Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1227. doi: 10.1107/S1600536808012300

1-(2-Methyl­benzo­yl)-3-m-tolyl­thio­urea

B M Yamin a, S Yousuf b,*, M S M Yusof c, T N D T Zakaria c
PMCID: PMC2961788  PMID: 21202864

Abstract

The molecule of the title compound, C16H16N2OS, is not planar; the two aromatic rings are inclined to one another by 37.59 (9)°. There are intra­molecular hydrogen bonds between the benzoyl O atom and the H atom of the thio­amide N atom, and between the thio­urea S atom and the H atom of the tolyl group. These hydrogen bonds stabilize the mol­ecule in such a way that the thio­urea group adopts a transcis geometry. In the crystal structure, mol­ecules are linked by N—H⋯S inter­molecular hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the crystal structure of 1-(2,3-dimethyl­phen­yl)-3-(2-methyl­benzo­yl)thio­urea, see: Khawar Rauf et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o1227-scheme1.jpg

Experimental

Crystal data

  • C16H16N2OS

  • M r = 284.37

  • Triclinic, Inline graphic

  • a = 6.440 (3) Å

  • b = 10.201 (5) Å

  • c = 11.415 (5) Å

  • α = 77.310 (7)°

  • β = 89.896 (8)°

  • γ = 86.468 (8)°

  • V = 730.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.35 × 0.34 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.927, T max = 0.954

  • 7240 measured reflections

  • 2703 independent reflections

  • 2202 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.125

  • S = 1.02

  • 2703 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012300/su2052sup1.cif

e-64-o1227-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012300/su2052Isup2.hkl

e-64-o1227-Isup2.hkl (132.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.74 3.407 (2) 136
N2—H2A⋯O1 0.86 1.97 2.658 (2) 136
C7—H7C⋯O1 0.96 2.52 2.933 (3) 106
C15—H15A⋯S1 0.93 2.54 3.168 (3) 125

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia for the Fundamental Research Grants UKM-OUP-BTT-28–2007 and UMT-FRGS-59001, and University Kebangsaan Malaysia, University Malaysia Terengganuand and the HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

supplementary crystallographic information

Comment

The title compound, (I), is analogus to 1-(2,3-Dimethylphenyl)-3-(2-methylbenzoyl)thiourea (II) (Khawar Rauf et al., 2007), but with the 2,3-dimethyl phenyl group replaced by a 2-methyl phenyl (m-tolyl) group (Fig. 1). The molecule maintains the trans-cis configuration with respect to the position of the methyl benzoyl and 3-methyl benzene groups, respectively, relative to the thiono S1 atom. The bond lengths and angles are in normal ranges (Allen et al., 1987). The central thiourea moiety, S1/N1/N2/C9, the 2-methylbenzoyl ring, (C1—C8), and the m-tolyl group (C10—C15,C16) are all relatively planar, with a maximum deviation from any best mean plane of 0.015 (2) Å for atom C10. The central thiourea moiety makes dihedral angles with the 2-methylbenzoyl and m-tolyl fragments of 49.61 (7) and 17.87 (9)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by N2—H2A···O1, C7—H7C···O1 and C15—H15A···S1 intramolecular hydrogen bonds (Table 1).

In the crystal structure of (I), symmetry related molecules are linked by the N1—H1A···S1 intermolecular hydrogen bonds (Table 1) to form cenntrosymmetric dimers (Fig 2).

Experimental

2-methylbenzoyl chloride (9.720 g, 0.025mole) was mixed with an equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 3-methyl aniline (2.701 g, 0.025 mol) in 45 ml dry acetone. The mixture was refluxed with stirring for 4 h. The solution was then filtered and left to evaporate at room temperature. Colourless crystals, suitable for X-ray aanalysis, were obtained after a few days (Yield 85%).

Refinement

NH and C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: N—H = 0.86 and C—H = 0.93 - 0.96 Å, with Uiso(H)= 1.2Ueq(CH and NH), and 1.5Ueq(CH3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (1), with displacement ellipsoids drawn at 50% probability level (The dashed lines indicate the intramolecular hydrogen bonds).

Fig. 2.

Fig. 2.

The crystal packing diagram of compound (1), showing the formation of the N-H···S hydrogen bonded dimers (Hydrogen bonds are shown by dashed lines).

Crystal data

C16H16N2OS Z = 2
Mr = 284.37 F000 = 300
Triclinic, P1 Dx = 1.293 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.440 (3) Å Cell parameters from 2987 reflections
b = 10.201 (5) Å θ = 1.8–25.5º
c = 11.415 (5) Å µ = 0.22 mm1
α = 77.310 (7)º T = 298 (2) K
β = 89.896 (8)º Block, colorless
γ = 86.468 (8)º 0.35 × 0.34 × 0.22 mm
V = 730.1 (6) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2703 independent reflections
Radiation source: fine-focus sealed tube 2202 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
Detector resolution: 83.66 pixels mm-1 θmax = 25.5º
T = 298(2) K θmin = 1.8º
ω scans h = −7→7
Absorption correction: multi-scan(SADABS; Bruker, 2000) k = −12→12
Tmin = 0.927, Tmax = 0.954 l = −13→13
7240 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.077P)2 + 0.124P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.000
2703 reflections Δρmax = 0.23 e Å3
181 parameters Δρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.32952 (9) 0.66913 (5) 0.02660 (4) 0.0657 (2)
O1 0.5770 (2) 0.43595 (14) 0.39009 (11) 0.0589 (4)
N1 0.5747 (2) 0.51255 (14) 0.18710 (13) 0.0474 (5)
N2 0.3091 (2) 0.62497 (14) 0.26753 (12) 0.0463 (4)
C1 0.9854 (3) 0.3839 (2) 0.19650 (18) 0.0549 (6)
C2 1.1512 (3) 0.2991 (2) 0.1779 (2) 0.0663 (8)
C3 1.1594 (3) 0.1659 (2) 0.2386 (2) 0.0708 (8)
C4 1.0059 (3) 0.1190 (2) 0.3173 (2) 0.0632 (7)
C5 0.8385 (3) 0.20259 (18) 0.33940 (17) 0.0502 (6)
C6 0.8294 (2) 0.33688 (17) 0.27600 (15) 0.0450 (5)
C7 0.6744 (3) 0.1451 (2) 0.4262 (2) 0.0664 (7)
C8 0.6511 (3) 0.43112 (17) 0.29297 (15) 0.0445 (5)
C9 0.4011 (3) 0.60340 (16) 0.16802 (15) 0.0445 (5)
C10 0.1164 (2) 0.69333 (16) 0.28323 (15) 0.0421 (5)
C11 0.0350 (3) 0.65998 (18) 0.39738 (16) 0.0508 (6)
C12 −0.1571 (3) 0.7154 (2) 0.42026 (19) 0.0611 (7)
C13 −0.2680 (3) 0.80384 (19) 0.33001 (19) 0.0568 (7)
C14 −0.1870 (3) 0.84061 (19) 0.21718 (18) 0.0560 (6)
C15 0.0074 (3) 0.78556 (19) 0.19379 (16) 0.0551 (6)
C16 −0.3049 (4) 0.9400 (3) 0.1191 (2) 0.0903 (10)
H1A 0.64410 0.50630 0.12390 0.0570*
H1B 0.97800 0.47350 0.15540 0.0660*
H2A 0.37820 0.59190 0.33290 0.0560*
H2B 1.25610 0.33120 0.12520 0.0800*
H3A 1.26980 0.10770 0.22600 0.0850*
H4A 1.01400 0.02880 0.35700 0.0760*
H7A 0.71130 0.05180 0.45960 0.1000*
H7B 0.54280 0.15370 0.38500 0.1000*
H7C 0.66430 0.19330 0.48970 0.1000*
H11A 0.10970 0.60040 0.45840 0.0610*
H12A −0.21230 0.69310 0.49690 0.0730*
H13A −0.39920 0.83900 0.34580 0.0680*
H15A 0.06450 0.81070 0.11790 0.0660*
H16A −0.43520 0.96820 0.14950 0.1350*
H16B −0.33020 0.89820 0.05330 0.1350*
H16C −0.22440 1.01680 0.09180 0.1350*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0808 (4) 0.0649 (3) 0.0427 (3) 0.0316 (3) 0.0035 (2) −0.0031 (2)
O1 0.0592 (8) 0.0699 (8) 0.0445 (7) 0.0245 (6) −0.0033 (6) −0.0134 (6)
N1 0.0440 (8) 0.0508 (8) 0.0439 (8) 0.0123 (6) 0.0053 (6) −0.0071 (6)
N2 0.0435 (8) 0.0519 (8) 0.0413 (7) 0.0144 (6) −0.0033 (6) −0.0100 (6)
C1 0.0418 (10) 0.0589 (11) 0.0643 (12) 0.0012 (8) 0.0004 (8) −0.0155 (9)
C2 0.0393 (10) 0.0854 (15) 0.0775 (14) 0.0030 (10) 0.0073 (9) −0.0269 (12)
C3 0.0463 (11) 0.0783 (15) 0.0936 (16) 0.0214 (10) −0.0050 (11) −0.0382 (13)
C4 0.0573 (12) 0.0524 (11) 0.0802 (14) 0.0146 (9) −0.0122 (10) −0.0202 (10)
C5 0.0450 (9) 0.0498 (10) 0.0570 (10) 0.0062 (8) −0.0082 (8) −0.0165 (8)
C6 0.0366 (9) 0.0512 (9) 0.0484 (9) 0.0063 (7) −0.0059 (7) −0.0159 (8)
C7 0.0646 (13) 0.0550 (11) 0.0743 (14) 0.0019 (10) 0.0050 (11) −0.0044 (10)
C8 0.0399 (9) 0.0463 (9) 0.0469 (9) 0.0048 (7) −0.0028 (7) −0.0116 (7)
C9 0.0420 (9) 0.0400 (8) 0.0494 (10) 0.0053 (7) 0.0013 (7) −0.0078 (7)
C10 0.0406 (9) 0.0409 (8) 0.0456 (9) 0.0055 (7) −0.0024 (7) −0.0134 (7)
C11 0.0534 (10) 0.0515 (10) 0.0448 (9) 0.0085 (8) 0.0006 (8) −0.0082 (7)
C12 0.0589 (12) 0.0628 (12) 0.0598 (12) 0.0062 (9) 0.0156 (9) −0.0122 (9)
C13 0.0421 (10) 0.0567 (11) 0.0730 (13) 0.0097 (8) 0.0028 (9) −0.0211 (9)
C14 0.0534 (11) 0.0524 (10) 0.0614 (12) 0.0180 (8) −0.0097 (9) −0.0163 (9)
C15 0.0590 (11) 0.0556 (10) 0.0462 (10) 0.0176 (9) 0.0015 (8) −0.0071 (8)
C16 0.0882 (17) 0.0929 (17) 0.0776 (16) 0.0491 (14) −0.0173 (13) −0.0073 (13)

Geometric parameters (Å, °)

S1—C9 1.6605 (19) C12—C13 1.379 (3)
O1—C8 1.216 (2) C13—C14 1.372 (3)
N1—C8 1.380 (2) C14—C16 1.506 (3)
N1—C9 1.393 (2) C14—C15 1.390 (3)
N2—C9 1.335 (2) C1—H1B 0.9300
N2—C10 1.416 (2) C2—H2B 0.9300
N1—H1A 0.8600 C3—H3A 0.9300
N2—H2A 0.8600 C4—H4A 0.9300
C1—C6 1.388 (3) C7—H7A 0.9600
C1—C2 1.378 (3) C7—H7B 0.9600
C2—C3 1.381 (3) C7—H7C 0.9600
C3—C4 1.371 (3) C11—H11A 0.9300
C4—C5 1.390 (3) C12—H12A 0.9300
C5—C6 1.400 (3) C13—H13A 0.9300
C5—C7 1.503 (3) C15—H15A 0.9300
C6—C8 1.492 (3) C16—H16A 0.9600
C10—C15 1.386 (3) C16—H16B 0.9600
C10—C11 1.383 (3) C16—H16C 0.9600
C11—C12 1.377 (3)
C8—N1—C9 129.20 (15) C13—C14—C15 119.23 (18)
C9—N2—C10 130.59 (14) C10—C15—C14 120.21 (17)
C8—N1—H1A 115.00 C2—C1—H1B 120.00
C9—N1—H1A 115.00 C6—C1—H1B 120.00
C10—N2—H2A 115.00 C1—C2—H2B 120.00
C9—N2—H2A 115.00 C3—C2—H2B 120.00
C2—C1—C6 120.68 (19) C2—C3—H3A 120.00
C1—C2—C3 119.10 (19) C4—C3—H3A 120.00
C2—C3—C4 120.45 (19) C3—C4—H4A 119.00
C3—C4—C5 121.78 (19) C5—C4—H4A 119.00
C4—C5—C6 117.43 (17) C5—C7—H7A 110.00
C4—C5—C7 119.31 (17) C5—C7—H7B 110.00
C6—C5—C7 123.23 (17) C5—C7—H7C 109.00
C1—C6—C8 119.24 (16) H7A—C7—H7B 110.00
C5—C6—C8 120.22 (15) H7A—C7—H7C 109.00
C1—C6—C5 120.54 (16) H7B—C7—H7C 109.00
O1—C8—N1 122.48 (17) C10—C11—H11A 120.00
O1—C8—C6 123.92 (16) C12—C11—H11A 120.00
N1—C8—C6 113.60 (14) C11—C12—H12A 120.00
N1—C9—N2 115.10 (15) C13—C12—H12A 120.00
S1—C9—N1 117.23 (13) C12—C13—H13A 120.00
S1—C9—N2 127.65 (14) C14—C13—H13A 120.00
N2—C10—C15 124.98 (15) C10—C15—H15A 120.00
C11—C10—C15 119.83 (15) C14—C15—H15A 120.00
N2—C10—C11 115.18 (15) C14—C16—H16A 109.00
C10—C11—C12 119.69 (17) C14—C16—H16B 109.00
C11—C12—C13 120.27 (19) C14—C16—H16C 109.00
C12—C13—C14 120.72 (18) H16A—C16—H16B 109.00
C13—C14—C16 120.97 (18) H16A—C16—H16C 110.00
C15—C14—C16 119.80 (18) H16B—C16—H16C 109.00
C9—N1—C8—O1 −5.0 (3) C7—C5—C6—C1 −179.65 (18)
C9—N1—C8—C6 174.26 (16) C7—C5—C6—C8 0.2 (3)
C8—N1—C9—S1 −170.78 (15) C1—C6—C8—O1 −137.6 (2)
C8—N1—C9—N2 7.9 (3) C1—C6—C8—N1 43.1 (2)
C10—N2—C9—S1 8.9 (3) C5—C6—C8—O1 42.6 (3)
C10—N2—C9—N1 −169.59 (16) C5—C6—C8—N1 −136.71 (17)
C9—N2—C10—C11 159.19 (18) N2—C10—C11—C12 −176.51 (17)
C9—N2—C10—C15 −19.4 (3) C15—C10—C11—C12 2.1 (3)
C6—C1—C2—C3 0.6 (3) N2—C10—C15—C14 175.98 (17)
C2—C1—C6—C5 0.5 (3) C11—C10—C15—C14 −2.5 (3)
C2—C1—C6—C8 −179.37 (18) C10—C11—C12—C13 −0.1 (3)
C1—C2—C3—C4 −0.7 (3) C11—C12—C13—C14 −1.7 (3)
C2—C3—C4—C5 −0.3 (3) C12—C13—C14—C15 1.3 (3)
C3—C4—C5—C6 1.4 (3) C12—C13—C14—C16 −178.4 (2)
C3—C4—C5—C7 179.67 (19) C13—C14—C15—C10 0.8 (3)
C4—C5—C6—C1 −1.5 (3) C16—C14—C15—C10 −179.6 (2)
C4—C5—C6—C8 178.38 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···S1i 0.86 2.74 3.407 (2) 136
N2—H2A···O1 0.86 1.97 2.658 (2) 136
C7—H7C···O1 0.96 2.52 2.933 (3) 106
C15—H15A···S1 0.93 2.54 3.168 (3) 125

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2052).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.
  4. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012300/su2052sup1.cif

e-64-o1227-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012300/su2052Isup2.hkl

e-64-o1227-Isup2.hkl (132.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES