Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 28;64(Pt 7):o1365. doi: 10.1107/S1600536808019120

4-Chloro-N-(2,6-dimethyl­phen­yl)benzamide

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, B P Sowmya a, Hartmut Fuess c
PMCID: PMC2961789  PMID: 21202983

Abstract

The conformations of the N—H and C=O bonds in the structure of the title compound (N26DMP4CBA), C15H14ClNO, are anti to each other, similar to that observed in N-phenyl­benzamide, N-(3,4-dimethyl­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benzamide and other benzanilides. There are three mol­ecules in the asymmetric unit of N26DMP4CBA. The central amide group is tilted with respect to the benzoyl ring by 45.2 (1)° in mol­ecule 1, 21.2 (2)° in mol­ecule 2 and 14.9 (2)° in mol­ecule 3. The dihedral angles between the benzoyl and aniline rings are 39.9 (1), 51.0 (1) and 86.3 (3)° in mol­ecules 1, 2 and 3, respectively. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the [101] direction. One xylyl group is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Gowda et al. (2003, 2008a,b ).graphic file with name e-64-o1365-scheme1.jpg

Experimental

Crystal data

  • C15H14ClNO

  • M r = 259.72

  • Triclinic, Inline graphic

  • a = 12.2696 (3) Å

  • b = 13.6249 (4) Å

  • c = 13.7981 (4) Å

  • α = 91.880 (2)°

  • β = 113.623 (2)°

  • γ = 90.3676 (18)°

  • V = 2111.74 (10) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 (2) K

  • 0.49 × 0.22 × 0.13 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction (2007); based on Clark & Reid (1995)] T min = 0.896, T max = 0.973

  • 63529 measured reflections

  • 8072 independent reflections

  • 3945 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.137

  • S = 0.89

  • 8072 reflections

  • 543 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019120/dn2356sup1.cif

e-64-o1365-sup1.cif (29.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019120/dn2356Isup2.hkl

e-64-o1365-Isup2.hkl (386.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.02 2.8585 (19) 165
N2—H2⋯O3 0.86 1.96 2.778 (2) 158
N3—H3A⋯O1i 0.86 1.99 2.814 (2) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

supplementary crystallographic information

Comment

In the present work, the structure of N-(2,6-dimethylphenyl)- 4-chlorobenzamide (N26DMP4CBA) has been determined to study the effect of substituents on the solid state geometries of benzanilides (Gowda et al., 2003, 2008a,b).

The conformations of the N—H and C=O bonds in N26DMP4CBA (Fig.1) are anti to each other, similar to that observed in N-(phenyl)-benzamide(NPBA)(Gowda et al., 2003), N-(3,4-dimethylphenyl)-benzamide (Gowda et al., 2008a), N-(2,6-dichlorophenyl)-benzamide and other benzanilides (Gowda et al., 2008b), with similar bond parameters. The amide group –NHCO– forms the dihedral angle of 45.2 (1)° in molecule 1, 21.2 (1)° in molecule 2, and 14.9 (2)° in molecule 3, with the benzoyl benzene ring. The dihedral angles between the benzoyl and aniline benzene rings are 39.9 (1)°, 51.0 (1)° and 86.3 (3)° in the molecule 1, 2 and 3, respectively.

The intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the [101] direction (Table 1).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(Caromatic or N) and with Uiso(H) = 1.5Ueq(Cmethyl).

The xylyl ring of the molecule 3 revealed excessively elongated displacement ellipsoids and therefore this ring (C48 to C55) as well as the C atoms attached to it were treated as disordered with two components marked A and B. The constraint of regular hexagon was applied and the two components A and B were treated using the tools (SAME and PART) available in SHELXL97 (Sheldrick, 2008). In the first stage of refinement, the site-occupation factors were refined to be 0.561 (4) for component A (atoms C48A to C55A) and 0.439 (4) for component B (atoms C48B to C55B) then they were fixed.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. In molecule 3 only the A-component of the disordered xylyl ring is shown (atoms C48A to C55A). Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C15H14ClNO Z = 6
Mr = 259.72 F000 = 816
Triclinic, P1 Dx = 1.225 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 12.2696 (3) Å Cell parameters from 16102 reflections
b = 13.6249 (4) Å θ = 3.2–29.3º
c = 13.7981 (4) Å µ = 0.26 mm1
α = 91.880 (2)º T = 295 (2) K
β = 113.623 (2)º Block, colourless
γ = 90.3676 (18)º 0.49 × 0.22 × 0.13 mm
V = 2111.74 (10) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer Rint = 0.042
Monochromator: graphite θmax = 25.9º
T = 295(2) K θmin = 5.6º
ω scans with κ offsets h = −15→15
Absorption correction: analytical[CrysAlis RED (Oxford Diffraction (2007); based on Clark & Reid (1995)] k = −16→16
Tmin = 0.896, Tmax = 0.973 l = −16→16
63529 measured reflections 3 standard reflections
8072 independent reflections every 120 min
3945 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.137   w = 1/[σ2(Fo2) + (0.0808P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89 (Δ/σ)max = 0.027
8072 reflections Δρmax = 0.21 e Å3
543 parameters Δρmin = −0.20 e Å3
21 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.09618 (16) 0.27402 (14) 0.88857 (16) 0.0737 (5)
C2 1.11617 (15) 0.37750 (13) 0.86787 (15) 0.0690 (5)
C3 1.11340 (19) 0.45167 (17) 0.93676 (18) 0.0923 (6)
H3 1.0976 0.4366 0.9952 0.111*
C4 1.1337 (2) 0.54812 (18) 0.9205 (2) 0.1047 (7)
H4 1.1301 0.5980 0.9667 0.126*
C5 1.15906 (19) 0.56963 (16) 0.8358 (2) 0.0945 (7)
C6 1.16544 (19) 0.49792 (17) 0.7682 (2) 0.0946 (6)
H6 1.1849 0.5132 0.7118 0.114*
C7 1.14264 (17) 0.40178 (15) 0.78394 (18) 0.0824 (6)
H7 1.1453 0.3525 0.7367 0.099*
Cl1 1.18407 (8) 0.69118 (5) 0.81480 (8) 0.1603 (4)
O1 1.14255 (14) 0.24299 (11) 0.97876 (11) 0.1085 (5)
N1 1.02664 (13) 0.21731 (10) 0.80724 (12) 0.0711 (4)
H1 0.9923 0.2423 0.7462 0.085*
C8 1.00731 (18) 0.11569 (14) 0.81848 (14) 0.0736 (5)
C9 0.9194 (2) 0.08774 (18) 0.8511 (2) 0.0993 (7)
C10 0.9064 (3) −0.0110 (3) 0.8638 (3) 0.1357 (10)
H10 0.8475 −0.0320 0.8852 0.163*
C11 0.9784 (4) −0.0784 (2) 0.8456 (3) 0.1356 (11)
H11 0.9694 −0.1445 0.8562 0.163*
C12 1.0624 (3) −0.04965 (18) 0.8124 (2) 0.1176 (8)
H12 1.1098 −0.0966 0.7990 0.141*
C13 1.0797 (2) 0.04760 (16) 0.79793 (17) 0.0884 (6)
C14 1.1743 (3) 0.0792 (2) 0.7626 (3) 0.1316 (9)
H14A 1.2201 0.0235 0.7589 0.197*
H14B 1.2254 0.1278 0.8122 0.197*
H14C 1.1380 0.1066 0.6940 0.197*
C15 0.8417 (3) 0.1628 (2) 0.8728 (3) 0.1510 (12)
H15A 0.7999 0.1982 0.8099 0.227*
H15B 0.8902 0.2079 0.9286 0.227*
H15C 0.7853 0.1302 0.8937 0.227*
C21 0.80003 (17) 0.33775 (13) 0.54313 (15) 0.0699 (5)
C22 0.77906 (16) 0.43964 (13) 0.50443 (14) 0.0673 (5)
C23 0.87450 (18) 0.50444 (15) 0.53812 (17) 0.0838 (6)
H23 0.9490 0.4827 0.5824 0.101*
C24 0.8632 (2) 0.59984 (15) 0.50858 (19) 0.0894 (6)
H24 0.9293 0.6421 0.5315 0.107*
C25 0.7536 (2) 0.63199 (14) 0.44497 (18) 0.0838 (6)
C26 0.6571 (2) 0.57051 (16) 0.41144 (19) 0.0985 (7)
H26 0.5824 0.5936 0.3693 0.118*
C27 0.66980 (18) 0.47394 (14) 0.43985 (17) 0.0870 (6)
H27 0.6038 0.4316 0.4151 0.104*
Cl2 0.73859 (7) 0.75296 (4) 0.40748 (7) 0.1292 (3)
O2 0.88901 (13) 0.32078 (10) 0.62217 (11) 0.1040 (5)
N2 0.72097 (12) 0.26782 (10) 0.48919 (12) 0.0700 (4)
H2 0.6619 0.2834 0.4326 0.084*
C28 0.72888 (16) 0.16867 (13) 0.52006 (14) 0.0687 (5)
C29 0.81179 (19) 0.10850 (16) 0.50619 (17) 0.0857 (6)
C30 0.8150 (2) 0.01226 (19) 0.5342 (2) 0.1094 (8)
H30 0.8703 −0.0293 0.5251 0.131*
C31 0.7402 (3) −0.0228 (2) 0.5742 (2) 0.1215 (9)
H31 0.7445 −0.0879 0.5933 0.146*
C32 0.6578 (3) 0.0365 (2) 0.5871 (2) 0.1237 (9)
H32 0.6058 0.0113 0.6145 0.148*
C33 0.6504 (2) 0.13410 (16) 0.56004 (18) 0.0921 (6)
C34 0.5566 (3) 0.2008 (2) 0.5709 (3) 0.1433 (11)
H34A 0.5941 0.2601 0.6097 0.215*
H34B 0.5164 0.1678 0.6079 0.215*
H34C 0.5000 0.2166 0.5018 0.215*
C35 0.8955 (2) 0.1461 (2) 0.4599 (3) 0.1335 (10)
H35A 0.9490 0.1945 0.5079 0.200*
H35B 0.8506 0.1753 0.3935 0.200*
H35C 0.9402 0.0926 0.4487 0.200*
C41 0.44189 (18) 0.23143 (15) 0.21886 (17) 0.0803 (6)
C42 0.44517 (16) 0.12663 (14) 0.18302 (16) 0.0729 (5)
C43 0.52129 (19) 0.06379 (18) 0.25365 (19) 0.0930 (6)
H43 0.5689 0.0876 0.3217 0.112*
C44 0.5291 (2) −0.03250 (19) 0.2268 (2) 0.0990 (7)
H44 0.5801 −0.0739 0.2764 0.119*
C45 0.4612 (2) −0.06729 (16) 0.1265 (2) 0.0927 (7)
C46 0.3847 (2) −0.00681 (19) 0.0540 (2) 0.1044 (7)
H46 0.3386 −0.0308 −0.0143 0.125*
C47 0.37655 (19) 0.08965 (16) 0.08270 (18) 0.0908 (6)
H47 0.3238 0.1305 0.0336 0.109*
Cl3 0.47088 (8) −0.18837 (5) 0.09012 (8) 0.1440 (3)
O3 0.51840 (14) 0.26464 (11) 0.30151 (14) 0.1222 (6)
N3 0.35416 (14) 0.28586 (12) 0.15755 (12) 0.0789 (5)
H3A 0.2954 0.2589 0.1050 0.095*
C48A 0.3568 (7) 0.3855 (3) 0.1777 (7) 0.080 (2) 0.56
C49A 0.4260 (6) 0.4483 (3) 0.1473 (6) 0.098 (3) 0.56
C50A 0.4161 (5) 0.5494 (3) 0.1565 (5) 0.115 (2) 0.56
H50A 0.4624 0.5914 0.1361 0.138* 0.56
C51A 0.3369 (6) 0.5877 (3) 0.1962 (5) 0.124 (3) 0.56
H51A 0.3303 0.6554 0.2024 0.149* 0.56
C52A 0.2676 (7) 0.5249 (5) 0.2267 (7) 0.139 (3) 0.56
H52A 0.2146 0.5506 0.2533 0.167* 0.56
C53A 0.2776 (8) 0.4238 (4) 0.2175 (8) 0.106 (3) 0.56
C54A 0.1967 (18) 0.3545 (10) 0.2438 (17) 0.162 (7) 0.56
H54A 0.1444 0.3920 0.2663 0.243* 0.56
H54B 0.2441 0.3132 0.2997 0.243* 0.56
H54C 0.1505 0.3144 0.1822 0.243* 0.56
C55A 0.5035 (12) 0.4070 (8) 0.0937 (10) 0.142 (4) 0.56
H55A 0.5495 0.3543 0.1339 0.213* 0.56
H55B 0.5561 0.4578 0.0899 0.213* 0.56
H55C 0.4540 0.3827 0.0235 0.213* 0.56
C48B 0.3277 (9) 0.3861 (3) 0.1819 (9) 0.077 (3) 0.44
C49B 0.3888 (8) 0.4653 (5) 0.1647 (8) 0.105 (4) 0.44
C50B 0.3633 (7) 0.5605 (4) 0.1870 (7) 0.104 (3) 0.44
H50B 0.4042 0.6135 0.1755 0.125* 0.44
C51B 0.2768 (7) 0.5765 (3) 0.2265 (6) 0.113 (3) 0.44
H51B 0.2597 0.6402 0.2415 0.135* 0.44
C52B 0.2157 (7) 0.4973 (5) 0.2438 (6) 0.113 (3) 0.44
H52B 0.1578 0.5080 0.2702 0.136* 0.44
C53B 0.2412 (8) 0.4021 (4) 0.2215 (8) 0.088 (3) 0.44
C54B 0.181 (2) 0.3162 (13) 0.244 (2) 0.134 (6) 0.44
H54D 0.2390 0.2753 0.2928 0.202* 0.44
H54E 0.1369 0.2792 0.1793 0.202* 0.44
H54F 0.1269 0.3389 0.2744 0.202* 0.44
C55B 0.4917 (12) 0.4440 (12) 0.1357 (13) 0.150 (8) 0.44
H55D 0.5192 0.5037 0.1172 0.226* 0.44
H55E 0.4669 0.3978 0.0765 0.226* 0.44
H55F 0.5549 0.4168 0.1949 0.226* 0.44

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0661 (11) 0.0725 (12) 0.0614 (13) 0.0051 (9) 0.0032 (10) 0.0065 (11)
C2 0.0613 (11) 0.0665 (12) 0.0607 (12) 0.0026 (8) 0.0054 (9) −0.0017 (10)
C3 0.1087 (16) 0.0799 (15) 0.0766 (14) 0.0160 (12) 0.0249 (12) 0.0004 (12)
C4 0.1182 (18) 0.0728 (16) 0.0999 (19) 0.0190 (12) 0.0204 (15) −0.0134 (13)
C5 0.0885 (15) 0.0657 (14) 0.1108 (19) 0.0000 (11) 0.0209 (14) 0.0015 (14)
C6 0.0960 (15) 0.0827 (16) 0.1026 (17) −0.0163 (12) 0.0379 (13) −0.0019 (14)
C7 0.0845 (13) 0.0668 (13) 0.0896 (16) −0.0110 (10) 0.0296 (12) −0.0121 (11)
Cl1 0.1757 (7) 0.0677 (4) 0.2189 (10) −0.0112 (4) 0.0594 (7) 0.0131 (5)
O1 0.1175 (11) 0.0922 (10) 0.0698 (10) −0.0058 (8) −0.0114 (8) 0.0156 (8)
N1 0.0747 (9) 0.0635 (9) 0.0554 (9) −0.0018 (7) 0.0051 (8) 0.0093 (7)
C8 0.0768 (12) 0.0604 (11) 0.0647 (12) −0.0016 (10) 0.0080 (10) 0.0106 (9)
C9 0.0876 (15) 0.0877 (16) 0.1184 (18) −0.0027 (13) 0.0357 (14) 0.0213 (13)
C10 0.127 (2) 0.107 (2) 0.176 (3) −0.0205 (19) 0.061 (2) 0.036 (2)
C11 0.153 (3) 0.0748 (18) 0.156 (3) −0.0189 (19) 0.037 (2) 0.0289 (17)
C12 0.139 (2) 0.0682 (16) 0.125 (2) 0.0077 (15) 0.0314 (18) 0.0068 (14)
C13 0.1003 (15) 0.0694 (14) 0.0826 (15) 0.0039 (12) 0.0230 (12) 0.0039 (11)
C14 0.156 (2) 0.110 (2) 0.159 (3) 0.0103 (17) 0.096 (2) −0.0014 (18)
C15 0.1123 (19) 0.146 (3) 0.221 (4) 0.0118 (19) 0.092 (2) 0.027 (2)
C21 0.0672 (12) 0.0682 (12) 0.0614 (12) −0.0022 (10) 0.0120 (10) 0.0061 (10)
C22 0.0677 (12) 0.0642 (11) 0.0611 (11) 0.0021 (9) 0.0163 (9) 0.0060 (9)
C23 0.0709 (12) 0.0728 (13) 0.0940 (15) −0.0012 (10) 0.0177 (11) 0.0168 (11)
C24 0.0868 (15) 0.0723 (13) 0.1117 (17) −0.0049 (11) 0.0422 (13) 0.0101 (12)
C25 0.1046 (17) 0.0592 (12) 0.0925 (15) 0.0109 (12) 0.0442 (13) 0.0084 (11)
C26 0.0864 (15) 0.0766 (15) 0.1070 (17) 0.0188 (13) 0.0113 (13) 0.0088 (12)
C27 0.0745 (13) 0.0665 (12) 0.0950 (15) 0.0021 (10) 0.0078 (11) 0.0054 (11)
Cl2 0.1546 (6) 0.0690 (4) 0.1770 (7) 0.0267 (4) 0.0777 (5) 0.0318 (4)
O2 0.0955 (10) 0.0762 (9) 0.0863 (10) −0.0137 (7) −0.0213 (8) 0.0215 (7)
N2 0.0625 (9) 0.0626 (9) 0.0647 (9) 0.0004 (7) 0.0044 (7) 0.0025 (7)
C28 0.0645 (11) 0.0619 (11) 0.0645 (11) −0.0025 (9) 0.0106 (9) −0.0037 (9)
C29 0.0812 (14) 0.0708 (14) 0.0922 (15) 0.0046 (11) 0.0215 (12) 0.0002 (11)
C30 0.1033 (18) 0.0782 (17) 0.126 (2) 0.0132 (13) 0.0247 (16) −0.0065 (15)
C31 0.158 (3) 0.0688 (16) 0.124 (2) −0.0065 (18) 0.041 (2) 0.0091 (15)
C32 0.159 (3) 0.093 (2) 0.133 (2) −0.0378 (19) 0.075 (2) −0.0056 (16)
C33 0.1031 (16) 0.0748 (14) 0.1024 (16) −0.0176 (12) 0.0466 (14) −0.0097 (12)
C34 0.143 (2) 0.123 (2) 0.202 (3) −0.0182 (19) 0.112 (2) −0.024 (2)
C35 0.1168 (19) 0.121 (2) 0.190 (3) 0.0149 (16) 0.090 (2) −0.0027 (19)
C41 0.0716 (12) 0.0766 (14) 0.0727 (14) −0.0032 (11) 0.0077 (11) 0.0093 (11)
C42 0.0620 (11) 0.0763 (13) 0.0718 (13) −0.0028 (9) 0.0174 (10) 0.0110 (11)
C43 0.0879 (14) 0.0899 (16) 0.0858 (15) 0.0074 (12) 0.0180 (12) 0.0131 (13)
C44 0.0985 (16) 0.0877 (17) 0.112 (2) 0.0169 (13) 0.0414 (16) 0.0270 (15)
C45 0.0941 (16) 0.0712 (14) 0.127 (2) 0.0044 (12) 0.0588 (16) 0.0123 (15)
C46 0.1089 (17) 0.0920 (18) 0.1009 (18) −0.0004 (14) 0.0314 (15) −0.0131 (15)
C47 0.0871 (14) 0.0817 (15) 0.0867 (16) 0.0080 (11) 0.0168 (12) 0.0060 (12)
Cl3 0.1719 (7) 0.0809 (4) 0.1979 (8) 0.0112 (4) 0.0942 (6) −0.0001 (4)
O3 0.1012 (11) 0.0939 (11) 0.1011 (11) 0.0008 (9) −0.0326 (10) −0.0029 (9)
N3 0.0770 (10) 0.0681 (10) 0.0653 (10) −0.0031 (8) 0.0010 (8) 0.0020 (8)
C48A 0.062 (4) 0.095 (6) 0.058 (4) −0.001 (3) −0.002 (3) 0.008 (3)
C49A 0.065 (5) 0.064 (4) 0.135 (7) 0.003 (4) 0.010 (4) 0.004 (3)
C50A 0.106 (5) 0.088 (4) 0.126 (5) 0.012 (3) 0.021 (4) 0.011 (3)
C51A 0.161 (7) 0.081 (4) 0.102 (5) 0.030 (5) 0.025 (5) −0.021 (4)
C52A 0.187 (9) 0.097 (6) 0.113 (5) 0.023 (6) 0.042 (5) −0.031 (5)
C53A 0.117 (7) 0.087 (5) 0.095 (5) −0.007 (4) 0.023 (5) −0.006 (4)
C54A 0.24 (2) 0.134 (14) 0.136 (8) 0.050 (11) 0.096 (12) −0.001 (10)
C55A 0.149 (7) 0.124 (6) 0.187 (11) 0.013 (5) 0.101 (8) 0.036 (6)
C48B 0.065 (5) 0.051 (5) 0.089 (6) 0.008 (3) 0.004 (4) −0.006 (4)
C49B 0.080 (6) 0.114 (8) 0.099 (5) −0.001 (5) 0.011 (4) 0.045 (6)
C50B 0.113 (6) 0.047 (4) 0.118 (7) −0.011 (4) 0.011 (5) 0.013 (4)
C51B 0.129 (7) 0.080 (6) 0.082 (5) 0.005 (5) −0.005 (4) −0.007 (4)
C52B 0.120 (6) 0.096 (6) 0.085 (5) −0.003 (5) 0.004 (4) −0.017 (4)
C53B 0.099 (7) 0.063 (5) 0.066 (5) −0.005 (5) −0.003 (4) −0.015 (4)
C54B 0.150 (9) 0.121 (12) 0.168 (10) −0.033 (10) 0.103 (8) −0.025 (11)
C55B 0.157 (15) 0.160 (15) 0.139 (10) −0.072 (13) 0.064 (10) 0.012 (8)

Geometric parameters (Å, °)

C1—O1 1.233 (2) C33—C34 1.522 (3)
C1—N1 1.323 (2) C34—H34A 0.9600
C1—C2 1.486 (3) C34—H34B 0.9600
C2—C7 1.372 (3) C34—H34C 0.9600
C2—C3 1.374 (3) C35—H35A 0.9600
C3—C4 1.378 (3) C35—H35B 0.9600
C3—H3 0.9300 C35—H35C 0.9600
C4—C5 1.364 (3) C41—O3 1.220 (2)
C4—H4 0.9300 C41—N3 1.321 (2)
C5—C6 1.353 (3) C41—C42 1.502 (3)
C5—Cl1 1.737 (2) C42—C43 1.375 (3)
C6—C7 1.380 (3) C42—C47 1.376 (3)
C6—H6 0.9300 C43—C44 1.366 (3)
C7—H7 0.9300 C43—H43 0.9300
N1—C8 1.427 (2) C44—C45 1.365 (3)
N1—H1 0.8600 C44—H44 0.9300
C8—C9 1.380 (3) C45—C46 1.368 (3)
C8—C13 1.387 (3) C45—Cl3 1.727 (2)
C9—C10 1.379 (4) C46—C47 1.376 (3)
C9—C15 1.506 (4) C46—H46 0.9300
C10—C11 1.364 (4) C47—H47 0.9300
C10—H10 0.9300 N3—C48A 1.375 (4)
C11—C12 1.345 (4) N3—C48B 1.465 (5)
C11—H11 0.9300 N3—H3A 0.8600
C12—C13 1.374 (3) C48A—C49A 1.3900
C12—H12 0.9300 C48A—C53A 1.3900
C13—C14 1.493 (3) C49A—C50A 1.3900
C14—H14A 0.9600 C49A—C55A 1.520 (10)
C14—H14B 0.9600 C50A—C51A 1.3900
C14—H14C 0.9600 C50A—H50A 0.9300
C15—H15A 0.9600 C51A—C52A 1.3900
C15—H15B 0.9600 C51A—H51A 0.9300
C15—H15C 0.9600 C52A—C53A 1.3900
C21—O2 1.225 (2) C52A—H52A 0.9300
C21—N2 1.329 (2) C53A—C54A 1.520 (10)
C21—C22 1.490 (2) C54A—H54A 0.9600
C22—C27 1.374 (3) C54A—H54B 0.9600
C22—C23 1.375 (3) C54A—H54C 0.9600
C23—C24 1.366 (3) C55A—H55A 0.9600
C23—H23 0.9300 C55A—H55B 0.9600
C24—C25 1.363 (3) C55A—H55C 0.9600
C24—H24 0.9300 C48B—C49B 1.3900
C25—C26 1.357 (3) C48B—C53B 1.3900
C25—Cl2 1.732 (2) C49B—C50B 1.3900
C26—C27 1.377 (3) C49B—C55B 1.497 (13)
C26—H26 0.9300 C50B—C51B 1.3900
C27—H27 0.9300 C50B—H50B 0.9300
N2—C28 1.422 (2) C51B—C52B 1.3900
N2—H2 0.8600 C51B—H51B 0.9300
C28—C33 1.375 (3) C52B—C53B 1.3900
C28—C29 1.378 (3) C52B—H52B 0.9300
C29—C30 1.376 (3) C53B—C54B 1.488 (13)
C29—C35 1.505 (3) C54B—H54D 0.9600
C30—C31 1.340 (4) C54B—H54E 0.9600
C30—H30 0.9300 C54B—H54F 0.9600
C31—C32 1.361 (4) C55B—H55D 0.9600
C31—H31 0.9300 C55B—H55E 0.9600
C32—C33 1.386 (3) C55B—H55F 0.9600
C32—H32 0.9300
O1—C1—N1 121.69 (18) C33—C32—H32 119.6
O1—C1—C2 120.68 (17) C28—C33—C32 117.9 (2)
N1—C1—C2 117.63 (16) C28—C33—C34 120.5 (2)
C7—C2—C3 118.21 (19) C32—C33—C34 121.6 (2)
C7—C2—C1 122.03 (18) C33—C34—H34A 109.5
C3—C2—C1 119.7 (2) C33—C34—H34B 109.5
C2—C3—C4 120.9 (2) H34A—C34—H34B 109.5
C2—C3—H3 119.5 C33—C34—H34C 109.5
C4—C3—H3 119.5 H34A—C34—H34C 109.5
C5—C4—C3 119.3 (2) H34B—C34—H34C 109.5
C5—C4—H4 120.4 C29—C35—H35A 109.5
C3—C4—H4 120.4 C29—C35—H35B 109.5
C6—C5—C4 121.1 (2) H35A—C35—H35B 109.5
C6—C5—Cl1 119.5 (2) C29—C35—H35C 109.5
C4—C5—Cl1 119.3 (2) H35A—C35—H35C 109.5
C5—C6—C7 119.1 (2) H35B—C35—H35C 109.5
C5—C6—H6 120.4 O3—C41—N3 121.64 (19)
C7—C6—H6 120.4 O3—C41—C42 120.69 (18)
C2—C7—C6 121.3 (2) N3—C41—C42 117.67 (18)
C2—C7—H7 119.4 C43—C42—C47 117.8 (2)
C6—C7—H7 119.4 C43—C42—C41 118.59 (19)
C1—N1—C8 121.57 (15) C47—C42—C41 123.64 (18)
C1—N1—H1 119.2 C44—C43—C42 121.9 (2)
C8—N1—H1 119.2 C44—C43—H43 119.0
C9—C8—C13 121.77 (19) C42—C43—H43 119.0
C9—C8—N1 119.7 (2) C45—C44—C43 119.3 (2)
C13—C8—N1 118.55 (19) C45—C44—H44 120.4
C10—C9—C8 117.6 (3) C43—C44—H44 120.4
C10—C9—C15 121.4 (3) C44—C45—C46 120.4 (2)
C8—C9—C15 121.0 (2) C44—C45—Cl3 120.2 (2)
C11—C10—C9 121.1 (3) C46—C45—Cl3 119.4 (2)
C11—C10—H10 119.4 C45—C46—C47 119.6 (2)
C9—C10—H10 119.4 C45—C46—H46 120.2
C12—C11—C10 120.3 (3) C47—C46—H46 120.2
C12—C11—H11 119.8 C46—C47—C42 121.0 (2)
C10—C11—H11 119.8 C46—C47—H47 119.5
C11—C12—C13 121.4 (3) C42—C47—H47 119.5
C11—C12—H12 119.3 C41—N3—C48A 120.0 (4)
C13—C12—H12 119.3 C41—N3—C48B 126.6 (5)
C12—C13—C8 117.8 (2) C48A—N3—C48B 15.1 (5)
C12—C13—C14 121.2 (2) C41—N3—H3A 120.0
C8—C13—C14 121.0 (2) C48A—N3—H3A 120.0
C13—C14—H14A 109.5 C48B—N3—H3A 111.7
C13—C14—H14B 109.5 N3—C48A—C49A 121.1 (4)
H14A—C14—H14B 109.5 N3—C48A—C53A 118.5 (4)
C13—C14—H14C 109.5 C49A—C48A—C53A 120.0
H14A—C14—H14C 109.5 C50A—C49A—C48A 120.0
H14B—C14—H14C 109.5 C50A—C49A—C55A 119.6 (5)
C9—C15—H15A 109.5 C48A—C49A—C55A 120.1 (5)
C9—C15—H15B 109.5 C49A—C50A—C51A 120.0
H15A—C15—H15B 109.5 C49A—C50A—H50A 120.0
C9—C15—H15C 109.5 C51A—C50A—H50A 120.0
H15A—C15—H15C 109.5 C50A—C51A—C52A 120.0
H15B—C15—H15C 109.5 C50A—C51A—H51A 120.0
O2—C21—N2 122.20 (17) C52A—C51A—H51A 120.0
O2—C21—C22 119.60 (16) C53A—C52A—C51A 120.0
N2—C21—C22 118.20 (16) C53A—C52A—H52A 120.0
C27—C22—C23 117.79 (17) C51A—C52A—H52A 120.0
C27—C22—C21 124.24 (17) C52A—C53A—C48A 120.0
C23—C22—C21 117.94 (16) C52A—C53A—C54A 120.4 (7)
C24—C23—C22 122.03 (19) C48A—C53A—C54A 119.4 (7)
C24—C23—H23 119.0 C49B—C48B—C53B 120.0
C22—C23—H23 119.0 C49B—C48B—N3 119.8 (5)
C25—C24—C23 118.89 (19) C53B—C48B—N3 120.2 (5)
C25—C24—H24 120.6 C48B—C49B—C50B 120.0
C23—C24—H24 120.6 C48B—C49B—C55B 117.9 (7)
C26—C25—C24 120.72 (19) C50B—C49B—C55B 121.6 (7)
C26—C25—Cl2 120.13 (18) C51B—C50B—C49B 120.0
C24—C25—Cl2 119.15 (17) C51B—C50B—H50B 120.0
C25—C26—C27 119.9 (2) C49B—C50B—H50B 120.0
C25—C26—H26 120.0 C52B—C51B—C50B 120.0
C27—C26—H26 120.0 C52B—C51B—H51B 120.0
C22—C27—C26 120.60 (19) C50B—C51B—H51B 120.0
C22—C27—H27 119.7 C51B—C52B—C53B 120.0
C26—C27—H27 119.7 C51B—C52B—H52B 120.0
C21—N2—C28 123.50 (15) C53B—C52B—H52B 120.0
C21—N2—H2 118.2 C52B—C53B—C48B 120.0
C28—N2—H2 118.2 C52B—C53B—C54B 120.7 (9)
C33—C28—C29 121.41 (19) C48B—C53B—C54B 119.2 (9)
C33—C28—N2 118.86 (18) C53B—C54B—H54D 109.4
C29—C28—N2 119.69 (18) C53B—C54B—H54E 109.5
C30—C29—C28 118.3 (2) H54D—C54B—H54E 109.5
C30—C29—C35 120.6 (2) C53B—C54B—H54F 109.5
C28—C29—C35 121.2 (2) H54D—C54B—H54F 109.5
C31—C30—C29 121.4 (3) H54E—C54B—H54F 109.5
C31—C30—H30 119.3 C49B—C55B—H55D 109.5
C29—C30—H30 119.3 C49B—C55B—H55E 109.5
C30—C31—C32 120.3 (3) H55D—C55B—H55E 109.5
C30—C31—H31 119.8 C49B—C55B—H55F 109.5
C32—C31—H31 119.8 H55D—C55B—H55F 109.5
C31—C32—C33 120.8 (3) H55E—C55B—H55F 109.5
C31—C32—H32 119.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.02 2.8585 (19) 165
N2—H2···O3 0.86 1.96 2.778 (2) 158
N3—H3A···O1i 0.86 1.99 2.814 (2) 161

Symmetry codes: (i) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2356).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  6. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340. [DOI] [PMC free article] [PubMed]
  7. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019120/dn2356sup1.cif

e-64-o1365-sup1.cif (29.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019120/dn2356Isup2.hkl

e-64-o1365-Isup2.hkl (386.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES