Abstract
In the title compound, {[Sr(C6H2N2O4)(H2O)2]·H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H⋯O and O—H⋯N hydrogen bonds, which consolidate the crystal structure.
Related literature
For related literature, see: Takusagawa & Shimada (1973 ▶); Richard et al. (1973 ▶); Zou et al. (1999 ▶); Konar et al. (2004 ▶); Li et al. (2003 ▶); Xu et al. (2008 ▶); Ma et al. (2006 ▶); Ptasiewicz-Bak & Leciejewicz (1997a ▶,b
▶); Starosta & Leciejewicz (2005 ▶); Tombul et al. (2006 ▶).
Experimental
Crystal data
[Sr(C6H2N2O4)(H2O)2]·H2O
M r = 307.76
Monoclinic,
a = 10.4931 (7) Å
b = 6.9839 (4) Å
c = 13.5208 (8) Å
β = 94.2670 (10)°
V = 988.10 (10) Å3
Z = 4
Mo Kα radiation
μ = 5.48 mm−1
T = 120 (2) K
0.28 × 0.25 × 0.10 mm
Data collection
Bruker SMART 1000 CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1998 ▶) T min = 0.240, T max = 0.568
8338 measured reflections
1934 independent reflections
1595 reflections with I > 2σ(I)
R int = 0.040
Refinement
R[F 2 > 2σ(F 2)] = 0.024
wR(F 2) = 0.054
S = 1.00
1934 reflections
145 parameters
H-atom parameters constrained
Δρmax = 0.92 e Å−3
Δρmin = −0.45 e Å−3
Data collection: SMART (Bruker, 1998 ▶); cell refinement: SAINT-Plus (Bruker, 1998 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015316/cv2408sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015316/cv2408Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Sr1—O2i | 2.4887 (18) |
| Sr1—O2W | 2.5106 (18) |
| Sr1—O4ii | 2.5533 (18) |
| Sr1—O1W | 2.5937 (19) |
| Sr1—O3 | 2.6145 (18) |
| Sr1—O1iii | 2.6155 (18) |
| Sr1—N1 | 2.714 (2) |
| Sr1—O2iii | 2.8517 (18) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1W—H1W1⋯O3Wi | 0.85 | 1.87 | 2.713 (3) | 170 |
| O1W—H2W1⋯O3Wiv | 0.85 | 1.90 | 2.744 (3) | 171 |
| O2W—H1W2⋯O1ii | 0.85 | 1.85 | 2.696 (3) | 174 |
| O2W—H2W2⋯O1Wv | 0.85 | 2.01 | 2.857 (3) | 178 |
| O3W—H1W3⋯O4 | 0.85 | 1.94 | 2.781 (3) | 170 |
| O3W—H2W3⋯N2vi | 0.85 | 1.96 | 2.792 (3) | 168 |
Symmetry codes: (i)
; (ii)
; (iv)
; (v)
; (vi)
.
Acknowledgments
We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.
supplementary crystallographic information
Comment
Takusagawa & Shimada (1973) first determined the structure of pyrazine-2,3-dicarboxlic acid by single-crystal X-ray analysis. Almost at the same time, the first metal-organic compound of pyrazine-2,3-dicarboxylic acid was reported (Richard et al., 1973). Among many reported compounds containing pyrazine-2,3-dicarboxylic acid, most are complexes of transition metal ions, including manganese (Zou et al., 1999), copper (Konar et al., 2004), zinc (Li et al., 2003), iron (Xu et al., 2008) and cadmium (Ma et al., 2006). Also, there are many reported compounds of pyrazine-2,3-dicarboxylic acid with main group metals such as calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) and sodium (Tombul et al., 2006) complexes. For further investigation of pyrazine-2,3-dicarboxylic acid, we synthesized the title compound, (I).
The asymmetric unit of the title compound, (Fig. 1), contains molecular sheets in which SrII ions are bridged by the carboxylate groups of the ligand molecules. Two bridging paths are evident. In the first, an N,O-bonding moiety formed by a hetero-ring nitrogen atom and the carboxylate oxygen atom nearest to it and both oxygen atoms of the second carboxylic group are active. The second path is formed by the other oxygen atom from the carboxylic group involved in the N,O-bonding moiety and an oxygen atom from the second carboxylic group. The latter atom is bidentate. A two-dimensional molecular pattern is formed. Each SrII ion is also coordinated by two water oxygen atoms, making the number of coordinated atoms eight. The coordination polyhedron is a distorted pentagonal bipyramid with an oxygen atom at the apex on one side of the equatorial plane and two oxygen atoms forming the apices on the other side. There is also one non-coordinated water molecule in the asymmetric unit. The Sr—O and Sr—N bond lengths are collected in Table 1.
Intermolecular O—H···O and O—H···N hydrogen bonds (Table 2) help to consolidate the crystal packing (Fig. 2).
Experimental
A solution of pyrazine-2,3-dicarboxlic acid (0.5 g, 2.91 mmol) in methanol (40 ml) was added to a solution of Sr(NO3)2 (0.31 g, 1.46 mmol) in water (10 ml) and the resulting colourless solution was stirred for 10 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colourless plate crystals of the title compound were isolated (yield 0.35 g, 78.03%).
Refinement
C-bound H atoms were geometrically positioned (C-H 0.95 Å), while O-bound H atoms were found in difference Fourier maps, but placed in idealized positions with O-H of 0.85 Å. All hydrogen atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq of the paren atom.
Figures
Fig. 1.
A portion of the polymeric structure of (I) with the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level [symmetry codes: (i) -x - 1/2,y - 1/2,-z + 1/2, (ii) -x - 1/2, y + 1/2,-z + 1/2, (iii) x - 1/2,-y + 1/2,z + 1/2].
Fig. 2.
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Crystal data
| [Sr(C6H2N2O4)(H2O)2]·H2O | F000 = 608 |
| Mr = 307.76 | Dx = 2.069 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 156 reflections |
| a = 10.4931 (7) Å | θ = 3–26º |
| b = 6.9839 (4) Å | µ = 5.48 mm−1 |
| c = 13.5208 (8) Å | T = 120 (2) K |
| β = 94.2670 (10)º | Plate, colorless |
| V = 988.10 (10) Å3 | 0.28 × 0.25 × 0.10 mm |
| Z = 4 |
Data collection
| Bruker SMART 1000 CCD area-detector diffractometer | 1934 independent reflections |
| Radiation source: fine-focus sealed tube | 1595 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.040 |
| T = 120(2) K | θmax = 26.0º |
| φ and ω scans | θmin = 2.4º |
| Absorption correction: multi-scan(SADABS; Bruker, 1998) | h = −12→12 |
| Tmin = 0.240, Tmax = 0.568 | k = −8→8 |
| 8338 measured reflections | l = −16→16 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
| wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.026P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.01 | (Δ/σ)max = 0.002 |
| 1934 reflections | Δρmax = 0.92 e Å−3 |
| 145 parameters | Δρmin = −0.45 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Sr1 | −0.44206 (2) | 0.17756 (3) | 0.375530 (17) | 0.01058 (9) | |
| N1 | −0.4291 (2) | 0.1488 (3) | 0.17632 (16) | 0.0137 (5) | |
| N2 | −0.3958 (2) | 0.2550 (3) | −0.01781 (16) | 0.0138 (5) | |
| O1 | −0.14140 (18) | 0.1344 (3) | −0.07125 (13) | 0.0154 (4) | |
| O2 | −0.09707 (18) | 0.3655 (3) | 0.03862 (13) | 0.0148 (4) | |
| O3 | −0.21964 (18) | 0.1162 (3) | 0.30617 (13) | 0.0164 (4) | |
| O4 | −0.10633 (16) | 0.0171 (3) | 0.18088 (13) | 0.0131 (4) | |
| C1 | −0.3115 (2) | 0.1518 (4) | 0.14221 (19) | 0.0114 (6) | |
| C2 | −0.2956 (3) | 0.2059 (4) | 0.04464 (19) | 0.0117 (6) | |
| C3 | −0.5114 (3) | 0.2480 (4) | 0.0166 (2) | 0.0156 (6) | |
| H3A | −0.5841 | 0.2794 | −0.0264 | 0.019* | |
| C4 | −0.5277 (3) | 0.1963 (4) | 0.11335 (19) | 0.0150 (6) | |
| H4A | −0.6115 | 0.1945 | 0.1356 | 0.018* | |
| C5 | −0.2037 (3) | 0.0901 (4) | 0.21630 (19) | 0.0123 (6) | |
| C6 | −0.1670 (3) | 0.2340 (4) | 0.00239 (19) | 0.0114 (6) | |
| O1W | −0.64324 (17) | −0.0101 (3) | 0.30768 (13) | 0.0161 (4) | |
| H1W1 | −0.6382 | −0.1106 | 0.2727 | 0.019* | |
| H2W1 | −0.7174 | 0.0355 | 0.2932 | 0.019* | |
| O2W | −0.31193 (17) | 0.2633 (3) | 0.53262 (13) | 0.0150 (4) | |
| H1W2 | −0.3220 | 0.3802 | 0.5478 | 0.018* | |
| H2W2 | −0.3246 | 0.1853 | 0.5791 | 0.018* | |
| O3W | 0.11689 (17) | 0.1471 (3) | 0.28299 (13) | 0.0161 (4) | |
| H1W3 | 0.0444 | 0.1203 | 0.2540 | 0.019* | |
| H2W3 | 0.1011 | 0.1787 | 0.3415 | 0.019* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Sr1 | 0.00953 (13) | 0.01224 (14) | 0.01019 (13) | 0.00004 (11) | 0.00220 (9) | 0.00048 (11) |
| N1 | 0.0110 (12) | 0.0183 (13) | 0.0119 (11) | 0.0000 (10) | 0.0026 (9) | −0.0003 (10) |
| N2 | 0.0112 (12) | 0.0163 (12) | 0.0140 (11) | 0.0013 (9) | 0.0021 (9) | 0.0000 (10) |
| O1 | 0.0168 (10) | 0.0174 (10) | 0.0125 (9) | −0.0015 (8) | 0.0050 (8) | −0.0024 (8) |
| O2 | 0.0123 (10) | 0.0160 (11) | 0.0163 (10) | −0.0026 (8) | 0.0029 (8) | −0.0017 (8) |
| O3 | 0.0142 (10) | 0.0245 (11) | 0.0106 (9) | 0.0028 (8) | 0.0022 (8) | −0.0006 (8) |
| O4 | 0.0084 (9) | 0.0159 (10) | 0.0154 (9) | 0.0020 (8) | 0.0033 (8) | −0.0022 (8) |
| C1 | 0.0086 (13) | 0.0133 (14) | 0.0124 (13) | −0.0008 (11) | 0.0016 (10) | −0.0041 (11) |
| C2 | 0.0137 (14) | 0.0095 (13) | 0.0123 (13) | −0.0030 (11) | 0.0024 (11) | −0.0016 (11) |
| C3 | 0.0119 (15) | 0.0185 (14) | 0.0161 (14) | 0.0013 (11) | −0.0009 (11) | −0.0008 (12) |
| C4 | 0.0096 (14) | 0.0195 (15) | 0.0157 (14) | −0.0006 (11) | 0.0005 (11) | −0.0008 (12) |
| C5 | 0.0126 (14) | 0.0099 (13) | 0.0144 (14) | −0.0027 (11) | 0.0017 (11) | 0.0027 (11) |
| C6 | 0.0115 (14) | 0.0108 (13) | 0.0118 (13) | 0.0017 (11) | −0.0001 (11) | 0.0027 (11) |
| O1W | 0.0123 (10) | 0.0176 (10) | 0.0184 (10) | 0.0009 (8) | 0.0016 (8) | −0.0007 (8) |
| O2W | 0.0161 (10) | 0.0145 (10) | 0.0142 (10) | −0.0007 (8) | 0.0010 (8) | 0.0013 (8) |
| O3W | 0.0112 (10) | 0.0257 (11) | 0.0113 (9) | −0.0009 (8) | 0.0012 (8) | −0.0013 (8) |
Geometric parameters (Å, °)
| Sr1—O2i | 2.4887 (18) | O2—Sr1ii | 2.4887 (18) |
| Sr1—O2W | 2.5106 (18) | O2—Sr1v | 2.8517 (18) |
| Sr1—O4ii | 2.5533 (18) | O3—C5 | 1.252 (3) |
| Sr1—O1W | 2.5937 (19) | O4—C5 | 1.267 (3) |
| Sr1—O3 | 2.6145 (18) | O4—Sr1i | 2.5533 (18) |
| Sr1—O1iii | 2.6155 (18) | C1—C2 | 1.394 (4) |
| Sr1—N1 | 2.714 (2) | C1—C5 | 1.517 (4) |
| Sr1—O2iii | 2.8517 (18) | C2—C6 | 1.516 (4) |
| Sr1—C6iii | 3.082 (3) | C3—C4 | 1.381 (4) |
| Sr1—Sr1iv | 4.4235 (5) | C3—H3A | 0.9500 |
| Sr1—H1W2 | 2.9292 | C4—H4A | 0.9500 |
| Sr1—H2W2 | 2.9320 | C6—Sr1v | 3.082 (3) |
| N1—C4 | 1.332 (3) | O1W—H1W1 | 0.8500 |
| N1—C1 | 1.349 (3) | O1W—H2W1 | 0.8500 |
| N2—C3 | 1.331 (3) | O2W—H1W2 | 0.8500 |
| N2—C2 | 1.343 (3) | O2W—H2W2 | 0.8500 |
| O1—C6 | 1.260 (3) | O3W—H1W3 | 0.8501 |
| O1—Sr1v | 2.6155 (18) | O3W—H2W3 | 0.8499 |
| O2—C6 | 1.252 (3) | ||
| O2i—Sr1—O2W | 75.75 (6) | O2iii—Sr1—H1W2 | 70.9 |
| O2i—Sr1—O4ii | 157.35 (6) | C6iii—Sr1—H1W2 | 76.3 |
| O2W—Sr1—O4ii | 85.61 (6) | Sr1iv—Sr1—H1W2 | 78.0 |
| O2i—Sr1—O1W | 79.88 (6) | O2i—Sr1—H2W2 | 62.3 |
| O2W—Sr1—O1W | 142.83 (6) | O2W—Sr1—H2W2 | 15.6 |
| O4ii—Sr1—O1W | 122.57 (6) | O4ii—Sr1—H2W2 | 100.6 |
| O2i—Sr1—O3 | 84.44 (6) | O1W—Sr1—H2W2 | 128.0 |
| O2W—Sr1—O3 | 84.19 (6) | O3—Sr1—H2W2 | 90.9 |
| O4ii—Sr1—O3 | 80.93 (6) | O1iii—Sr1—H2W2 | 91.2 |
| O1W—Sr1—O3 | 121.00 (6) | N1—Sr1—H2W2 | 152.2 |
| O2i—Sr1—O1iii | 114.76 (6) | O2iii—Sr1—H2W2 | 60.0 |
| O2W—Sr1—O1iii | 92.48 (6) | C6iii—Sr1—H2W2 | 76.1 |
| O4ii—Sr1—O1iii | 78.28 (6) | Sr1iv—Sr1—H2W2 | 54.3 |
| O1W—Sr1—O1iii | 72.81 (6) | H1W2—Sr1—H2W2 | 28.2 |
| O3—Sr1—O1iii | 159.14 (6) | C4—N1—C1 | 117.7 (2) |
| O2i—Sr1—N1 | 112.29 (6) | C4—N1—Sr1 | 121.46 (17) |
| O2W—Sr1—N1 | 142.46 (6) | C1—N1—Sr1 | 116.91 (16) |
| O4ii—Sr1—N1 | 75.33 (6) | C3—N2—C2 | 117.5 (2) |
| O1W—Sr1—N1 | 73.21 (6) | C6—O1—Sr1v | 99.33 (16) |
| O3—Sr1—N1 | 61.32 (6) | C6—O2—Sr1ii | 153.65 (17) |
| O1iii—Sr1—N1 | 114.22 (6) | C6—O2—Sr1v | 88.36 (15) |
| O2i—Sr1—O2iii | 68.33 (6) | Sr1ii—O2—Sr1v | 111.67 (6) |
| O2W—Sr1—O2iii | 71.13 (6) | C5—O3—Sr1 | 124.02 (17) |
| O4ii—Sr1—O2iii | 117.81 (5) | C5—O4—Sr1i | 132.10 (16) |
| O1W—Sr1—O2iii | 73.99 (5) | N1—C1—C2 | 120.3 (2) |
| O3—Sr1—O2iii | 146.69 (6) | N1—C1—C5 | 115.2 (2) |
| O1iii—Sr1—O2iii | 47.66 (5) | C2—C1—C5 | 124.4 (2) |
| N1—Sr1—O2iii | 146.41 (6) | N2—C2—C1 | 121.3 (2) |
| O2i—Sr1—C6iii | 91.29 (7) | N2—C2—C6 | 114.0 (2) |
| O2W—Sr1—C6iii | 82.66 (6) | C1—C2—C6 | 124.4 (2) |
| O4ii—Sr1—C6iii | 99.08 (6) | N2—C3—C4 | 121.4 (3) |
| O1W—Sr1—C6iii | 70.19 (6) | N2—C3—H3A | 119.3 |
| O3—Sr1—C6iii | 166.80 (6) | C4—C3—H3A | 119.3 |
| O1iii—Sr1—C6iii | 23.79 (6) | N1—C4—C3 | 121.7 (3) |
| N1—Sr1—C6iii | 131.61 (7) | N1—C4—H4A | 119.1 |
| O2iii—Sr1—C6iii | 23.97 (6) | C3—C4—H4A | 119.1 |
| O2i—Sr1—Sr1iv | 36.81 (4) | O3—C5—O4 | 126.5 (2) |
| O2W—Sr1—Sr1iv | 69.70 (4) | O3—C5—C1 | 116.9 (2) |
| O4ii—Sr1—Sr1iv | 145.08 (4) | O4—C5—C1 | 116.6 (2) |
| O1W—Sr1—Sr1iv | 73.93 (4) | O2—C6—O1 | 124.1 (2) |
| O3—Sr1—Sr1iv | 118.96 (4) | O2—C6—C2 | 117.4 (2) |
| O1iii—Sr1—Sr1iv | 78.55 (4) | O1—C6—C2 | 118.3 (2) |
| N1—Sr1—Sr1iv | 138.62 (5) | O2—C6—Sr1v | 67.67 (14) |
| O2iii—Sr1—Sr1iv | 31.52 (4) | O1—C6—Sr1v | 56.88 (13) |
| C6iii—Sr1—Sr1iv | 54.80 (5) | C2—C6—Sr1v | 167.25 (17) |
| O2i—Sr1—H1W2 | 90.3 | Sr1—O1W—H1W1 | 122.1 |
| O2W—Sr1—H1W2 | 15.7 | Sr1—O1W—H2W1 | 126.8 |
| O4ii—Sr1—H1W2 | 72.9 | H1W1—O1W—H2W1 | 105.9 |
| O1W—Sr1—H1W2 | 144.7 | Sr1—O2W—H1W2 | 111.4 |
| O3—Sr1—H1W2 | 91.3 | Sr1—O2W—H2W2 | 111.6 |
| O1iii—Sr1—H1W2 | 81.0 | H1W2—O2W—H2W2 | 114.0 |
| N1—Sr1—H1W2 | 140.8 | H1W3—O3W—H2W3 | 104.9 |
| O2i—Sr1—N1—C4 | 121.4 (2) | C3—N2—C2—C1 | −0.7 (4) |
| O2W—Sr1—N1—C4 | −143.01 (19) | C3—N2—C2—C6 | −175.0 (2) |
| O4ii—Sr1—N1—C4 | −81.1 (2) | N1—C1—C2—N2 | −0.4 (4) |
| O1W—Sr1—N1—C4 | 50.2 (2) | C5—C1—C2—N2 | 178.5 (2) |
| O3—Sr1—N1—C4 | −168.7 (2) | N1—C1—C2—C6 | 173.3 (2) |
| O1iii—Sr1—N1—C4 | −11.5 (2) | C5—C1—C2—C6 | −7.8 (4) |
| O2iii—Sr1—N1—C4 | 37.4 (3) | C2—N2—C3—C4 | 1.3 (4) |
| C6iii—Sr1—N1—C4 | 8.1 (2) | C1—N1—C4—C3 | −0.3 (4) |
| Sr1iv—Sr1—N1—C4 | 89.0 (2) | Sr1—N1—C4—C3 | 156.5 (2) |
| O2i—Sr1—N1—C1 | −81.51 (18) | N2—C3—C4—N1 | −0.8 (4) |
| O2W—Sr1—N1—C1 | 14.0 (2) | Sr1—O3—C5—O4 | −162.37 (19) |
| O4ii—Sr1—N1—C1 | 75.96 (18) | Sr1—O3—C5—C1 | 17.6 (3) |
| O1W—Sr1—N1—C1 | −152.72 (19) | Sr1i—O4—C5—O3 | 96.7 (3) |
| O3—Sr1—N1—C1 | −11.61 (17) | Sr1i—O4—C5—C1 | −83.2 (3) |
| O1iii—Sr1—N1—C1 | 145.59 (17) | N1—C1—C5—O3 | −27.8 (3) |
| O2iii—Sr1—N1—C1 | −165.53 (15) | C2—C1—C5—O3 | 153.3 (3) |
| C6iii—Sr1—N1—C1 | 165.13 (16) | N1—C1—C5—O4 | 152.2 (2) |
| Sr1iv—Sr1—N1—C1 | −113.97 (17) | C2—C1—C5—O4 | −26.8 (4) |
| O2i—Sr1—O3—C5 | 115.1 (2) | Sr1ii—O2—C6—O1 | 148.1 (3) |
| O2W—Sr1—O3—C5 | −168.7 (2) | Sr1v—O2—C6—O1 | 7.3 (3) |
| O4ii—Sr1—O3—C5 | −82.2 (2) | Sr1ii—O2—C6—C2 | −26.3 (5) |
| O1W—Sr1—O3—C5 | 40.4 (2) | Sr1v—O2—C6—C2 | −167.1 (2) |
| O1iii—Sr1—O3—C5 | −87.1 (3) | Sr1ii—O2—C6—Sr1v | 140.8 (4) |
| N1—Sr1—O3—C5 | −4.08 (19) | Sr1v—O1—C6—O2 | −8.1 (3) |
| O2iii—Sr1—O3—C5 | 149.62 (18) | Sr1v—O1—C6—C2 | 166.25 (19) |
| C6iii—Sr1—O3—C5 | −173.4 (3) | N2—C2—C6—O2 | 110.2 (3) |
| Sr1iv—Sr1—O3—C5 | 128.36 (19) | C1—C2—C6—O2 | −63.9 (4) |
| C4—N1—C1—C2 | 0.9 (4) | N2—C2—C6—O1 | −64.5 (3) |
| Sr1—N1—C1—C2 | −157.03 (19) | C1—C2—C6—O1 | 121.4 (3) |
| C4—N1—C1—C5 | −178.1 (2) | N2—C2—C6—Sr1v | −0.2 (9) |
| Sr1—N1—C1—C5 | 24.0 (3) | C1—C2—C6—Sr1v | −174.3 (7) |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x−1, −y, −z+1; (v) x+1/2, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1W—H1W1···O3Wi | 0.85 | 1.87 | 2.713 (3) | 170 |
| O1W—H2W1···O3Wvi | 0.85 | 1.90 | 2.744 (3) | 171 |
| O2W—H1W2···O1ii | 0.85 | 1.85 | 2.696 (3) | 174 |
| O2W—H2W2···O1Wiv | 0.85 | 2.01 | 2.857 (3) | 178 |
| O3W—H1W3···O4 | 0.85 | 1.94 | 2.781 (3) | 170 |
| O3W—H2W3···N2vii | 0.85 | 1.96 | 2.792 (3) | 168 |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (vi) x−1, y, z; (ii) −x−1/2, y+1/2, −z+1/2; (iv) −x−1, −y, −z+1; (vii) x+1/2, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2408).
References
- Bruker (1998). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.
- Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem.56, 869–875.
- Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528–m2529.
- Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem.71, 493–500.
- Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem.71, 1603–1610.
- Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem.58, 963–968.
- Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123.
- Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.
- Xu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104. [DOI] [PMC free article] [PubMed]
- Zou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507–1512.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015316/cv2408sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015316/cv2408Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


