Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1306–o1307. doi: 10.1107/S1600536808018138

4-Meth­oxy-5-[4-(4-meth­oxy-1,3-benzodioxol-5-yl)perhydro-1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxole

Rukmani Perumal Ezhilmuthu a, Nagarajan Vembu b,*, Nagarajan Sulochana c
PMCID: PMC2961785  PMID: 21202935

Abstract

The 1,3-benzodioxole ring systems in the title compound, C22H22O8, are almost planar. The perhydro­furofuranyl system linking them adopts a distorted double-envelope conformation. Supra­molecular aggregation is effected by C—H⋯O, C—H⋯π and π–π [centroid–centroid distance of 3.755 Å, inter­planar distance of 3.633 Å and dihedral angle of 14.6°] inter­actions.

Related literature

For related literature, see: Fu et al. (2006); Sonar et al. (2006); Hu et al. (2007); Zhou et al. (2007); Liang (2004); Wang et al. (2004); Zheng et al. (2005a ,b ); Hu et al. (2005); Qi et al. (2006); Hussain et al. (2006); Yu et al. (2006); Zhang et al. (2007); Betz et al. (2007); Yin et al. (2007); Beroza & Barthel (1957); Mitscher et al. (1979); Chien & Cheng (1970); Rao et al. (1981). For hydrogen bonds, see: Desiraju & Steiner (1999); Desiraju (1989). For graph-set notations, see: Bernstein et al. (1995); Etter (1990). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-64-o1306-scheme1.jpg

Experimental

Crystal data

  • C22H22O8

  • M r = 414.40

  • Monoclinic, Inline graphic

  • a = 4.754 (5) Å

  • b = 13.982 (4) Å

  • c = 14.672 (5) Å

  • β = 97.97 (6)°

  • V = 965.8 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.3 × 0.3 × 0.3 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.805, T max = 0.999

  • 2000 measured reflections

  • 1777 independent reflections

  • 1505 reflections with I > 2σ(I)

  • R int = 0.009

  • 2 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.110

  • S = 1.05

  • 1777 reflections

  • 272 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018138/dn2355sup1.cif

e-64-o1306-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018138/dn2355Isup2.hkl

e-64-o1306-Isup2.hkl (87.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles (°).

O2—C7—C8—C9 −13.3 (3)
C7—C8—C9—C10 −10.7 (3)
C11—C8—C9—C12 −9.0 (3)
C8—C9—C10—O2 32.0 (3)
C9—C8—C11—O1 −11.5 (3)
C8—C9—C12—O1 26.4 (3)

Table 2. Hydrogen-bond geometry (Å, °).

Cg5 is the centroid of the C1–C6 ring and Cg6 is the centroid of the C13—C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.93 2.34 2.721 (5) 104
C9—H9⋯O3 0.98 2.48 2.997 (4) 113
C11—H11B⋯O4 0.97 2.56 3.042 (5) 111
C14—H14⋯O1 0.93 2.45 2.808 (5) 103
C19—H19C⋯O7 0.96 2.41 3.065 (6) 125
C20—H20B⋯O5 0.96 2.33 2.939 (7) 121
C7—H7⋯Cg5i 0.98 2.85 3.724 148
C22—H22ACg6ii 0.97 2.97 3.646 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NV thanks Dr Frank R. Fronczek, Department of Chemistry, Louisiana State University, Baton Rouge, USA, for discussions. RPE thanks Mr P. Perumal and Mr M. K. Senthilkumar, JKK Natarajah College of Pharmacy, Komara­palayam, Namakkal District, Tamil Nadu, India, for their help with the IR and HPLC experiments and extraction of the title compound from plant sources, respectively.

supplementary crystallographic information

Comment

1,3-benzodioxole (methylenedioxyphenyl) moiety is frequently found in natural products, and has been reported to possess some interesting biological activities (Beroza & Barthel, 1957 ; Hu et al., 2005 ; Hu et al., 2007 ; Sonar et al., 2006 ; Wang et al., 2004 ; Yin et al., 2007 ; Yu et al., 2006 ; Zheng et al., 2005a,b). The methylenedioxy positional isomers of oxolinic acid have been found to have widespread clinical applications and are used in the treatment of urinary tract infections (Mitscher et al., 1979). They are also used for the synthesis of antimalarial drugs (Chien & Cheng, 1970). The title compound, (I), is obtained as part of our investigation on 1,3-benzodioxole derivatives.

In (I) (Fig. 1), both the 1,3-benzodioxole rings are almost planar. The planarity of the dioxole moiety is similar to those observed in related compounds (Zhou et al. 2007; Liang 2004, Zhang et al. 2007; Betz et al. 2007) and in contrast to the envelope conformation observed for these rings in few related compounds (Fu et al. 2006; Qi et al. 2006; Hussain et al. 2006). The O-methoxy group attached to each of the 1,3-benzodioxole rings differ in their orientation as shown by the corresponding torsion angles which probably explains the acentricity of the crystal. The tetrahydro furofuranyl ring adopts a distorted envelope-distorted envelope conformation as shown by the corresponding torsion angles (Table 1). The two five membered rings are fused in such a way that they share a common base described by the bond C8—C9 (Fig. 1). The Cremer & Pople (1975) puckering parameters for the O1—C11—C8—C9—C12 ring are Q(2) = 0.311 (3)Å and φ(2) = 163.0 (6)° whereas those for the O2—C7—C8—C9—C10 ring are Q(2) = 0.371 (3)Å and φ(2) = 162.9 (5)°. These values indicate that the extent of puckering is almost similar in both the rings. The pseudorotation parameters (Rao et al. 1981) for O1—C11—C8—C9—C12 ring are P = 254.8 (3)° & τ(M) = 34.7 (2)° for the C8—C9 reference bond with the closest pucker descriptor being twisted on C12—O1 and those for O2—C7—C8—C9—C10 ring are P = 254.1 (3)° and τ(M) = 41.4 (2)° for the C8—C9 reference bond with the closest puckering descriptor being twisted on C10—O2.

The crystal structure of (I) is stabilized by the interplay of intramolecular C—H···O, intermolecular C—H···π (Table 2) and π–π interactions (Fig. 2). The H-bond distances found in (I) agree with those reported in literature (Desiraju & Steiner, 1999; Desiraju, 1989). S(5) motifs (Bernstein et al., 1995; Etter, 1990) are generated by each of C5—H5···O2 and C14—H14···O1 interactions. Each of the C9—H9···O3, C19—H19C···O7 and C20—H20B···O5 interactions generate an S(6) motif. An S(7) motif is generated by C11—H11B···O4 interaction. In Table 2, Cg3 refers to the centroid of the ring formed by O5, C2, C3, O6 & C21, Cg4 refers to the centroid of the ring formed by O7, C17, C16, O8 & C22, Cg5 refers to the centroid of the ring formed by C1—C6 and Cg6 refers to the centroid of the ring formed by C13—C18. A significant π–π stacking is observed between Cg4 and Cg6 (1 + x, y, z) with a centroid to centroid distance of 3.755 Å, a plane to plane distance of 3.633Å and an offset angle of 14.6°.

Experimental

Ethanolic extract of powdered root of Ecbolium Viride (Forssk) spring was charged on a column and eluted with solvents ranging from non-polar to polar at the rate of 30 drops per minute. 34 fractions were collected, each of volume 25 ml with different ratios of solvents. The fractions collected were monitored by thin layer chromatography (TLC) for homogenity and similar fractions were pooled together. The title compound was isolated from one such pool. Diffraction quality crystals of the title compound were obtained by recrystallization from chloroform.

Refinement

Hydrogen atoms were positioned geometrically (aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97Å & methyl C—H = 0.96 Å) and refined using a riding model. The hydrogen atom isotropic displacement parameters were fixed; Uiso(aromatic H, methine H, methylene H) = 1.2 times Ueq of the parent atom; Uiso(methyl H) = 1.5 times Ueq of the parent atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.

Crystal data

C22H22O8 F000 = 436
Mr = 414.40 Dx = 1.425 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 4.754 (5) Å θ = 10–14º
b = 13.982 (4) Å µ = 0.11 mm1
c = 14.672 (5) Å T = 293 (2) K
β = 97.97 (6)º Prismatic, colorless
V = 965.8 (10) Å3 0.3 × 0.3 × 0.3 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.009
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 2.0º
T = 293(2) K h = 0→5
ω–2θ scans k = 0→16
Absorption correction: ψ scan(North et al., 1968) l = −17→17
Tmin = 0.805, Tmax = 0.999 2 standard reflections
2000 measured reflections every 100 reflections
1777 independent reflections intensity decay: none
1505 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.110   w = 1/[σ2(Fo2) + (0.0741P)2 + 0.1102P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1777 reflections Δρmax = 0.20 e Å3
272 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.015 (4)

Special details

Experimental. Psi-scan (North, et al.,1968). Number of psi-scan sets used was 3 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0773 (8) 0.1633 (3) 1.4216 (2) 0.0526 (8)
C2 1.2921 (8) 0.1468 (3) 1.4925 (2) 0.0561 (9)
C3 1.4503 (8) 0.2198 (3) 1.5347 (2) 0.0570 (9)
C4 1.4085 (9) 0.3134 (3) 1.5089 (3) 0.0639 (10)
H4 1.5187 0.3627 1.5376 0.077*
C5 1.1918 (8) 0.3303 (3) 1.4372 (2) 0.0573 (9)
H5 1.1555 0.3931 1.4182 0.069*
C6 1.0278 (7) 0.2588 (2) 1.3927 (2) 0.0453 (7)
C7 0.7982 (7) 0.2786 (2) 1.3134 (2) 0.0442 (7)
H7 0.6163 0.2557 1.3294 0.053*
C8 0.8479 (6) 0.2337 (2) 1.2209 (2) 0.0427 (7)
H8 1.0446 0.2118 1.2232 0.051*
C9 0.7821 (6) 0.3148 (2) 1.1502 (2) 0.0447 (7)
H9 0.9549 0.3388 1.1285 0.054*
C10 0.6472 (8) 0.3900 (3) 1.2056 (2) 0.0538 (8)
H10A 0.6794 0.4537 1.1829 0.065*
H10B 0.4442 0.3795 1.2016 0.065*
C11 0.6397 (8) 0.1550 (3) 1.1852 (2) 0.0539 (8)
H11A 0.7398 0.1024 1.1609 0.065*
H11B 0.5436 0.1308 1.2346 0.065*
C12 0.5768 (6) 0.2704 (3) 1.0716 (2) 0.0464 (7)
H12 0.4349 0.3185 1.0483 0.056*
C13 0.7205 (6) 0.2343 (2) 0.9919 (2) 0.0456 (7)
C14 0.7185 (8) 0.1376 (3) 0.9672 (2) 0.0536 (8)
H14 0.6241 0.0944 1.0004 0.064*
C15 0.8500 (8) 0.1038 (3) 0.8959 (3) 0.0589 (9)
H15 0.8475 0.0391 0.8809 0.071*
C16 0.9849 (7) 0.1695 (3) 0.8480 (2) 0.0517 (8)
C17 0.9892 (7) 0.2650 (3) 0.8700 (2) 0.0488 (8)
C18 0.8592 (8) 0.2999 (2) 0.9410 (2) 0.0477 (8)
C19 0.7762 (12) 0.4613 (3) 0.8991 (3) 0.0808 (13)
H19A 0.7930 0.5244 0.9249 0.121*
H19B 0.5812 0.4488 0.8754 0.121*
H19C 0.8900 0.4567 0.8500 0.121*
C20 1.0043 (15) 0.0036 (3) 1.3671 (4) 0.1010 (18)
H20A 0.8569 −0.0359 1.3354 0.151*
H20B 1.0690 −0.0234 1.4264 0.151*
H20C 1.1598 0.0070 1.3319 0.151*
C21 1.6026 (13) 0.0854 (4) 1.6057 (3) 0.0889 (15)
H21A 1.5541 0.0659 1.6650 0.107*
H21B 1.7749 0.0522 1.5956 0.107*
C22 1.2286 (9) 0.2467 (3) 0.7507 (3) 0.0673 (11)
H22A 1.4341 0.2467 0.7551 0.081*
H22B 1.1501 0.2621 0.6878 0.081*
O1 0.4386 (5) 0.19560 (19) 1.11427 (16) 0.0549 (6)
O2 0.7797 (5) 0.37966 (17) 1.29739 (16) 0.0551 (6)
O3 0.8695 (7) 0.39473 (18) 0.96665 (16) 0.0666 (8)
O4 0.8987 (7) 0.0950 (2) 1.3780 (2) 0.0811 (9)
O5 1.3775 (8) 0.0610 (2) 1.5348 (2) 0.0890 (10)
O6 1.6475 (7) 0.1843 (3) 1.60497 (19) 0.0784 (9)
O7 1.1404 (7) 0.3157 (2) 0.81173 (18) 0.0717 (8)
O8 1.1315 (7) 0.1546 (2) 0.77478 (18) 0.0698 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.066 (2) 0.0420 (19) 0.0494 (16) −0.0059 (16) 0.0081 (15) −0.0034 (15)
C2 0.072 (2) 0.049 (2) 0.0470 (16) 0.0097 (18) 0.0078 (16) 0.0039 (15)
C3 0.066 (2) 0.064 (2) 0.0413 (16) 0.0050 (18) 0.0093 (15) −0.0087 (16)
C4 0.070 (2) 0.060 (2) 0.060 (2) −0.0094 (19) 0.0025 (18) −0.0160 (18)
C5 0.072 (2) 0.0424 (19) 0.0578 (19) −0.0023 (18) 0.0101 (17) −0.0048 (16)
C6 0.0534 (17) 0.0396 (18) 0.0451 (16) −0.0021 (14) 0.0140 (13) −0.0019 (14)
C7 0.0504 (16) 0.0331 (15) 0.0510 (17) 0.0020 (14) 0.0133 (14) −0.0033 (12)
C8 0.0403 (15) 0.0387 (16) 0.0506 (17) 0.0012 (13) 0.0114 (12) −0.0020 (13)
C9 0.0425 (15) 0.0436 (18) 0.0485 (16) −0.0009 (14) 0.0076 (13) 0.0026 (14)
C10 0.0589 (19) 0.0419 (18) 0.0607 (19) 0.0068 (16) 0.0085 (15) 0.0016 (15)
C11 0.0611 (19) 0.042 (2) 0.0588 (19) −0.0079 (15) 0.0077 (16) −0.0042 (15)
C12 0.0387 (14) 0.0482 (18) 0.0520 (17) 0.0019 (14) 0.0055 (13) −0.0007 (15)
C13 0.0396 (15) 0.0458 (18) 0.0492 (16) 0.0050 (14) −0.0017 (12) −0.0042 (14)
C14 0.0576 (19) 0.0450 (19) 0.0572 (18) −0.0077 (16) 0.0045 (15) −0.0040 (16)
C15 0.069 (2) 0.0413 (19) 0.065 (2) 0.0019 (17) 0.0010 (18) −0.0112 (16)
C16 0.0542 (18) 0.052 (2) 0.0465 (16) 0.0090 (16) −0.0004 (14) −0.0085 (15)
C17 0.0527 (17) 0.0468 (19) 0.0455 (16) 0.0056 (15) 0.0018 (13) 0.0025 (14)
C18 0.0589 (18) 0.0386 (17) 0.0449 (16) 0.0080 (14) 0.0049 (14) −0.0018 (13)
C19 0.119 (4) 0.043 (2) 0.078 (3) 0.010 (2) 0.006 (3) 0.008 (2)
C20 0.138 (5) 0.050 (3) 0.106 (4) −0.008 (3) −0.015 (4) −0.011 (2)
C21 0.112 (4) 0.076 (3) 0.072 (3) 0.026 (3) −0.012 (3) −0.004 (2)
C22 0.066 (2) 0.084 (3) 0.054 (2) 0.002 (2) 0.0141 (17) −0.010 (2)
O1 0.0417 (10) 0.0593 (16) 0.0635 (14) −0.0085 (11) 0.0067 (10) −0.0018 (12)
O2 0.0706 (15) 0.0394 (12) 0.0549 (13) 0.0086 (11) 0.0078 (12) −0.0048 (10)
O3 0.109 (2) 0.0374 (13) 0.0530 (13) 0.0118 (14) 0.0112 (13) −0.0009 (11)
O4 0.094 (2) 0.0412 (16) 0.098 (2) −0.0100 (14) −0.0195 (17) 0.0001 (14)
O5 0.127 (3) 0.0578 (18) 0.0730 (18) 0.0080 (18) −0.0191 (18) 0.0092 (15)
O6 0.0845 (19) 0.086 (2) 0.0592 (15) 0.0131 (17) −0.0101 (14) −0.0071 (15)
O7 0.100 (2) 0.0573 (16) 0.0647 (15) 0.0025 (15) 0.0367 (15) 0.0019 (13)
O8 0.0881 (19) 0.0635 (18) 0.0603 (15) 0.0155 (15) 0.0191 (14) −0.0102 (13)

Geometric parameters (Å, °)

C1—C2 1.373 (5) C12—H12 0.9800
C1—O4 1.375 (5) C13—C14 1.399 (5)
C1—C6 1.411 (5) C13—C18 1.403 (5)
C2—C3 1.364 (6) C14—C15 1.374 (5)
C2—O5 1.385 (5) C14—H14 0.9300
C3—C4 1.370 (6) C15—C16 1.370 (6)
C3—O6 1.385 (5) C15—H15 0.9300
C4—C5 1.387 (6) C16—C17 1.372 (5)
C4—H4 0.9300 C16—O8 1.375 (4)
C5—C6 1.376 (5) C17—C18 1.373 (5)
C5—H5 0.9300 C17—O7 1.386 (5)
C6—C7 1.506 (5) C18—O3 1.377 (4)
C7—O2 1.433 (4) C19—O3 1.387 (5)
C7—C8 1.544 (4) C19—H19A 0.9600
C7—H7 0.9800 C19—H19B 0.9600
C8—C11 1.524 (5) C19—H19C 0.9600
C8—C9 1.539 (4) C20—O4 1.390 (6)
C8—H8 0.9800 C20—H20A 0.9600
C9—C10 1.525 (5) C20—H20B 0.9600
C9—C12 1.535 (5) C20—H20C 0.9600
C9—H9 0.9800 C21—O6 1.400 (6)
C10—O2 1.412 (4) C21—O5 1.426 (6)
C10—H10A 0.9700 C21—H21A 0.9700
C10—H10B 0.9700 C21—H21B 0.9700
C11—O1 1.430 (5) C22—O7 1.419 (5)
C11—H11A 0.9700 C22—O8 1.428 (6)
C11—H11B 0.9700 C22—H22A 0.9700
C12—O1 1.425 (4) C22—H22B 0.9700
C12—C13 1.520 (4)
C2—C1—O4 125.6 (3) C13—C12—H12 108.7
C2—C1—C6 117.5 (3) C9—C12—H12 108.7
O4—C1—C6 116.8 (3) C14—C13—C18 118.7 (3)
C3—C2—C1 121.6 (3) C14—C13—C12 122.2 (3)
C3—C2—O5 109.6 (3) C18—C13—C12 119.1 (3)
C1—C2—O5 128.8 (4) C15—C14—C13 122.8 (3)
C2—C3—C4 122.7 (3) C15—C14—H14 118.6
C2—C3—O6 110.1 (4) C13—C14—H14 118.6
C4—C3—O6 127.2 (4) C16—C15—C14 117.0 (3)
C3—C4—C5 115.9 (4) C16—C15—H15 121.5
C3—C4—H4 122.1 C14—C15—H15 121.5
C5—C4—H4 122.1 C15—C16—C17 121.6 (3)
C6—C5—C4 123.3 (4) C15—C16—O8 128.6 (3)
C6—C5—H5 118.4 C17—C16—O8 109.8 (3)
C4—C5—H5 118.4 C16—C17—C18 122.1 (3)
C5—C6—C1 119.1 (3) C16—C17—O7 110.1 (3)
C5—C6—C7 122.3 (3) C18—C17—O7 127.8 (3)
C1—C6—C7 118.6 (3) C17—C18—O3 123.2 (3)
O2—C7—C6 109.3 (3) C17—C18—C13 117.7 (3)
O2—C7—C8 105.6 (3) O3—C18—C13 119.1 (3)
C6—C7—C8 114.9 (3) O3—C19—H19A 109.5
O2—C7—H7 109.0 O3—C19—H19B 109.5
C6—C7—H7 109.0 H19A—C19—H19B 109.5
C8—C7—H7 109.0 O3—C19—H19C 109.5
C11—C8—C9 103.8 (3) H19A—C19—H19C 109.5
C11—C8—C7 115.1 (3) H19B—C19—H19C 109.5
C9—C8—C7 104.6 (2) O4—C20—H20A 109.5
C11—C8—H8 111.0 O4—C20—H20B 109.5
C9—C8—H8 111.0 H20A—C20—H20B 109.5
C7—C8—H8 111.0 O4—C20—H20C 109.5
C10—C9—C12 114.1 (3) H20A—C20—H20C 109.5
C10—C9—C8 102.1 (2) H20B—C20—H20C 109.5
C12—C9—C8 104.9 (3) O6—C21—O5 109.3 (4)
C10—C9—H9 111.7 O6—C21—H21A 109.8
C12—C9—H9 111.7 O5—C21—H21A 109.8
C8—C9—H9 111.7 O6—C21—H21B 109.8
O2—C10—C9 105.8 (3) O5—C21—H21B 109.8
O2—C10—H10A 110.6 H21A—C21—H21B 108.3
C9—C10—H10A 110.6 O7—C22—O8 108.8 (3)
O2—C10—H10B 110.6 O7—C22—H22A 109.9
C9—C10—H10B 110.6 O8—C22—H22A 109.9
H10A—C10—H10B 108.7 O7—C22—H22B 109.9
O1—C11—C8 107.4 (3) O8—C22—H22B 109.9
O1—C11—H11A 110.2 H22A—C22—H22B 108.3
C8—C11—H11A 110.2 C12—O1—C11 108.0 (2)
O1—C11—H11B 110.2 C10—O2—C7 105.5 (3)
C8—C11—H11B 110.2 C18—O3—C19 117.0 (3)
H11A—C11—H11B 108.5 C1—O4—C20 118.8 (4)
O1—C12—C13 112.2 (3) C2—O5—C21 105.2 (4)
O1—C12—C9 104.5 (2) C3—O6—C21 105.7 (3)
C13—C12—C9 113.9 (3) C17—O7—C22 105.4 (3)
O1—C12—H12 108.7 C16—O8—C22 105.8 (3)
O4—C1—C2—C3 −176.8 (4) C9—C12—C13—C18 −63.3 (4)
C6—C1—C2—C3 0.9 (5) C18—C13—C14—C15 0.9 (5)
O4—C1—C2—O5 0.5 (6) C12—C13—C14—C15 −179.3 (3)
C6—C1—C2—O5 178.1 (4) C13—C14—C15—C16 −0.5 (5)
C1—C2—C3—C4 −0.7 (6) C14—C15—C16—C17 0.1 (5)
O5—C2—C3—C4 −178.5 (4) C14—C15—C16—O8 179.8 (3)
C1—C2—C3—O6 178.7 (3) C15—C16—C17—C18 0.0 (5)
O5—C2—C3—O6 0.9 (4) O8—C16—C17—C18 −179.8 (3)
C2—C3—C4—C5 0.7 (6) C15—C16—C17—O7 179.6 (3)
O6—C3—C4—C5 −178.6 (3) O8—C16—C17—O7 −0.2 (4)
C3—C4—C5—C6 −0.8 (6) C16—C17—C18—O3 177.5 (3)
C4—C5—C6—C1 1.0 (5) O7—C17—C18—O3 −2.0 (5)
C4—C5—C6—C7 −178.5 (3) C16—C17—C18—C13 0.4 (5)
C2—C1—C6—C5 −1.0 (5) O7—C17—C18—C13 −179.1 (3)
O4—C1—C6—C5 176.9 (3) C14—C13—C18—C17 −0.8 (4)
C2—C1—C6—C7 178.5 (3) C12—C13—C18—C17 179.4 (3)
O4—C1—C6—C7 −3.6 (5) C14—C13—C18—O3 −178.0 (3)
C5—C6—C7—O2 −2.0 (4) C12—C13—C18—O3 2.2 (4)
C1—C6—C7—O2 178.5 (3) C13—C12—O1—C11 89.0 (3)
C5—C6—C7—C8 116.5 (3) C9—C12—O1—C11 −34.9 (3)
C1—C6—C7—C8 −63.0 (4) C8—C11—O1—C12 29.6 (3)
O2—C7—C8—C11 −126.6 (3) C9—C10—O2—C7 −42.3 (3)
C6—C7—C8—C11 112.9 (3) C6—C7—O2—C10 158.5 (3)
O2—C7—C8—C9 −13.3 (3) C8—C7—O2—C10 34.3 (3)
C6—C7—C8—C9 −133.8 (3) C17—C18—O3—C19 55.8 (5)
C11—C8—C9—C10 110.4 (3) C13—C18—O3—C19 −127.2 (4)
C7—C8—C9—C10 −10.7 (3) C2—C1—O4—C20 −34.0 (6)
C11—C8—C9—C12 −9.0 (3) C6—C1—O4—C20 148.4 (4)
C7—C8—C9—C12 −130.0 (3) C3—C2—O5—C21 −0.7 (5)
C12—C9—C10—O2 144.6 (3) C1—C2—O5—C21 −178.2 (4)
C8—C9—C10—O2 32.0 (3) O6—C21—O5—C2 0.2 (6)
C9—C8—C11—O1 −11.5 (3) C2—C3—O6—C21 −0.8 (5)
C7—C8—C11—O1 102.2 (3) C4—C3—O6—C21 178.6 (5)
C10—C9—C12—O1 −84.5 (3) O5—C21—O6—C3 0.3 (6)
C8—C9—C12—O1 26.4 (3) C16—C17—O7—C22 0.7 (4)
C10—C9—C12—C13 152.6 (3) C18—C17—O7—C22 −179.7 (3)
C8—C9—C12—C13 −96.4 (3) O8—C22—O7—C17 −1.0 (4)
O1—C12—C13—C14 −1.6 (4) C15—C16—O8—C22 179.8 (4)
C9—C12—C13—C14 116.9 (4) C17—C16—O8—C22 −0.4 (4)
O1—C12—C13—C18 178.2 (3) O7—C22—O8—C16 0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2 0.93 2.34 2.721 (5) 104
C9—H9···O3 0.98 2.48 2.997 (4) 113
C11—H11B···O4 0.97 2.56 3.042 (5) 111
C14—H14···O1 0.93 2.45 2.808 (5) 103
C19—H19C···O7 0.96 2.41 3.065 (6) 125
C20—H20B···O5 0.96 2.33 2.939 (7) 121
C7—H7···Cg5i 0.98 2.86 3.724 148
C22—H22A···Cg6ii 0.97 2.97 3.646 128

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2355).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Beroza, M. & Barthel, W. F. (1957). J. Agr. Food. Chem.5, 855–859.
  3. Betz, R., Klüfers, P. & Reichvilser, M. M. (2007). Acta Cryst. E63, o3769. [DOI] [PMC free article] [PubMed]
  4. Chien, P.-L. & Cheng, C. C. (1970). J. Med. Chem.13, 867–870. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1357–1358.
  6. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
  7. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
  8. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  9. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  10. Fu, X.-S., Zhang, Y., Sun, J.-W. & Yu, X.-X. (2006). Acta Cryst. E62, o3135–o3136.
  11. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  12. Hu, S. L., She, N.-F. & Wu, A.-X. (2005). Acta Cryst. E61, o3317–o3318.
  13. Hu, Z.-Q., Zheng, L., Li, C.-J. & Chang, J.-B. (2007). Acta Cryst. E63, o156–o157.
  14. Hussain, M., Ali, S., Altaf, M. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o5323–o5325.
  15. Liang, Z.-P. (2004). Acta Cryst. E60, o339–o340.
  16. Mitscher, A. L., Flynn, L. D., Gracey, E. H. & Drake, D. S. (1979). J. Med. Chem.22, 1354–1357. [DOI] [PubMed]
  17. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  18. Qi, X.-X., Suo, J.-S., Wang, L.-M., Guo, X.-H. & Cheng, S.-X. (2006). Acta Cryst. E62, o1269–o1270.
  19. Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sonar, V. N., Venkataraj, M., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o5742–o5744.
  22. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  23. Wang, L.-W., Chen, T., Sun, H.-X., Xiong, Y., Zhou, C.-X. & Zhao, Y. (2004). Acta Cryst. E60, o513–o514.
  24. Yin, Z.-G., Qian, H.-Y., Jie, H. & Yu-Li, F. (2007). Acta Cryst. E63, o4406.
  25. Yu, Z.-F., Li, J. & Zhao, Z.-M. (2006). Acta Cryst. E62, o5614–o5615.
  26. Zhang, L., Wang, S.-Q. & Yu, X. (2007). Acta Cryst. E63, o2278–o2279.
  27. Zheng, L., Guo, B., Zheng, X., Chen, J. & Chang, J. (2005a). Acta Cryst. E61, o2508–o2509.
  28. Zheng, L., Zhen, X. F., Zhang, D. & Chang, J. B. (2005b). Acta Cryst. E61, o3786–o3787.
  29. Zhou, Q.-L., Wang, C.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o898–o899.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018138/dn2355sup1.cif

e-64-o1306-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018138/dn2355Isup2.hkl

e-64-o1306-Isup2.hkl (87.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES