Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1193. doi: 10.1107/S1600536808016012

1-(3-Cyano­phen­yl)-3-(2-furo­yl)thio­urea

Jahyr E Theodoro a, Yvonne Mascarenhas b, Javier Ellena a, Osvaldo Estévez-Hernández c, Julio Duque c,*
PMCID: PMC2961779  PMID: 21202835

Abstract

The title compound, C13H9N3O2S, was synthesized from furoyl isothio­cyanate and 3-amino­benzonitrile in dry acetone. The thio­urea group is in the thio­amide form. The thio­urea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)° with the ketofuran group and the benzene ring, respectively. The mol­ecular geometry is stabilized by N—H⋯O hydrogen bonds. In the crystal structure, centrosymmetrically related mol­ecules are linked by two inter­molecular N—H⋯S hydrogen bonds to form dimers.

Related literature

For general background, see: Aly et al. (2007); Koch (2001). For related structures, see: Dago et al. (1987); Otazo-Sánchez et al. (2001); Pérez et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).graphic file with name e-64-o1193-scheme1.jpg

Experimental

Crystal data

  • C13H9N3O2S

  • M r = 271.29

  • Monoclinic, Inline graphic

  • a = 16.7375 (5) Å

  • b = 3.8789 (1) Å

  • c = 19.6739 (5) Å

  • β = 96.956 (1)°

  • V = 1267.89 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.16 × 0.04 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4807 measured reflections

  • 2684 independent reflections

  • 1908 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.208

  • S = 1.08

  • 2684 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016012/rz2219sup1.cif

e-64-o1193-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016012/rz2219Isup2.hkl

e-64-o1193-Isup2.hkl (129KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.28 2.701 (5) 110
N1—H1⋯S1i 0.86 2.80 3.629 (4) 163
N2—H2⋯O1 0.86 1.90 2.622 (4) 141

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.

supplementary crystallographic information

Comment

The importance of aroylthioureas is found largely in heterocyclic syntheses and many of these substrates have interesting biological activities. Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007). Structural determinations of this kind of derivatives shed more light on the chemistry of aroylthiourea compounds and their wide variety of applications. The title compound (Fig. 1) is another example of our newly synthesized furoylthiourea derivatives.

The title compound crystallizes in the thioamide form. The bond lengths are within the ranges observed for similar compounds (Koch, 2001). The C2—S1 and C1—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1 (1.347 (5) Å), C2—N2 (1.348 (5) Å) and C1—N1 (1.368 (5) Å) bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The furan carbonyl group is nearly coplanar with the plane of the thiourea fragment (dihedral angle 3.39(16°), whereas the benzene ring is inclined by 37.83 (12)°. The geometry in the thiourea group is stabilized by the N2—H2···O1 and N1—H1···O2 intramolecular hydrogen bonds (Fig. 1 and Table 2). The crystal structure is stabilized by two intermolecular N1—H1···S1 hydrogen bonds (Fig. 2 and Table 2) between centrosymmetrically related molecules forming dimers stacked along the [010] direction.

Experimental

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with 3-aminobenzonitrile. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 148–149 °C). Elemental analysis (%) for C13H9N3O2S calculated: C 57.56, H 3.32, N 15.50, S 11.81; found: C 57.77, H 3.34, N 15.79, S 11.73.

Refinement

H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.95 Å or 0.98 Å (methylene), and refined in riding-model, with Uiso(H) = 1.5Ueq(C) for methylene or 1.2Ueq(C,N) for others.

Figures

Fig. 1.

Fig. 1.

View of the molecule (50% probability displacement ellipsoids) Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H9N3O2S F000 = 560
Mr = 271.29 Dx = 1.421 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3051 reflections
a = 16.7375 (5) Å θ = 2.9–26.7º
b = 3.87890 (10) Å µ = 0.26 mm1
c = 19.6739 (5) Å T = 294 K
β = 96.9560 (10)º Prism, colourless
V = 1267.89 (6) Å3 0.16 × 0.04 × 0.03 mm
Z = 4

Data collection

Enraf–Nonius KappaCCD diffractometer Rint = 0.040
CCD rotation images, thick slices scans θmax = 26.9º
Absorption correction: none θmin = 3.9º
4807 measured reflections h = −20→21
2684 independent reflections k = −4→4
1908 reflections with I > 2σ(I) l = −25→24

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0641P)2 + 3.4802P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.071 (Δ/σ)max < 0.001
wR(F2) = 0.208 Δρmax = 0.51 e Å3
S = 1.08 Δρmin = −0.34 e Å3
2684 reflections Extinction correction: none
172 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.10993 (6) 0.7197 (3) −0.00840 (5) 0.0465 (3)
O1 0.08926 (19) 0.9883 (11) 0.21366 (15) 0.0699 (11)
C13 0.3735 (3) 1.3099 (15) −0.0369 (3) 0.0617 (13)
N3 0.3872 (3) 1.4227 (17) −0.0884 (3) 0.0909 (17)
N1 0.0452 (2) 0.7949 (10) 0.10538 (16) 0.0457 (9)
H1 0.0031 0.7186 0.0805 0.055*
O2 −0.10121 (19) 0.6665 (10) 0.14431 (15) 0.0643 (10)
N2 0.17909 (19) 0.9396 (11) 0.11374 (17) 0.0482 (9)
H2 0.1712 0.991 0.1549 0.058*
C7 0.2586 (2) 0.9846 (11) 0.0976 (2) 0.0415 (9)
C5 −0.1517 (3) 0.7102 (15) 0.2424 (3) 0.0676 (15)
H5 −0.1872 0.6986 0.2752 0.081*
C2 0.1143 (2) 0.8261 (11) 0.07249 (19) 0.0398 (9)
C9 0.3556 (2) 1.1694 (12) 0.0263 (2) 0.0474 (10)
C8 0.2756 (2) 1.1209 (12) 0.0366 (2) 0.0456 (10)
H8 0.2342 1.1798 0.0026 0.055*
C3 −0.0430 (2) 0.7960 (12) 0.1925 (2) 0.0471 (10)
C10 0.4180 (3) 1.0819 (14) 0.0767 (2) 0.0571 (12)
H10 0.4714 1.1093 0.069 0.068*
C1 0.0355 (3) 0.8694 (13) 0.1719 (2) 0.0495 (11)
C11 0.3993 (3) 0.9541 (15) 0.1381 (3) 0.0633 (14)
H11 0.4403 0.9026 0.1729 0.076*
C4 −0.0724 (3) 0.8274 (14) 0.2531 (2) 0.0581 (13)
H4 −0.0452 0.9105 0.2938 0.07*
C6 −0.1676 (3) 0.6183 (17) 0.1772 (3) 0.0705 (15)
H6 −0.2168 0.5335 0.1569 0.085*
C12 0.3204 (3) 0.9022 (13) 0.1483 (2) 0.0535 (11)
H12 0.3084 0.8109 0.1895 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0410 (6) 0.0603 (8) 0.0382 (5) −0.0046 (5) 0.0050 (4) −0.0056 (5)
O1 0.0528 (19) 0.112 (3) 0.0457 (17) −0.021 (2) 0.0093 (14) −0.0222 (19)
C13 0.049 (3) 0.074 (4) 0.063 (3) −0.004 (2) 0.015 (2) 0.004 (3)
N3 0.088 (4) 0.115 (5) 0.073 (3) −0.013 (3) 0.025 (3) 0.017 (3)
N1 0.0389 (17) 0.061 (2) 0.0367 (17) −0.0055 (17) 0.0040 (14) −0.0029 (17)
O2 0.0536 (18) 0.096 (3) 0.0440 (16) −0.0177 (19) 0.0072 (14) −0.0081 (18)
N2 0.0393 (18) 0.069 (3) 0.0355 (17) −0.0083 (18) 0.0028 (13) −0.0001 (17)
C7 0.039 (2) 0.041 (2) 0.045 (2) −0.0045 (18) 0.0045 (16) 0.0001 (18)
C5 0.058 (3) 0.075 (4) 0.075 (3) 0.001 (3) 0.031 (3) −0.004 (3)
C2 0.0358 (19) 0.043 (2) 0.040 (2) −0.0019 (17) 0.0049 (16) 0.0019 (18)
C9 0.044 (2) 0.046 (3) 0.053 (2) −0.0032 (19) 0.0071 (18) 0.003 (2)
C8 0.039 (2) 0.052 (3) 0.044 (2) −0.0024 (19) 0.0022 (17) 0.0050 (19)
C3 0.042 (2) 0.058 (3) 0.042 (2) −0.004 (2) 0.0073 (17) −0.003 (2)
C10 0.036 (2) 0.071 (3) 0.064 (3) −0.005 (2) 0.005 (2) 0.002 (3)
C1 0.047 (2) 0.060 (3) 0.042 (2) −0.005 (2) 0.0072 (18) −0.001 (2)
C11 0.043 (2) 0.081 (4) 0.062 (3) −0.001 (2) −0.011 (2) 0.010 (3)
C4 0.059 (3) 0.073 (4) 0.045 (2) −0.003 (3) 0.016 (2) −0.009 (2)
C6 0.045 (3) 0.094 (4) 0.073 (3) −0.014 (3) 0.013 (2) 0.009 (3)
C12 0.051 (2) 0.060 (3) 0.047 (2) −0.008 (2) −0.0041 (19) 0.006 (2)

Geometric parameters (Å, °)

S1—C2 1.637 (4) C5—C4 1.395 (7)
O1—C1 1.233 (5) C5—H5 0.93
C13—N3 1.153 (6) C9—C8 1.392 (6)
C13—C9 1.422 (6) C9—C10 1.392 (6)
N1—C1 1.368 (5) C8—H8 0.93
N1—C2 1.397 (5) C3—C4 1.348 (6)
N1—H1 0.86 C3—C1 1.450 (6)
O2—C6 1.365 (6) C10—C11 1.377 (7)
O2—C3 1.369 (5) C10—H10 0.93
N2—C2 1.348 (5) C11—C12 1.375 (6)
N2—C7 1.416 (5) C11—H11 0.93
N2—H2 0.86 C4—H4 0.93
C7—C8 1.373 (6) C6—H6 0.93
C7—C12 1.383 (6) C12—H12 0.93
C5—C6 1.326 (7)
N3—C13—C9 179.3 (6) C9—C8—H8 120.5
C1—N1—C2 128.7 (3) C4—C3—O2 109.9 (4)
C1—N1—H1 115.6 C4—C3—C1 132.0 (4)
C2—N1—H1 115.6 O2—C3—C1 118.1 (4)
C6—O2—C3 105.9 (4) C11—C10—C9 118.9 (4)
C2—N2—C7 128.0 (3) C11—C10—H10 120.6
C2—N2—H2 116 C9—C10—H10 120.6
C7—N2—H2 116 O1—C1—N1 123.7 (4)
C8—C7—C12 120.2 (4) O1—C1—C3 120.0 (4)
C8—C7—N2 122.9 (4) N1—C1—C3 116.3 (4)
C12—C7—N2 116.8 (4) C12—C11—C10 120.3 (4)
C6—C5—C4 108.0 (4) C12—C11—H11 119.9
C6—C5—H5 126 C10—C11—H11 119.9
C4—C5—H5 126 C3—C4—C5 106.3 (4)
N2—C2—N1 113.6 (3) C3—C4—H4 126.9
N2—C2—S1 127.3 (3) C5—C4—H4 126.9
N1—C2—S1 119.1 (3) C5—C6—O2 110.0 (4)
C8—C9—C10 121.1 (4) C5—C6—H6 125
C8—C9—C13 119.1 (4) O2—C6—H6 125
C10—C9—C13 119.8 (4) C11—C12—C7 120.6 (4)
C7—C8—C9 118.9 (4) C11—C12—H12 119.7
C7—C8—H8 120.5 C7—C12—H12 119.7
C2—N2—C7—C8 41.1 (7) C2—N1—C1—C3 −177.3 (4)
C2—N2—C7—C12 −142.4 (5) C4—C3—C1—O1 −1.2 (9)
C7—N2—C2—N1 176.9 (4) O2—C3—C1—O1 179.5 (5)
C7—N2—C2—S1 −1.9 (7) C4—C3—C1—N1 177.9 (5)
C1—N1—C2—N2 1.3 (7) O2—C3—C1—N1 −1.3 (7)
C1—N1—C2—S1 −179.8 (4) C9—C10—C11—C12 2.4 (8)
C12—C7—C8—C9 0.9 (7) O2—C3—C4—C5 0.5 (6)
N2—C7—C8—C9 177.3 (4) C1—C3—C4—C5 −178.8 (5)
C10—C9—C8—C7 0.1 (7) C6—C5—C4—C3 −0.7 (7)
C13—C9—C8—C7 179.9 (5) C4—C5—C6—O2 0.7 (7)
C6—O2—C3—C4 −0.1 (6) C3—O2—C6—C5 −0.4 (6)
C6—O2—C3—C1 179.3 (5) C10—C11—C12—C7 −1.5 (8)
C8—C9—C10—C11 −1.7 (8) C8—C7—C12—C11 −0.3 (7)
C13—C9—C10—C11 178.4 (5) N2—C7—C12—C11 −176.8 (5)
C2—N1—C1—O1 1.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.28 2.701 (5) 110
N1—H1···S1i 0.86 2.80 3.629 (4) 163
N2—H2···O1 0.86 1.90 2.622 (4) 141

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2219).

References

  1. Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem.28, 73–93.
  2. Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martín, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026.
  3. Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068. [DOI] [PMC free article] [PubMed]
  4. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  8. Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016012/rz2219sup1.cif

e-64-o1193-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016012/rz2219Isup2.hkl

e-64-o1193-Isup2.hkl (129KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES