Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1279. doi: 10.1107/S1600536808017583

N-(4-Chloro­phenyl­sulfon­yl)-2,2,2-tri­methyl­acetamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2961760  PMID: 21202911

Abstract

In the crystal structure of the title compound (N4CPSTMAA), C11H14ClNO3S, the conformations of the N—H and C=O bonds in the amide group are anti to each other, similar to those observed in N-phenyl­sulfonyl-2,2,2-trimethyl­acetamide (NPSTMAA) and 2,2,2-trimethyl-N-(4-methyl­phenyl­sulfon­yl)acetamide (N4MPSTMAA). The bond parameters in N4CPSTMAA are similar to those in NPSTMAA, N4MPSTMAA, N-aryl-2,2,2-trimethyl­acetamides and 4-chloro­benzene­sulfonamide. The –SNHCOC– unit including the amide group is essentially planar and makes a dihedral angle of 82.2 (1)° with the benzene ring, comparable to the values of 79.1 (1) and 71.2 (1)° in NPSTMAA and N4MPSTMAA, respectively. The mol­ecules in N4CPSTMAA are linked into a chain by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003, 2007, 2008a,b ).graphic file with name e-64-o1279-scheme1.jpg

Experimental

Crystal data

  • C11H14ClNO3S

  • M r = 275.74

  • Triclinic, Inline graphic

  • a = 6.034 (2) Å

  • b = 10.695 (2) Å

  • c = 11.134 (2) Å

  • α = 67.13 (2)°

  • β = 79.76 (2)°

  • γ = 88.46 (2)°

  • V = 650.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 299 (2) K

  • 0.50 × 0.24 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.806, T max = 0.948

  • 7016 measured reflections

  • 2595 independent reflections

  • 1901 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.129

  • S = 1.10

  • 2595 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017583/is2303sup1.cif

e-64-o1279-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017583/is2303Isup2.hkl

e-64-o1279-Isup2.hkl (127.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (3) 2.19 (3) 2.986 (3) 165 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) has been determined (Gowda et al., 2003, 2007, 2008a,b). The conformations of the N—H and C=O bonds of the SO2—NH—CO—C group in N4CPSTMAA are anti to each other (Fig. 1), similar to those observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008a,b). The bond parameters in N4CPSTMAA are similar to those in NPSTMAA, N4MPSTMAA, N-(aryl)-2,2,2-trimethylacetamides (Gowda et al., 2007) and 4-chlorobenzenesulfonamide (Gowda et al., 2003). The packing diagram of N4CPSTMAA molecules showing the hydrogen bonds N—H···O (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide with excess pivalyl chloride for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The N-bound H atom was located in a difference map and its positional parameters were refined, with Uiso(H) = 1.2Ueq(N). The refined N—H length is 0.82 (3) Å. The other H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C11H14ClNO3S Z = 2
Mr = 275.74 F000 = 288
Triclinic, P1 Dx = 1.407 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.034 (2) Å Cell parameters from 2338 reflections
b = 10.695 (2) Å θ = 2.3–27.9º
c = 11.134 (2) Å µ = 0.45 mm1
α = 67.13 (2)º T = 299 (2) K
β = 79.76 (2)º Long needle, colourless
γ = 88.46 (2)º 0.50 × 0.24 × 0.12 mm
V = 650.8 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer 2595 independent reflections
Radiation source: fine-focus sealed tube 1901 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 299(2) K θmax = 26.4º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −6→7
Tmin = 0.807, Tmax = 0.948 k = −13→13
7016 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129   w = 1/[σ2(Fo2) + (0.0498P)2 + 0.5579P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
2595 reflections Δρmax = 0.24 e Å3
157 parameters Δρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3219 (4) 0.2479 (2) 0.6007 (2) 0.0368 (5)
C2 0.2137 (4) 0.3650 (2) 0.5986 (2) 0.0407 (6)
H2 0.0845 0.3889 0.5615 0.049*
C3 0.3008 (5) 0.4452 (3) 0.6522 (3) 0.0477 (7)
H3 0.2315 0.5244 0.6509 0.057*
C4 0.4906 (5) 0.4074 (3) 0.7075 (3) 0.0471 (6)
C5 0.5980 (5) 0.2899 (3) 0.7113 (3) 0.0501 (7)
H5 0.7249 0.2650 0.7504 0.060*
C6 0.5129 (4) 0.2108 (3) 0.6559 (3) 0.0461 (6)
H6 0.5841 0.1326 0.6558 0.055*
C7 0.0583 (4) −0.0409 (3) 0.7704 (2) 0.0394 (6)
C8 0.0948 (5) −0.1803 (3) 0.8733 (2) 0.0438 (6)
C9 0.0658 (8) −0.2896 (3) 0.8210 (4) 0.0875 (13)
H9A 0.1730 −0.2718 0.7408 0.105*
H9B −0.0842 −0.2892 0.8032 0.105*
H9C 0.0903 −0.3768 0.8861 0.105*
C10 −0.0751 (6) −0.2068 (4) 1.0003 (3) 0.0711 (10)
H10A −0.2252 −0.2043 0.9821 0.085*
H10B −0.0538 −0.1382 1.0333 0.085*
H10C −0.0535 −0.2945 1.0654 0.085*
C11 0.3316 (6) −0.1784 (4) 0.9012 (3) 0.0791 (11)
H11A 0.3474 −0.1092 0.9344 0.095*
H11B 0.4390 −0.1595 0.8209 0.095*
H11C 0.3583 −0.2652 0.9661 0.095*
N1 0.1921 (4) −0.0075 (2) 0.6461 (2) 0.0408 (5)
H1N 0.291 (5) −0.055 (3) 0.630 (3) 0.049*
O1 0.0027 (3) 0.1924 (2) 0.49806 (19) 0.0521 (5)
O2 0.3885 (4) 0.13680 (19) 0.42621 (17) 0.0554 (5)
O3 −0.0693 (3) 0.0397 (2) 0.79256 (19) 0.0574 (5)
Cl1 0.60248 (18) 0.50755 (8) 0.77505 (9) 0.0778 (3)
S1 0.21651 (11) 0.14675 (6) 0.52882 (6) 0.0413 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0414 (13) 0.0260 (11) 0.0349 (12) 0.0021 (10) 0.0005 (10) −0.0064 (9)
C2 0.0457 (14) 0.0309 (12) 0.0413 (13) 0.0110 (10) −0.0078 (11) −0.0100 (10)
C3 0.0599 (17) 0.0277 (12) 0.0493 (15) 0.0075 (11) −0.0035 (13) −0.0115 (11)
C4 0.0610 (17) 0.0320 (12) 0.0430 (14) −0.0069 (12) −0.0048 (12) −0.0102 (11)
C5 0.0442 (15) 0.0409 (14) 0.0579 (16) 0.0037 (12) −0.0131 (13) −0.0099 (12)
C6 0.0426 (14) 0.0328 (13) 0.0581 (16) 0.0096 (11) −0.0066 (12) −0.0144 (12)
C7 0.0418 (13) 0.0422 (13) 0.0349 (12) 0.0025 (11) −0.0064 (10) −0.0163 (11)
C8 0.0531 (15) 0.0386 (13) 0.0346 (12) 0.0026 (11) −0.0068 (11) −0.0092 (11)
C9 0.163 (4) 0.0344 (16) 0.061 (2) −0.001 (2) −0.026 (2) −0.0127 (15)
C10 0.072 (2) 0.074 (2) 0.0448 (16) 0.0038 (18) 0.0027 (15) −0.0050 (15)
C11 0.066 (2) 0.087 (3) 0.060 (2) 0.0057 (19) −0.0204 (17) 0.0012 (18)
N1 0.0554 (13) 0.0292 (10) 0.0359 (11) 0.0087 (9) −0.0031 (10) −0.0133 (9)
O1 0.0609 (12) 0.0500 (11) 0.0493 (11) 0.0138 (9) −0.0197 (9) −0.0200 (9)
O2 0.0754 (13) 0.0433 (10) 0.0366 (9) 0.0141 (9) 0.0048 (9) −0.0110 (8)
O3 0.0613 (12) 0.0543 (12) 0.0489 (11) 0.0205 (10) 0.0008 (9) −0.0175 (9)
Cl1 0.1118 (8) 0.0485 (5) 0.0812 (6) −0.0064 (4) −0.0330 (5) −0.0266 (4)
S1 0.0536 (4) 0.0328 (3) 0.0340 (3) 0.0090 (3) −0.0047 (3) −0.0110 (2)

Geometric parameters (Å, °)

C1—C6 1.378 (4) C8—C9 1.520 (4)
C1—C2 1.391 (3) C8—C10 1.523 (4)
C1—S1 1.763 (3) C9—H9A 0.9600
C2—C3 1.380 (4) C9—H9B 0.9600
C2—H2 0.9300 C9—H9C 0.9600
C3—C4 1.374 (4) C10—H10A 0.9600
C3—H3 0.9300 C10—H10B 0.9600
C4—C5 1.387 (4) C10—H10C 0.9600
C4—Cl1 1.736 (3) C11—H11A 0.9600
C5—C6 1.379 (4) C11—H11B 0.9600
C5—H5 0.9300 C11—H11C 0.9600
C6—H6 0.9300 N1—S1 1.649 (2)
C7—O3 1.208 (3) N1—H1N 0.82 (3)
C7—N1 1.389 (3) O1—S1 1.419 (2)
C7—C8 1.525 (3) O2—S1 1.4354 (19)
C8—C11 1.518 (4)
C6—C1—C2 121.1 (2) C8—C9—H9A 109.5
C6—C1—S1 119.36 (19) C8—C9—H9B 109.5
C2—C1—S1 119.5 (2) H9A—C9—H9B 109.5
C3—C2—C1 119.0 (2) C8—C9—H9C 109.5
C3—C2—H2 120.5 H9A—C9—H9C 109.5
C1—C2—H2 120.5 H9B—C9—H9C 109.5
C4—C3—C2 119.5 (2) C8—C10—H10A 109.5
C4—C3—H3 120.2 C8—C10—H10B 109.5
C2—C3—H3 120.2 H10A—C10—H10B 109.5
C3—C4—C5 121.7 (3) C8—C10—H10C 109.5
C3—C4—Cl1 120.0 (2) H10A—C10—H10C 109.5
C5—C4—Cl1 118.2 (2) H10B—C10—H10C 109.5
C6—C5—C4 118.7 (3) C8—C11—H11A 109.5
C6—C5—H5 120.6 C8—C11—H11B 109.5
C4—C5—H5 120.6 H11A—C11—H11B 109.5
C1—C6—C5 119.8 (2) C8—C11—H11C 109.5
C1—C6—H6 120.1 H11A—C11—H11C 109.5
C5—C6—H6 120.1 H11B—C11—H11C 109.5
O3—C7—N1 120.3 (2) C7—N1—S1 123.41 (18)
O3—C7—C8 124.5 (2) C7—N1—H1N 123 (2)
N1—C7—C8 115.1 (2) S1—N1—H1N 112 (2)
C11—C8—C9 110.4 (3) O1—S1—O2 118.95 (12)
C11—C8—C10 109.3 (3) O1—S1—N1 110.80 (12)
C9—C8—C10 110.1 (3) O2—S1—N1 103.81 (11)
C11—C8—C7 108.0 (2) O1—S1—C1 108.91 (12)
C9—C8—C7 110.1 (2) O2—S1—C1 109.30 (12)
C10—C8—C7 109.0 (2) N1—S1—C1 103.99 (11)
C6—C1—C2—C3 0.3 (4) O3—C7—C8—C10 7.1 (4)
S1—C1—C2—C3 −178.41 (19) N1—C7—C8—C10 −175.6 (2)
C1—C2—C3—C4 −0.6 (4) O3—C7—N1—S1 9.2 (4)
C2—C3—C4—C5 −0.1 (4) C8—C7—N1—S1 −168.17 (19)
C2—C3—C4—Cl1 179.8 (2) C7—N1—S1—O1 −57.7 (2)
C3—C4—C5—C6 1.0 (4) C7—N1—S1—O2 173.5 (2)
Cl1—C4—C5—C6 −178.9 (2) C7—N1—S1—C1 59.2 (2)
C2—C1—C6—C5 0.6 (4) C6—C1—S1—O1 170.94 (19)
S1—C1—C6—C5 179.4 (2) C2—C1—S1—O1 −10.3 (2)
C4—C5—C6—C1 −1.3 (4) C6—C1—S1—O2 −57.6 (2)
O3—C7—C8—C11 −111.5 (3) C2—C1—S1—O2 121.2 (2)
N1—C7—C8—C11 65.7 (3) C6—C1—S1—N1 52.8 (2)
O3—C7—C8—C9 127.9 (3) C2—C1—S1—N1 −128.5 (2)
N1—C7—C8—C9 −54.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.82 (3) 2.19 (3) 2.986 (3) 165 (3)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2303).

References

  1. Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64 Submitted. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64 Submitted. [Paper reference RK2096].
  3. Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  4. Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  5. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017583/is2303sup1.cif

e-64-o1279-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017583/is2303Isup2.hkl

e-64-o1279-Isup2.hkl (127.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES