Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1243. doi: 10.1107/S1600536808017017

N-(3,5-Dichloro­phen­yl)benzamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, Hartmut Fuess b
PMCID: PMC2961786  PMID: 21202878

Abstract

The conformation of the H—N—C=O unit in the title compound, C13H9Cl2NO, is trans, similar to the conformation observed in N-(3-chloro­phen­yl)benzamide, N-(2,3-dichloro­phen­yl)benzamide, N-(2,4-dichloro­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benzamide and N-(3,4-dichloro­phen­yl)benz­amide. The amide group makes dihedral angles of 14.3 (8) and 44.4 (4)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form a dihedral angle of 58.3 (1)°. The mol­ecules are linked by N—H⋯O hydrogen bonds into infinite chains running along the c axis.

Related literature

For related literature, see: Gowda et al. (2003, 2007, 2008a ,b ).graphic file with name e-64-o1243-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO

  • M r = 266.11

  • Monoclinic, Inline graphic

  • a = 13.520 (1) Å

  • b = 9.9929 (8) Å

  • c = 9.4447 (7) Å

  • β = 106.357 (9)°

  • V = 1224.37 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 299 (2) K

  • 0.48 × 0.36 × 0.26 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.792, T max = 0.879

  • 7774 measured reflections

  • 2493 independent reflections

  • 1837 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.133

  • S = 1.12

  • 2493 reflections

  • 181 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017017/bt2720sup1.cif

e-64-o1243-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017017/bt2720Isup2.hkl

e-64-o1243-Isup2.hkl (122.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (3) 2.18 (3) 2.964 (2) 157 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of N-(3,5-dichlorophenyl)-benzamide (N35DCPBA) has been determined to explore the effect of substituents on the solid state geometries of benzanilides (Gowda et al., 2003, 2007, 2008a, 2008b). The conformation of the H-N-C=O unit in is trans (Fig. 1), similar to that observed in N-(3-chlorophenyl)-benzamide (Gowda et al., 2008a), N-(2,3-dichlorophenyl)-benzamide and N-(3,4-dichlorophenyl)- benzamide (Gowda et al., 2007), N-(2,4-dichlorophenyl)-benzamide and N-(2,6-dichlorophenyl)-benzamide(Gowda et al., 2008b). The amide group –NHCO– makes the dihedral angles of 14.3 (8)° and 44.4 (4)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form the dihedral angle of 58.3 (1)°). Part of the crystal structure of the title compound with infinite molecular chains running along the c axis is shown in Fig. 2. The chains are generated by N—H···O hydrogen bonds (Table 1)

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were located in a difference map, and their positional parameters were refined freely with U(H) set to 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H9Cl2NO F000 = 544
Mr = 266.11 Dx = 1.444 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3450 reflections
a = 13.520 (1) Å θ = 2.4–28.1º
b = 9.9929 (8) Å µ = 0.51 mm1
c = 9.4447 (7) Å T = 299 (2) K
β = 106.357 (9)º Prism, colourless
V = 1224.37 (16) Å3 0.48 × 0.36 × 0.26 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2493 independent reflections
Radiation source: fine-focus sealed tube 1837 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.013
T = 299(2) K θmax = 26.4º
Rotation method data acquisition using ω and φ scans θmin = 2.6º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −12→16
Tmin = 0.792, Tmax = 0.879 k = −12→12
7774 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Only H-atom coordinates refined
wR(F2) = 0.133   w = 1/[σ2(Fo2) + (0.0671P)2 + 0.5267P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.010
2493 reflections Δρmax = 0.44 e Å3
181 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. (CrysAlis RED; Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.18869 (16) 0.6454 (2) 0.5651 (2) 0.0370 (5)
C2 0.11990 (16) 0.6605 (2) 0.4259 (2) 0.0389 (5)
H2 0.1002 (18) 0.753 (2) 0.384 (3) 0.047*
C3 0.07367 (17) 0.5473 (2) 0.3519 (2) 0.0412 (5)
C4 0.09118 (18) 0.4206 (2) 0.4131 (3) 0.0452 (5)
H4 0.0558 (19) 0.332 (3) 0.354 (3) 0.054*
C5 0.15740 (19) 0.4104 (2) 0.5533 (3) 0.0446 (5)
C6 0.20746 (18) 0.5197 (2) 0.6309 (2) 0.0429 (5)
H6 0.2544 (19) 0.506 (3) 0.726 (3) 0.051*
C7 0.29164 (16) 0.8484 (2) 0.5806 (2) 0.0357 (4)
C8 0.34903 (16) 0.9572 (2) 0.6776 (2) 0.0358 (5)
C9 0.4140 (2) 1.0369 (3) 0.6232 (3) 0.0525 (6)
H9 0.419 (2) 1.022 (3) 0.530 (4) 0.063*
C10 0.4693 (2) 1.1390 (3) 0.7066 (3) 0.0628 (7)
H10 0.509 (2) 1.189 (3) 0.663 (3) 0.075*
C11 0.4590 (2) 1.1653 (3) 0.8447 (3) 0.0601 (7)
H11 0.497 (2) 1.235 (3) 0.898 (3) 0.072*
C12 0.3940 (2) 1.0892 (3) 0.8994 (3) 0.0573 (7)
H12 0.379 (2) 1.110 (3) 0.989 (3) 0.069*
C13 0.33965 (19) 0.9850 (2) 0.8168 (2) 0.0450 (5)
H13 0.296 (2) 0.942 (3) 0.852 (3) 0.054*
N1 0.24216 (15) 0.75725 (18) 0.64286 (19) 0.0395 (4)
H1N 0.2559 (19) 0.753 (2) 0.734 (3) 0.047*
O1 0.29162 (14) 0.84106 (17) 0.45101 (16) 0.0518 (4)
Cl1 −0.00774 (6) 0.56249 (7) 0.17406 (7) 0.0640 (2)
Cl2 0.18142 (6) 0.25339 (6) 0.63392 (8) 0.0716 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0448 (11) 0.0354 (10) 0.0335 (10) −0.0010 (9) 0.0157 (9) −0.0022 (8)
C2 0.0456 (12) 0.0359 (11) 0.0347 (10) 0.0036 (9) 0.0103 (9) 0.0004 (9)
C3 0.0435 (12) 0.0443 (12) 0.0335 (10) 0.0036 (9) 0.0071 (9) −0.0037 (9)
C4 0.0516 (13) 0.0381 (12) 0.0453 (12) −0.0011 (10) 0.0129 (10) −0.0066 (10)
C5 0.0552 (13) 0.0331 (11) 0.0468 (12) 0.0031 (10) 0.0163 (10) 0.0038 (9)
C6 0.0512 (13) 0.0432 (12) 0.0325 (10) 0.0001 (10) 0.0090 (9) 0.0027 (9)
C7 0.0421 (11) 0.0355 (10) 0.0295 (9) 0.0026 (9) 0.0103 (8) 0.0006 (8)
C8 0.0390 (11) 0.0354 (11) 0.0329 (10) 0.0029 (8) 0.0098 (8) 0.0016 (8)
C9 0.0641 (16) 0.0570 (15) 0.0413 (12) −0.0134 (12) 0.0226 (11) −0.0022 (11)
C10 0.0679 (17) 0.0681 (18) 0.0550 (15) −0.0263 (14) 0.0213 (13) 0.0010 (13)
C11 0.0656 (16) 0.0569 (16) 0.0548 (15) −0.0226 (13) 0.0120 (12) −0.0103 (12)
C12 0.0697 (17) 0.0625 (16) 0.0418 (13) −0.0181 (13) 0.0195 (12) −0.0142 (12)
C13 0.0530 (13) 0.0470 (13) 0.0383 (11) −0.0120 (11) 0.0181 (10) −0.0051 (10)
N1 0.0544 (11) 0.0387 (10) 0.0257 (8) −0.0073 (8) 0.0120 (8) −0.0025 (7)
O1 0.0769 (11) 0.0517 (10) 0.0306 (8) −0.0128 (8) 0.0215 (7) −0.0043 (7)
Cl1 0.0752 (5) 0.0601 (4) 0.0419 (3) 0.0005 (3) −0.0076 (3) −0.0028 (3)
Cl2 0.0945 (6) 0.0372 (3) 0.0729 (5) 0.0021 (3) 0.0066 (4) 0.0131 (3)

Geometric parameters (Å, °)

C1—C2 1.389 (3) C7—C8 1.491 (3)
C1—C6 1.392 (3) C8—C13 1.385 (3)
C1—N1 1.419 (3) C8—C9 1.387 (3)
C2—C3 1.383 (3) C9—C10 1.375 (4)
C2—H2 1.01 (2) C9—H9 0.91 (3)
C3—C4 1.384 (3) C10—C11 1.375 (4)
C3—Cl1 1.736 (2) C10—H10 0.91 (3)
C4—C5 1.377 (3) C11—C12 1.369 (4)
C4—H4 1.09 (3) C11—H11 0.92 (3)
C5—C6 1.382 (3) C12—C13 1.381 (3)
C5—Cl2 1.734 (2) C12—H12 0.95 (3)
C6—H6 0.95 (3) C13—H13 0.87 (3)
C7—O1 1.226 (2) N1—H1N 0.83 (3)
C7—N1 1.358 (3)
C2—C1—C6 120.66 (19) C13—C8—C9 118.3 (2)
C2—C1—N1 120.79 (19) C13—C8—C7 123.98 (19)
C6—C1—N1 118.54 (19) C9—C8—C7 117.74 (18)
C3—C2—C1 118.4 (2) C10—C9—C8 120.9 (2)
C3—C2—H2 121.4 (14) C10—C9—H9 119.7 (19)
C1—C2—H2 120.0 (14) C8—C9—H9 119.5 (19)
C2—C3—C4 122.5 (2) C11—C10—C9 120.1 (2)
C2—C3—Cl1 119.37 (17) C11—C10—H10 123 (2)
C4—C3—Cl1 118.13 (17) C9—C10—H10 116 (2)
C5—C4—C3 117.3 (2) C12—C11—C10 120.0 (2)
C5—C4—H4 120.5 (14) C12—C11—H11 121.7 (19)
C3—C4—H4 122.3 (14) C10—C11—H11 118 (2)
C4—C5—C6 122.7 (2) C11—C12—C13 120.1 (2)
C4—C5—Cl2 118.68 (18) C11—C12—H12 122.4 (19)
C6—C5—Cl2 118.63 (18) C13—C12—H12 117.3 (19)
C5—C6—C1 118.4 (2) C12—C13—C8 120.7 (2)
C5—C6—H6 118.9 (17) C12—C13—H13 118.0 (18)
C1—C6—H6 122.7 (17) C8—C13—H13 121.0 (18)
O1—C7—N1 122.05 (19) C7—N1—C1 123.09 (16)
O1—C7—C8 120.68 (18) C7—N1—H1N 119.4 (17)
N1—C7—C8 117.25 (17) C1—N1—H1N 115.4 (17)
C6—C1—C2—C3 −2.5 (3) O1—C7—C8—C9 −9.3 (3)
N1—C1—C2—C3 176.84 (19) N1—C7—C8—C9 169.2 (2)
C1—C2—C3—C4 1.9 (3) C13—C8—C9—C10 1.3 (4)
C1—C2—C3—Cl1 −176.86 (16) C7—C8—C9—C10 180.0 (2)
C2—C3—C4—C5 0.1 (3) C8—C9—C10—C11 −1.4 (4)
Cl1—C3—C4—C5 178.90 (17) C9—C10—C11—C12 0.2 (5)
C3—C4—C5—C6 −1.6 (4) C10—C11—C12—C13 0.8 (5)
C3—C4—C5—Cl2 −179.98 (17) C11—C12—C13—C8 −0.8 (4)
C4—C5—C6—C1 1.0 (3) C9—C8—C13—C12 −0.2 (4)
Cl2—C5—C6—C1 179.39 (17) C7—C8—C13—C12 −178.8 (2)
C2—C1—C6—C5 1.1 (3) O1—C7—N1—C1 1.4 (3)
N1—C1—C6—C5 −178.3 (2) C8—C7—N1—C1 −177.06 (19)
O1—C7—C8—C13 169.3 (2) C2—C1—N1—C7 −47.9 (3)
N1—C7—C8—C13 −12.2 (3) C6—C1—N1—C7 131.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (3) 2.18 (3) 2.964 (2) 157 (2)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2720).

References

  1. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  2. Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3365. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o462. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o950. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017017/bt2720sup1.cif

e-64-o1243-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017017/bt2720Isup2.hkl

e-64-o1243-Isup2.hkl (122.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES