Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1201–o1202. doi: 10.1107/S1600536808016292

2-Amino-N-(2-hydr­oxy-3-methoxy­benzyl­idene)aniline

Mohammed H Al-Douh a, Shafida A Hamid a,, Hasnah Osman a, Reza Kia b, Hoong-Kun Fun b,*
PMCID: PMC2961787  PMID: 21202842

Abstract

In the title compound, C14H14N2O2, the dihedral angle between the two benzene rings is 9.67 (10)°. Two intra­molecular O—H⋯N and N—H⋯N hydrogen bonds involving the hydr­oxy and amino groups generate S(6) and S(5) ring motifs, respectively. In the crystal structure, N—H⋯O hydrogen bonds link neighboring mol­ecules. Mol­ecules are also stacked in a head-to-tail fashion along the c axis through π–π inter­actions [centroid–centroid separation of 3.7357 (12) Å] and are further linked by weak inter­molecular C—H⋯π inter­actions, giving a zigzag arrangement along the b axis.

Related literature

For related literature on hydrogen bond motifs, see: Bernstein et al. (1995). For values of bond lengths, see: Allen et al. (1987). For the biological activity of imines, see, for example: Singh & Dash (1988); More et al. (2001); Baseer et al. (2000); El-Masry et al. (2000); Kabeer et al. (2001); Kuz’min et al. (2000); Desai et al. (2001). For related structures, see, for example: Corden et al. (1996); Govindasamy et al. (1999). For synthesis, see: Al-Douh et al. (2006, 2007). For related literature, see: Berger (2001); Elerman & Kabak (1997); Latif et al. (1983); Liu et al. (2006); Shah et al. (2008).graphic file with name e-64-o1201-scheme1.jpg

Experimental

Crystal data

  • C14H14N2O2

  • M r = 242.27

  • Monoclinic, Inline graphic

  • a = 13.2790 (6) Å

  • b = 14.4810 (6) Å

  • c = 6.1928 (3) Å

  • β = 103.116 (3)°

  • V = 1159.77 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.959, T max = 0.996

  • 19968 measured reflections

  • 3402 independent reflections

  • 2532 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.206

  • S = 1.06

  • 3402 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016292/sj2510sup1.cif

e-64-o1201-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016292/sj2510Isup2.hkl

e-64-o1201-Isup2.hkl (166.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.88 1.77 2.602 (2) 158
N2—H1N2⋯O1i 0.93 (3) 2.56 (3) 3.030 (3) 111 (2)
N2—H1N2⋯O2i 0.93 (3) 2.29 (3) 3.181 (3) 161 (3)
N2—H2N2⋯N1 0.87 (3) 2.23 (3) 2.759 (3) 119 (2)
C3—H3⋯Cg1ii 0.94 (3) 2.64 (3) 3.458 (2) 145 (2)
C11—H11⋯Cg2iii 0.91 (3) 2.87 (3) 3.538 (2) 142 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for an IRPA short-term grant (No. 304/PKIMIA/638007) to conduct this work. MHA thanks the Yemen Government and Hadhramout University of Science and Technology (HUST) for financial scholarship support. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Imines are an important class of compounds and rank among the most versatile synthetic organic intermediates, which are important for the synthesis of biologically important compounds (Singh & Dash, 1988; More et al., 2001; Baseer et al., 2000; El-Masry et al., 2000; Kabeer et al., 2001; Kuz'min et al., 2000; Desai et al., 2001). Berger (2001) evaluated some bis-Schiff bases using 1138 and Sc-7 yeast assays, and a A2780 cytotoxicity test. They showed significant activity in a single dose test. The reactions of some phenolic aldehydes with o-phenylenediamine have been examined in some detail including the isolation of the title compound (Latif et al., 1983). Our group has been actively involved in synthesizing bis-Schiff bases and investigating their DNA binding ability using spectroscopic techniques employing calf thymus DNA (Shah et al., 2008). We have also obtained single crystals of benzimidazole and the bis-Schiff base derived from the title compound (I) and their structures are consistent with those reported earlier (Elerman & Kabak, 1997; Liu et al., 2006). However, the crystal structure of compound (I) was never reported and we present its structure here (Fig. 1).

The C1–C6 benzene ring is not coplanar with the phenylenediamine and makes a dihedral angle of 9.67 (10)° with C8–C13 benzene ring. Two intramolecular O1—H1O1···N1 and N2—H2N2···N1 hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The crystal is stabilized by intramolecular O—H···N and N—H···N and intermolecular N—H···O hydrogen bonds. Molecules (Fig. 2) are also arranged into zig-zag chains by C—H···π interactions along the b-axis (Table 1); Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 phenyl rings, respectively. In the crystal packing (Fig. 3), molecules are stacked along the c axis by π···π interactions with Cg1···Cg2 = 3.7357 (12) Å: symmetry codes x, y, -1 + z and x, y, 1 + z;

Experimental

The synthetic method has been described earlier (Al-Douh et al., 2006, 2007). Single crystals suitable for X-ray diffraction were obtained by evaporation of a n-hexane solution at room temperature.

Refinement

The H-atom attached to O1 is located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The methyl hydrogen atoms were fixed geometrically and refined using a rotating model with isotropic thermal parameters 1.5 that of the parent atom. The remaining hydrogen atoms were located in a difference map and refined freely with their isotropic thermal parameters 1.2 times those of the parent atoms. The highest peak is located 0.96 Å from H2. The deepest hole is located 0.41 Å from H1O1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular H bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I) showing the zigzag stacking arrangement along the b axis. H bonds are drawn as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing of (I), viewed along the c axis showing the molecular stacking. H bonds are drawn as dashed lines.

Crystal data

C14H14N2O2 F000 = 512
Mr = 242.27 Dx = 1.388 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4220 reflections
a = 13.2790 (6) Å θ = 2.8–29.4º
b = 14.4810 (6) Å µ = 0.09 mm1
c = 6.1928 (3) Å T = 100.0 (1) K
β = 103.116 (3)º Needle, yellow
V = 1159.77 (9) Å3 0.45 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3402 independent reflections
Radiation source: fine-focus sealed tube 2532 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.052
T = 100.0(1) K θmax = 30.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −18→18
Tmin = 0.959, Tmax = 0.996 k = −20→20
19968 measured reflections l = −8→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.206   w = 1/[σ2(Fo2) + (0.099P)2 + 1.0519P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3402 reflections Δρmax = 0.66 e Å3
194 parameters Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.12067 (11) 1.03082 (11) 0.3256 (2) 0.0223 (4)
H1O1 0.1550 1.0024 0.2388 0.027*
O2 0.07156 (12) 1.12650 (11) 0.6488 (3) 0.0227 (4)
N1 0.26011 (14) 0.97668 (12) 0.1182 (3) 0.0184 (4)
N2 0.10257 (15) 0.90586 (15) −0.2092 (3) 0.0251 (4)
H1N2 0.058 (2) 0.909 (2) −0.349 (5) 0.030*
H2N2 0.110 (2) 0.954 (2) −0.124 (5) 0.030*
C1 0.20451 (16) 0.89186 (15) −0.2205 (3) 0.0192 (4)
C2 0.22641 (18) 0.83919 (16) −0.3939 (4) 0.0225 (4)
H2 0.165 (2) 0.8218 (19) −0.497 (5) 0.027*
C3 0.32708 (19) 0.82255 (14) −0.4076 (4) 0.0219 (5)
H3 0.339 (2) 0.7874 (19) −0.528 (5) 0.026*
C4 0.40918 (18) 0.85597 (15) −0.2452 (4) 0.0216 (4)
H4 0.477 (2) 0.8429 (19) −0.253 (4) 0.026*
C5 0.38917 (17) 0.90701 (14) −0.0713 (4) 0.0196 (4)
H5 0.447 (2) 0.9297 (18) 0.037 (5) 0.024*
C6 0.28785 (16) 0.92618 (14) −0.0560 (3) 0.0168 (4)
C7 0.32762 (16) 1.02164 (14) 0.2604 (3) 0.0192 (4)
H7 0.403 (2) 1.0240 (18) 0.247 (4) 0.023*
C8 0.30011 (16) 1.07288 (14) 0.4405 (3) 0.0174 (4)
C9 0.37772 (17) 1.11996 (14) 0.5926 (4) 0.0195 (4)
H9 0.449 (2) 1.1215 (18) 0.569 (4) 0.023*
C10 0.35346 (17) 1.16977 (14) 0.7632 (4) 0.0196 (4)
H10 0.407 (2) 1.2018 (18) 0.862 (5) 0.024*
C11 0.25165 (17) 1.17414 (14) 0.7875 (3) 0.0189 (4)
H11 0.238 (2) 1.2072 (18) 0.902 (5) 0.023*
C12 0.17424 (16) 1.12778 (14) 0.6423 (3) 0.0177 (4)
C13 0.19759 (15) 1.07615 (14) 0.4659 (3) 0.0170 (4)
C14 0.04456 (18) 1.17522 (17) 0.8283 (4) 0.0263 (5)
H14A 0.0835 1.1510 0.9665 0.039*
H14B −0.0280 1.1678 0.8209 0.039*
H14C 0.0600 1.2396 0.8181 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0173 (7) 0.0307 (8) 0.0180 (7) −0.0022 (6) 0.0024 (6) −0.0069 (6)
O2 0.0202 (8) 0.0294 (8) 0.0203 (7) −0.0001 (6) 0.0081 (6) −0.0067 (6)
N1 0.0189 (8) 0.0220 (9) 0.0144 (8) 0.0017 (7) 0.0042 (7) 0.0003 (6)
N2 0.0188 (9) 0.0345 (11) 0.0220 (10) 0.0020 (8) 0.0045 (8) −0.0037 (8)
C1 0.0186 (10) 0.0229 (10) 0.0166 (9) 0.0026 (7) 0.0052 (8) 0.0020 (8)
C2 0.0253 (11) 0.0247 (10) 0.0156 (10) −0.0014 (8) 0.0009 (8) −0.0010 (8)
C3 0.0354 (12) 0.0175 (10) 0.0149 (9) 0.0024 (8) 0.0103 (9) −0.0014 (7)
C4 0.0214 (10) 0.0217 (10) 0.0245 (11) 0.0023 (8) 0.0110 (9) 0.0031 (8)
C5 0.0182 (10) 0.0201 (9) 0.0196 (10) −0.0015 (8) 0.0026 (8) 0.0005 (8)
C6 0.0219 (10) 0.0163 (9) 0.0126 (9) 0.0008 (7) 0.0045 (7) 0.0003 (7)
C7 0.0203 (10) 0.0207 (10) 0.0174 (10) 0.0007 (8) 0.0056 (8) 0.0022 (7)
C8 0.0200 (10) 0.0176 (9) 0.0154 (9) 0.0026 (7) 0.0054 (7) 0.0014 (7)
C9 0.0171 (10) 0.0220 (10) 0.0195 (10) 0.0003 (8) 0.0042 (8) 0.0032 (8)
C10 0.0205 (10) 0.0195 (9) 0.0168 (10) −0.0020 (8) 0.0000 (8) 0.0002 (8)
C11 0.0258 (11) 0.0175 (9) 0.0139 (9) 0.0013 (8) 0.0055 (8) −0.0014 (7)
C12 0.0165 (9) 0.0211 (9) 0.0161 (9) 0.0027 (7) 0.0049 (7) 0.0019 (7)
C13 0.0178 (10) 0.0188 (9) 0.0130 (9) −0.0004 (7) 0.0003 (7) 0.0006 (7)
C14 0.0252 (11) 0.0362 (13) 0.0194 (11) 0.0023 (9) 0.0095 (9) −0.0055 (9)

Geometric parameters (Å, °)

O1—C13 1.351 (2) C5—C6 1.398 (3)
O1—H1O1 0.8812 C5—H5 0.95 (3)
O2—C12 1.373 (2) C7—C8 1.454 (3)
O2—C14 1.429 (3) C7—H7 1.03 (3)
N1—C7 1.282 (3) C8—C9 1.405 (3)
N1—C6 1.419 (3) C8—C13 1.406 (3)
N2—C1 1.386 (3) C9—C10 1.376 (3)
N2—H1N2 0.93 (3) C9—H9 1.00 (3)
N2—H2N2 0.86 (3) C10—C11 1.395 (3)
C1—C2 1.400 (3) C10—H10 0.95 (3)
C1—C6 1.413 (3) C11—C12 1.377 (3)
C2—C3 1.380 (3) C11—H11 0.91 (3)
C2—H2 0.94 (3) C12—C13 1.415 (3)
C3—C4 1.392 (3) C14—H14A 0.9600
C3—H3 0.95 (3) C14—H14B 0.9600
C4—C5 1.381 (3) C14—H14C 0.9600
C4—H4 0.94 (3)
C13—O1—H1O1 101.4 C8—C7—H7 117.8 (15)
C12—O2—C14 116.25 (17) C9—C8—C13 119.34 (18)
C7—N1—C6 121.47 (18) C9—C8—C7 119.24 (19)
C1—N2—H1N2 112.5 (18) C13—C8—C7 121.42 (19)
C1—N2—H2N2 100 (2) C10—C9—C8 120.3 (2)
H1N2—N2—H2N2 119 (3) C10—C9—H9 119.9 (15)
N2—C1—C2 119.6 (2) C8—C9—H9 119.5 (15)
N2—C1—C6 121.74 (19) C9—C10—C11 120.5 (2)
C2—C1—C6 118.64 (19) C9—C10—H10 118.3 (16)
C3—C2—C1 121.0 (2) C11—C10—H10 121.2 (16)
C3—C2—H2 127.5 (17) C12—C11—C10 120.37 (19)
C1—C2—H2 111.4 (17) C12—C11—H11 121.2 (17)
C2—C3—C4 120.38 (19) C10—C11—H11 118.4 (17)
C2—C3—H3 118.6 (16) O2—C12—C11 125.89 (18)
C4—C3—H3 121.0 (17) O2—C12—C13 114.12 (18)
C5—C4—C3 119.5 (2) C11—C12—C13 119.99 (19)
C5—C4—H4 120.7 (17) O1—C13—C8 121.42 (18)
C3—C4—H4 119.9 (17) O1—C13—C12 119.14 (18)
C4—C5—C6 121.2 (2) C8—C13—C12 119.44 (18)
C4—C5—H5 117.7 (17) O2—C14—H14A 109.5
C6—C5—H5 121.1 (16) O2—C14—H14B 109.5
C5—C6—C1 119.32 (18) H14A—C14—H14B 109.5
C5—C6—N1 124.99 (19) O2—C14—H14C 109.5
C1—C6—N1 115.67 (18) H14A—C14—H14C 109.5
N1—C7—C8 121.86 (19) H14B—C14—H14C 109.5
N1—C7—H7 120.3 (15)
N2—C1—C2—C3 −178.8 (2) C13—C8—C9—C10 −0.8 (3)
C6—C1—C2—C3 −1.4 (3) C7—C8—C9—C10 179.32 (19)
C1—C2—C3—C4 1.7 (3) C8—C9—C10—C11 0.0 (3)
C2—C3—C4—C5 −0.8 (3) C9—C10—C11—C12 0.7 (3)
C3—C4—C5—C6 −0.4 (3) C14—O2—C12—C11 −2.4 (3)
C4—C5—C6—C1 0.6 (3) C14—O2—C12—C13 178.04 (18)
C4—C5—C6—N1 178.96 (19) C10—C11—C12—O2 179.84 (19)
N2—C1—C6—C5 177.56 (19) C10—C11—C12—C13 −0.7 (3)
C2—C1—C6—C5 0.2 (3) C9—C8—C13—O1 −179.00 (18)
N2—C1—C6—N1 −0.9 (3) C7—C8—C13—O1 0.9 (3)
C2—C1—C6—N1 −178.23 (19) C9—C8—C13—C12 0.9 (3)
C7—N1—C6—C5 11.1 (3) C7—C8—C13—C12 −179.28 (18)
C7—N1—C6—C1 −170.51 (19) O2—C12—C13—O1 −0.7 (3)
C6—N1—C7—C8 −179.44 (18) C11—C12—C13—O1 179.74 (18)
N1—C7—C8—C9 179.29 (19) O2—C12—C13—C8 179.42 (17)
N1—C7—C8—C13 −0.6 (3) C11—C12—C13—C8 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···N1 0.88 1.77 2.602 (2) 158
N2—H1N2···O1i 0.93 (3) 2.56 (3) 3.030 (3) 111 (2)
N2—H1N2···O2i 0.93 (3) 2.29 (3) 3.181 (3) 161 (3)
N2—H2N2···N1 0.87 (3) 2.23 (3) 2.759 (3) 119 (2)
C3—H3···Cg1ii 0.94 (3) 2.64 (3) 3.458 (2) 145 (2)
C11—H11···Cg2iii 0.91 (3) 2.87 (3) 3.538 (2) 142 (2)

Symmetry codes: (i) −x, −y+2, −z; (ii) x, −y+1/2, z−3/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2510).

References

  1. Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954–o3956.
  2. Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570–o3571.
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Baseer, M. A., Jadhav, V. D., Phule, R. M., Archana, Y. V. & Vibhute, Y. B. (2000). Orient. J. Chem.16, 553–556.
  5. Berger, J. M. (2001). PhD Thesis. Virginia Polytechnic Institute and State University, USA.
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  7. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Corden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777–2779.
  9. Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun.7, 83–90.
  10. Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372–374.
  11. El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.
  12. Govindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368–1369.
  13. Kabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem.13, 496–500.
  14. Kuz’min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol.47, 867–876. [PubMed]
  15. Latif, N., Mishriky, N. & Assad, F. M. (1983). Recl J. R. Neth. Chem. Soc.102, 73–77.
  16. Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908–o5909.
  17. More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc.78, 474–475.
  18. Shah, A. M., Helal, M. H. S., Al-Douh, M. H., Hamid, S. A. & Osman, H. (2008). Proceedings of the 22nd Scientific Meeting of the Malaysian Society of Pharmacology and Physiology, April 5–6, Kuala Lumpur, Malaysia, Poster 58.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.
  21. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016292/sj2510sup1.cif

e-64-o1201-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016292/sj2510Isup2.hkl

e-64-o1201-Isup2.hkl (166.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES