crystal properties. Such acids have been used in the synthesis of intermediates for side-chain liquid crystal polymers (Kong & Tang 1998) as well as for main-chain liquid crystal polymers (Aranzazu et al., 2006). In addition, the carboxylic acids, in general, have been used as intermediates in the synthesis of a large number of organic compounds (Hussain et al., 2005; 2003; Shafiq et al., 2005; 2003; Ahmad et al., 2003). The pharmaceutical industry has also benefited from this class of compounds (Ribeiro et al., 2008; Hameed & Rama, 2004). The title compound (I) was synthesized in our lab as an intermediate in the synthesis of side-chain liquid crystal polymers, by treating 4-hydroxybenzaldehyde with 4-propyloxybenzoylchloride followed by KMnO4 oxidation. In this report, the crystal structure of (I) is presented. Bond lengths and angles are within the normal ranges as given for benzoyloxybenzoic acids (Hartung et al., 1997). The C(14)—O(4), C(14)—O(3),C(7)—O(1) and C(7)—O(2) bond lengths are 1.237 (3), 1.300 (3), 1.204 (3) and 1.367 (3) respectively, clearly indicating the partial double bond character of the carboxylate groups. The benzoic acid groups subtend dihedral angles [55.35 (6)°] with the central benzoyloxy moiety C(1)/C(2)/C(3)/C(4)/C(5)/C(6)/C(7)/O(1)/O(2). Two molecules related by an inversion center form a dimer via two hydrogen bonds composed of two carboxyl groups as shown in Fig. 2.

Experimental

To a solution of 4-hydroxybenzaldehyde (0.032 moles) in 50 ml of triethylamine (TEA) was added an equivalent amount of 4-propoxybenzoylchloride with stirring and the mixture heated at 333 K for 1 hour. The excess TEA was removed in vacuo and the product, after recrystallization from hot ethanol, was subjected to KMnO4 oxidation. The 4-(4-propoxybenzoyloxy)benzaldehyde (0.025 moles) was dissolved in acetone (100 ml) and aqueous KMnO4 (0.025 moles) was added dropwise at room temperature with stirring. The stirring was continued for three hours when the reaction mixture was filtered and the filtrate acidified using 6M HCl. The product was purified by recrystallization from acetone. Yield: 93% (from 4-(4-propoxybenzoyloxy)benzaldehyde); m.p: 478-480.5K; IR (νmax, KBr, cm-1): 3100-2400, 1731, 1685, 1603, 1512, 1425, 1300, 1260, 1206, 1163, 1061, 1009, 758; 1H-NMR (300 MHz,DMSO-d6): δ 0.99 (3H, t, J = 7.2 Hz), 1.77 (2H, sex, J = 6.9 Hz), 4.05 (2H, t, J = 6.6 Hz),7.12 (2H, d, J = 8.7 Hz), 7.4 (2H, d, J = 8.7 Hz), 8.03 (2H, d, J = 8.7 Hz),8.08 (2H, d, J = 8.7 Hz), 13.02 (1H, bs); 13C-NMR (75 MHz, DMSO-d6): 10.75, 22.33, 69.91, 115.16, 120.85, 122.70, 128.79, 131.35, 132.60, 154.65, 163.82, 164.29, 167.12.

Refinement

The O-bound H atom was refined isotropically. All the other H atoms were placed in idealized positions and treated as riding atoms, with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Showing hydrogen bonded molecules through N—H···O.

Crystal data

C17H16O5 F(000) = 1264
Mr = 300.30 Dx = 1.379 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 3169 reflections
a = 21.063 (15) Å θ = 3.4–27.5°
b = 5.703 (4) Å µ = 0.10 mm1
c = 24.437 (18) Å T = 123 K
β = 99.790 (9)° Rod, colorless
V = 2893 (3) Å3 0.30 × 0.19 × 0.15 mm
Z = 8

Data collection

Rigaku/MSC Mercury CCD diffractometer 3297 independent reflections
Radiation source: fine-focus sealed tube 2824 reflections with I > 2σ(I)
graphite Rint = 0.051
ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: empirical (using intensity measurements) (NUMABS; Higashi, 1999) h = −23→27
Tmin = 0.970, Tmax = 0.985 k = −7→5
11426 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.026P)2 + 6.5341P] where P = (Fo2 + 2Fc2)/3
3297 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.12026 (11) 0.2626 (4) 0.39828 (9) 0.0171 (5)
C2 0.15716 (12) 0.4515 (4) 0.42065 (10) 0.0223 (5)
H2 0.1686 0.5699 0.3968 0.027*
C3 0.17771 (13) 0.4698 (4) 0.47766 (10) 0.0229 (5)
H3 0.2030 0.6000 0.4926 0.027*
C4 0.16099 (12) 0.2958 (4) 0.51274 (10) 0.0198 (5)
C5 0.12360 (12) 0.1058 (4) 0.49037 (10) 0.0229 (5)
H5 0.1120 −0.0124 0.5142 0.027*
C6 0.10351 (12) 0.0891 (4) 0.43378 (10) 0.0212 (5)
H6 0.0781 −0.0408 0.4188 0.025*
C7 0.09682 (11) 0.2342 (4) 0.33803 (10) 0.0176 (5)
O1 0.06221 (9) 0.0793 (3) 0.31697 (7) 0.0250 (4)
O2 0.11946 (8) 0.4078 (3) 0.30793 (7) 0.0216 (4)
C8 0.09736 (11) 0.4149 (4) 0.25035 (9) 0.0181 (5)
C9 0.06788 (11) 0.6204 (4) 0.22986 (10) 0.0192 (5)
H9 0.0624 0.7460 0.2542 0.023*
C10 0.04640 (11) 0.6402 (4) 0.17308 (10) 0.0177 (5)
H10 0.0254 0.7794 0.1583 0.021*
C11 0.05562 (11) 0.4570 (4) 0.13782 (10) 0.0169 (5)
C12 0.08634 (11) 0.2523 (4) 0.15939 (10) 0.0188 (5)
H12 0.0928 0.1274 0.1352 0.023*
C13 0.10753 (12) 0.2303 (4) 0.21606 (10) 0.0202 (5)
H13 0.1286 0.0915 0.2310 0.024*
C14 0.03310 (11) 0.4762 (4) 0.07712 (10) 0.0177 (5)
O3 0.00181 (9) 0.6673 (3) 0.06089 (7) 0.0272 (4)
H3O −0.0102 0.6630 0.0263 0.041*
O4 0.04427 (9) 0.3198 (3) 0.04501 (7) 0.0244 (4)
O5 0.17781 (9) 0.2955 (3) 0.56890 (7) 0.0238 (4)
C15 0.21608 (12) 0.4869 (4) 0.59482 (10) 0.0202 (5)
H15A 0.1923 0.6365 0.5875 0.024*
H15B 0.2568 0.4988 0.5799 0.024*
C16 0.22997 (12) 0.4371 (4) 0.65666 (10) 0.0207 (5)
H16A 0.2560 0.2922 0.6636 0.025*
H16B 0.1889 0.4117 0.6704 0.025*
C17 0.26641 (13) 0.6408 (5) 0.68816 (11) 0.0277 (6)
H17A 0.3098 0.6505 0.6788 0.042*
H17B 0.2696 0.6153 0.7282 0.042*
H17C 0.2433 0.7875 0.6777 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0169 (12) 0.0177 (11) 0.0174 (12) 0.0001 (9) 0.0053 (9) −0.0012 (9)
C2 0.0269 (13) 0.0199 (12) 0.0207 (13) −0.0054 (10) 0.0062 (10) 0.0038 (10)
C3 0.0262 (13) 0.0212 (12) 0.0214 (13) −0.0056 (10) 0.0042 (10) 0.0002 (10)
C4 0.0189 (12) 0.0255 (13) 0.0156 (12) 0.0005 (10) 0.0044 (10) 0.0003 (10)
C5 0.0275 (14) 0.0237 (12) 0.0184 (13) −0.0057 (10) 0.0061 (10) 0.0025 (10)
C6 0.0220 (13) 0.0210 (12) 0.0213 (13) −0.0045 (10) 0.0051 (10) −0.0004 (10)
C7 0.0181 (12) 0.0163 (11) 0.0192 (12) 0.0005 (9) 0.0058 (10) 0.0002 (9)
O1 0.0298 (10) 0.0258 (9) 0.0203 (9) −0.0100 (8) 0.0067 (8) −0.0043 (7)
O2 0.0274 (10) 0.0236 (9) 0.0134 (8) −0.0069 (7) 0.0024 (7) 0.0006 (7)
C8 0.0174 (12) 0.0232 (12) 0.0138 (12) −0.0057 (9) 0.0031 (9) 0.0022 (9)
C9 0.0193 (12) 0.0188 (11) 0.0203 (12) −0.0009 (9) 0.0063 (10) −0.0032 (9)
C10 0.0175 (12) 0.0176 (11) 0.0184 (12) 0.0006 (9) 0.0045 (9) 0.0013 (9)
C11 0.0136 (11) 0.0193 (11) 0.0181 (12) −0.0008 (9) 0.0040 (9) 0.0014 (9)
C12 0.0204 (12) 0.0173 (11) 0.0198 (12) −0.0009 (9) 0.0072 (10) −0.0012 (9)
C13 0.0208 (12) 0.0199 (12) 0.0200 (12) −0.0007 (9) 0.0036 (10) 0.0021 (9)
C14 0.0153 (11) 0.0190 (11) 0.0196 (12) 0.0013 (9) 0.0055 (9) −0.0009 (9)
O3 0.0382 (11) 0.0267 (10) 0.0155 (9) 0.0145 (8) 0.0012 (8) 0.0001 (7)
O4 0.0296 (10) 0.0244 (9) 0.0193 (9) 0.0073 (8) 0.0043 (7) −0.0031 (7)
O5 0.0281 (10) 0.0259 (9) 0.0168 (9) −0.0071 (8) 0.0024 (7) 0.0004 (7)
C15 0.0200 (12) 0.0220 (12) 0.0184 (12) −0.0036 (10) 0.0029 (10) −0.0007 (10)
C16 0.0181 (12) 0.0269 (13) 0.0174 (12) 0.0002 (10) 0.0035 (10) 0.0009 (10)
C17 0.0284 (14) 0.0338 (15) 0.0200 (13) −0.0014 (11) 0.0012 (11) 0.0000 (11)

Geometric parameters (Å, °)

C1—C2 1.385 (3) C10—H10 0.9500
C1—C6 1.400 (3) C11—C12 1.394 (3)
C1—C7 1.480 (3) C11—C14 1.482 (3)
C2—C3 1.391 (4) C12—C13 1.387 (3)
C2—H2 0.9500 C12—H12 0.9500
C3—C4 1.395 (3) C13—H13 0.9500
C3—H3 0.9500 C14—O4 1.237 (3)
C4—O5 1.358 (3) C14—O3 1.300 (3)
C4—C5 1.395 (3) O3—H3O 0.8400
C5—C6 1.379 (3) O5—C15 1.438 (3)
C5—H5 0.9500 C15—C16 1.516 (3)
C6—H6 0.9500 C15—H15A 0.9900
C7—O1 1.204 (3) C15—H15B 0.9900
C7—O2 1.367 (3) C16—C17 1.527 (4)
O2—C8 1.406 (3) C16—H16A 0.9900
C8—C9 1.380 (3) C16—H16B 0.9900
C8—C13 1.385 (3) C17—H17A 0.9800
C9—C10 1.389 (3) C17—H17B 0.9800
C9—H9 0.9500 C17—H17C 0.9800
C10—C11 1.389 (3)
C2—C1—C6 119.3 (2) C10—C11—C14 120.7 (2)
C2—C1—C7 123.2 (2) C12—C11—C14 119.3 (2)
C6—C1—C7 117.6 (2) C13—C12—C11 120.2 (2)
C1—C2—C3 120.8 (2) C13—C12—H12 119.9
C1—C2—H2 119.6 C11—C12—H12 119.9
C3—C2—H2 119.6 C8—C13—C12 118.6 (2)
C2—C3—C4 119.6 (2) C8—C13—H13 120.7
C2—C3—H3 120.2 C12—C13—H13 120.7
C4—C3—H3 120.2 O4—C14—O3 123.5 (2)
O5—C4—C3 124.9 (2) O4—C14—C11 121.2 (2)
O5—C4—C5 115.3 (2) O3—C14—C11 115.3 (2)
C3—C4—C5 119.7 (2) C14—O3—H3O 109.5
C6—C5—C4 120.2 (2) C4—O5—C15 118.32 (19)
C6—C5—H5 119.9 O5—C15—C16 107.18 (19)
C4—C5—H5 119.9 O5—C15—H15A 110.3
C5—C6—C1 120.4 (2) C16—C15—H15A 110.3
C5—C6—H6 119.8 O5—C15—H15B 110.3
C1—C6—H6 119.8 C16—C15—H15B 110.3
O1—C7—O2 122.9 (2) H15A—C15—H15B 108.5
O1—C7—C1 125.5 (2) C15—C16—C17 110.8 (2)
O2—C7—C1 111.61 (19) C15—C16—H16A 109.5
C7—O2—C8 118.23 (18) C17—C16—H16A 109.5
C9—C8—C13 122.2 (2) C15—C16—H16B 109.5
C9—C8—O2 116.1 (2) C17—C16—H16B 109.5
C13—C8—O2 121.7 (2) H16A—C16—H16B 108.1
C8—C9—C10 118.8 (2) C16—C17—H17A 109.5
C8—C9—H9 120.6 C16—C17—H17B 109.5
C10—C9—H9 120.6 H17A—C17—H17B 109.5
C11—C10—C9 120.2 (2) C16—C17—H17C 109.5
C11—C10—H10 119.9 H17A—C17—H17C 109.5
C9—C10—H10 119.9 H17B—C17—H17C 109.5
C10—C11—C12 120.0 (2)
C6—C1—C2—C3 0.2 (4) C13—C8—C9—C10 1.5 (4)
C7—C1—C2—C3 179.7 (2) O2—C8—C9—C10 178.5 (2)
C1—C2—C3—C4 0.0 (4) C8—C9—C10—C11 −1.1 (3)
C2—C3—C4—O5 −179.5 (2) C9—C10—C11—C12 0.2 (3)
C2—C3—C4—C5 −0.3 (4) C9—C10—C11—C14 −179.8 (2)
O5—C4—C5—C6 179.7 (2) C10—C11—C12—C13 0.3 (3)
C3—C4—C5—C6 0.3 (4) C14—C11—C12—C13 −179.7 (2)
C4—C5—C6—C1 −0.1 (4) C9—C8—C13—C12 −1.1 (4)
C2—C1—C6—C5 −0.1 (4) O2—C8—C13—C12 −177.8 (2)
C7—C1—C6—C5 −179.7 (2) C11—C12—C13—C8 0.2 (4)
C2—C1—C7—O1 −176.3 (2) C10—C11—C14—O4 175.9 (2)
C6—C1—C7—O1 3.3 (4) C12—C11—C14—O4 −4.1 (3)
C2—C1—C7—O2 3.8 (3) C10—C11—C14—O3 −3.7 (3)
C6—C1—C7—O2 −176.6 (2) C12—C11—C14—O3 176.3 (2)
O1—C7—O2—C8 4.9 (3) C3—C4—O5—C15 −0.4 (4)
C1—C7—O2—C8 −175.2 (2) C5—C4—O5—C15 −179.7 (2)
C7—O2—C8—C9 122.6 (2) C4—O5—C15—C16 −177.7 (2)
C7—O2—C8—C13 −60.5 (3) O5—C15—C16—C17 −175.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O4i 0.84 1.77 2.606 (3) 172.

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2407).

References

  1. Ahmad, H. B., Rama, N. H., Hussain, M., Hussain, M. T., Qasim, M. M., Hameed, S., Malana, M. A. & Malik, A. (2003). Indian J. Chem.42B, 611-615.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Aranzazu, M.-G., Ernesto, P. & Antonio, B. (2006). Polymer, 47, 2080–2090.
  4. Cady, A., Olson, D. A., Han, X. F., Nguyen, H. T. & Huang, C. C. (2002). Rapid Commun. Phys. Rev. E.65, 030701.
  5. Hameed, S. & Rama, N. H. (2004). J. Chem. Soc. Pak.26, 157–162.
  6. Hartung, H., Hoffmann, F. & Weissflog, W. (1997). J. Mol. Struct.415, 205–214.
  7. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  8. Hussain, M., Hussain, M. T., Rama, N. H., Hameed, S., Malik, A. & Khan, K. M. (2003). Nat. Prod. Res.17, 207–214. [DOI] [PubMed]
  9. Hussain, M. T., Rama, N. H., Hameed, S., Malik, A. & Khan, K. M. (2005). Nat. Prod. Res.19, 41–51. [DOI] [PubMed]
  10. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.
  11. Kong, X. X. & Tang, B. Z. (1998). Chem. Mater.10, 3352–3363.
  12. Molecular Structure Corporation & Rigaku (2001). Crystal Clear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  13. Molecular Structure Corporation & Rigaku (2004). TEXSAN MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  14. Nazir, S., Muhammad, K., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008a). Acta Cryst. E64, o1013. [DOI] [PMC free article] [PubMed]
  15. Nazir, S., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008b). Acta Cryst. E64, o423. [DOI] [PMC free article] [PubMed]
  16. Ribeiro, G., Benadiba, M., Colquhoun, A. & Silva, D. D. (2008). Polyhedron, 27, 1131–1137.
  17. Shafiq, Z., Arfan, M., Rama, N. H., Hameed, S., Abbas, G. & Hussain, M. T. (2005). Turk. J. Chem.29, 321–325.
  18. Shafiq, Z., Arfan, M., Rama, N. H., Hussain, M. & Hameed, S. (2003). Indian J. Chem.42B, 1523–1526.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Wu, S.-L. & Hsu, H.-N. (2007). Liq. Cryst.34, 1159–1165.
  21. Wu, S.-L. & Lin, C.-Y. (2007). Liq. Cryst.34, 25–31.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016942/hg2407sup1.cif

e-64-o1251-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016942/hg2407Isup2.hkl

e-64-o1251-Isup2.hkl (161.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES