Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1267–o1268. doi: 10.1107/S1600536808017431

Swietenolide monohydrate

Seok-Keik Tan a, Hasnah Osman a,, Keng-Chong Wong a, Hoong-Kun Fun b,*, Suchada Chantrapromma c,§
PMCID: PMC2961806  PMID: 21202901

Abstract

The title compound, a natural b,d-seco-limonoid, C27H34O8·H2O, and known as Swietenolide monohydrate, has been isolated from S. macrophylla King. In the molecular structure, the four fused six-membered rings adopt twist-boat (ring A), approximate chair (ring B), envelope (ring C) and half-chair (ring D) conformations. The attached furan ring is essentially planar. O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions connect the mol­ecules into a two-dimensional network parallel to the (100) plane. C—H⋯π inter­actions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Fowles et al. (2007); Solomon et al. (2003). For the bioactivities of Swietenolide, see, for example: Chan et al. (1976); Jean et al. (2000); Kipassa et al. (2008); Munoz et al. (2000); Soediro et al. (1990).graphic file with name e-64-o1267-scheme1.jpg

Experimental

Crystal data

  • C27H34O8·H2O

  • M r = 504.56

  • Monoclinic, Inline graphic

  • a = 11.5897 (1) Å

  • b = 8.8972 (1) Å

  • c = 11.7397 (1) Å

  • β = 90.571 (1)°

  • V = 1210.49 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.26 × 0.15 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.949, T max = 0.985

  • 29214 measured reflections

  • 3748 independent reflections

  • 3473 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.102

  • S = 1.06

  • 3748 reflections

  • 336 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017431/is2302sup1.cif

e-64-o1267-sup1.cif (28.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017431/is2302Isup2.hkl

e-64-o1267-Isup2.hkl (183.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1Wi 0.82 2.02 2.835 (2) 171
O5—H5A⋯O1Wii 0.82 2.05 2.760 (2) 144
O1W—H1W1⋯O1iii 0.84 (2) 1.98 (3) 2.809 (2) 169 (3)
O1W—H2W1⋯O6 0.842 (19) 1.994 (19) 2.821 (2) 167 (3)
C1—H1A⋯O1iv 0.98 2.38 3.325 (2) 160
C3—H3A⋯O2 0.98 2.57 3.032 (2) 109
C3—H3A⋯O7 0.98 2.40 2.861 (2) 108
C7—H7A⋯O2 0.97 2.34 2.690 (2) 100
C7—H7B⋯O4v 0.97 2.38 3.282 (2) 155
C21—H21B⋯O1 0.96 2.59 3.459 (2) 150
C21—H21C⋯O5 0.96 2.46 3.077 (3) 122
C27—H27B⋯O3 0.96 2.57 2.911 (2) 101
C23—H23ACg1vi 0.98 3.04 3.884 (2) 146
C25—H25ACg1vii 0.96 3.15 3.981 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic. Cg1 is the centroid of the C17–C20/O8 furan ring.

Acknowledgments

The authors thank Universiti Sains Malaysia for the University Golden Goose (grant No. 1001/PFIZIK/811012) and the Malaysian Government for the E-Science Fund (grant No. 305/PKIMIA/613411).

supplementary crystallographic information

Comment

Swietenia macrophylla King (Meliaceae) or locally known as Big-leaf mahogany is an evergreen tree that reaches 45 to 60 meter in height. The decoction of the seeds of Swietenia macrophylla King was used traditionally to induce abortion, to heal wounds and to treat various skin ailments (Munoz et al., 2000). In Malaysia, the seeds were ingested by local folks to provide cure for high blood pressure (Chan et al., 1976). The bark extract of Swietenia macrophylla King was also found to be active in antimalaria activity (Soediro et al., 1990). In a continual research on this plant, the leaf extracts of S. macrophylla were examined. The title compound, (I), (systematic name: 7,11-Methano-2H-cycloocta[f][2]benzopyran-8-acetic acid, 4-(3-furanyl)-1,4,4a,5,6,6a,7,8,9,10,11,12-dodecahydro-α,10-dihydroxy- 4a,7,9,9-tetramethyl-2,13-dioxo-methyl ester monohydrate) has been isolated from the n-hexane extract. It has been shown to possess biological activities such as antimalaria (Jean et al., 2000) and antifeedant (Kipassa et al., 2008).

The title molecule (Fig. 1) has four fused six-membered rings (A/B/C/D). The conformations adopted by rings A, B, C and D are twist boat, approximate chair, envelope and half-chair, respectively, with the puckering parameter (Cremer & Pople, 1975) Q = 0.774 (2) Å, θ = 85.0 (1)° and φ = 72.70 (15)° for ring A; Q = 0.642 (2) Å, θ = 161.9 (2)° and φ = 200.9 (6)° for ring B; Q = 0.460 (2) Å, θ = 127.4 (2)° and φ = 354.3 (3)° for ring C, with atom C11 displaced from the C8/C9/C10/C12/C13 plane by 0.329 (2) Å; and Q = 0.587 (2) Å, θ = 111.3 (2)° and φ = 93.72 (19)° for ring D, with the C12 and C16 pucker atoms deviating from the C13—C15/O3 plane by 0.343 (2) Å and -0.384 (2) Å, respectively. The furan ring (C17—C20/O8) is planar and is attached equatorially to lactone ring D, the torsion angle C12–C16–C17–C20 being 101.9 (2)°. The orientation of the acetic acid, 2-hydroxy-methyl ester group (C23—C25/O5—O7) at C3 can be indicated by the torsion angles of C2–C3–C23–O5 = -46.9 (2)° and C2–C3–C23–C24 = 73.2 (2)° and the methyoxyl group is slightly deviated with respect to the carbonyl group with the torsion angle C25–O7–C24–O6 of 6.5 (3)°. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (Fowles et al., 2007; Solomon et al., 2003).

In the crystal packing (Fig. 2), O—H···O hydrogen bonds and weak C—H···O interactions connect the molecules into two-dimensional network parallel to the (1 0 0) plane. O—H···O hydrogen bonds between the water and swietenolide molecules together with weak C—H···O intra- and intermolecular interactions (Table 1) play an important role in the stabilization of the crystal structure. C—H···π interactions involving furan ring (C17—C20/O8, centroid Cg1) are also observed in the crystal (Table 1).

Experimental

Air-dried powdered leaves of S. macrophylla were extracted with n-hexane, CH2Cl2 and MeOH (5 L each) for five days respectively at room temperature. The solvents were evaporated under reduced pressure to afford n-hexane extract (12.8 g), CH2Cl2 extract (18.2 g) and MeOH extract (107.8 g). The n-hexane extract was subjected to column chromatography using silica gel with petroleum ether-ethyl acetate gradient to afford seven fractions (M1—M7). Fraction M7 (1.05 g) was further separated by preparative TLC with eluent system n-hexane–ethyl acetate (5:1 v/v) to afford three sub-fractions (M7a—M7c). Fraction M7b was recrystallized from CHCl3 to yield white single crystals of the title compound (m.p. 494–495 K).

Refinement

Water H atoms are located in a difference map and the positional parameters were refined, with a distance restraint of O—H = 0.80 (1) Å, and with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed in calculated positions with d(O—H) = 0.82 Å, Uiso = 1.2Ueq(O), d(C—H) = 0.97–0.98 Å, Uiso = 1.2Ueq(C) for CH and aromatic, and d(C—H) = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. As there is no large anomalous dispersion for the determination of the absolute configuration, a total of 3299 Friedel pairs were merged before final refinement.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering scheme. O—H···O hydrogen bond is drawn as dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed approximately along the a axis. Hydrogen bonds are drawn as dash lines.

Crystal data

C27H34O8·H2O F000 = 540
Mr = 504.56 Dx = 1.384 Mg m3
Monoclinic, P21 Melting point = 494–495 K
Hall symbol: P 2yb Mo Kα radiation λ = 0.71073 Å
a = 11.5897 (1) Å Cell parameters from 3748 reflections
b = 8.8972 (1) Å θ = 1.7–30.0º
c = 11.7397 (1) Å µ = 0.10 mm1
β = 90.571 (1)º T = 100.0 (1) K
V = 1210.49 (2) Å3 Block, white
Z = 2 0.51 × 0.26 × 0.15 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 3748 independent reflections
Radiation source: fine-focus sealed tube 3473 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 1.7º
ω scans h = −16→16
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −12→12
Tmin = 0.949, Tmax = 0.985 l = −16→16
29214 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102   w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2523P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3748 reflections Δρmax = 0.60 e Å3
336 parameters Δρmin = −0.30 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14701 (12) 0.92970 (17) −0.07457 (11) 0.0202 (3)
O2 0.15836 (12) 0.51412 (17) 0.17362 (12) 0.0215 (3)
H2A 0.1147 0.4506 0.1998 0.032*
O3 0.59393 (12) 0.49859 (16) 0.32385 (11) 0.0178 (3)
O4 0.59920 (14) 0.30211 (18) 0.21195 (12) 0.0249 (3)
O5 0.05304 (14) 1.03697 (19) 0.33979 (13) 0.0281 (3)
H5A 0.0630 1.1155 0.3046 0.042*
O6 0.09281 (15) 0.89163 (19) 0.52750 (12) 0.0286 (3)
O7 0.23735 (14) 0.75766 (18) 0.45318 (12) 0.0254 (3)
O8 0.63962 (14) 0.8207 (2) 0.61555 (13) 0.0307 (4)
C1 0.09219 (16) 0.6289 (2) 0.11769 (16) 0.0174 (3)
H1A 0.0221 0.5819 0.0869 0.021*
C2 0.05482 (16) 0.7551 (2) 0.19977 (16) 0.0176 (3)
C3 0.16498 (16) 0.8467 (2) 0.22950 (15) 0.0157 (3)
H3A 0.2238 0.7719 0.2495 0.019*
C4 0.21274 (15) 0.9309 (2) 0.12163 (15) 0.0148 (3)
C5 0.16505 (15) 0.8578 (2) 0.01271 (16) 0.0168 (3)
C6 0.16287 (16) 0.6893 (2) 0.01549 (16) 0.0165 (3)
H6A 0.1268 0.6532 −0.0552 0.020*
C7 0.29236 (15) 0.6434 (2) 0.01551 (15) 0.0160 (3)
H7A 0.2981 0.5369 0.0322 0.019*
H7B 0.3227 0.6592 −0.0602 0.019*
C8 0.36654 (15) 0.7287 (2) 0.10020 (15) 0.0153 (3)
C9 0.34658 (16) 0.8973 (2) 0.10259 (16) 0.0162 (3)
H9A 0.3632 0.9326 0.0254 0.019*
C10 0.43068 (17) 0.9823 (2) 0.18131 (17) 0.0199 (4)
H10A 0.4973 1.0128 0.1376 0.024*
H10B 0.3932 1.0726 0.2086 0.024*
C11 0.47154 (16) 0.8905 (2) 0.28303 (16) 0.0189 (4)
H11A 0.4065 0.8699 0.3320 0.023*
H11B 0.5275 0.9485 0.3265 0.023*
C12 0.52646 (15) 0.7415 (2) 0.24632 (15) 0.0150 (3)
C13 0.44704 (16) 0.6598 (2) 0.16417 (15) 0.0152 (3)
C14 0.46133 (16) 0.4901 (2) 0.15927 (15) 0.0171 (3)
H14A 0.3891 0.4444 0.1820 0.021*
H14B 0.4744 0.4619 0.0806 0.021*
C15 0.55661 (17) 0.4233 (2) 0.23106 (16) 0.0188 (4)
C16 0.53698 (15) 0.6395 (2) 0.35230 (15) 0.0156 (3)
H16A 0.4589 0.6161 0.3783 0.019*
C17 0.60331 (16) 0.7034 (2) 0.45044 (16) 0.0173 (3)
C18 0.72511 (18) 0.7205 (3) 0.46494 (18) 0.0241 (4)
H18A 0.7817 0.6882 0.4150 0.029*
C19 0.74236 (19) 0.7921 (3) 0.56442 (19) 0.0246 (4)
H19A 0.8142 0.8184 0.5942 0.030*
C20 0.55640 (19) 0.7630 (3) 0.54466 (18) 0.0284 (5)
H20A 0.4778 0.7646 0.5596 0.034*
C21 −0.04291 (17) 0.8461 (3) 0.14183 (18) 0.0234 (4)
H21A −0.1041 0.7793 0.1193 0.035*
H21B −0.0134 0.8963 0.0759 0.035*
H21C −0.0720 0.9192 0.1944 0.035*
C22 0.00204 (18) 0.6826 (2) 0.30642 (17) 0.0227 (4)
H22A −0.0592 0.6160 0.2839 0.034*
H22B −0.0280 0.7598 0.3550 0.034*
H22C 0.0605 0.6270 0.3468 0.034*
C23 0.15457 (18) 0.9491 (2) 0.33581 (15) 0.0196 (4)
H23A 0.2207 1.0177 0.3366 0.024*
C24 0.1553 (2) 0.8629 (2) 0.44867 (17) 0.0238 (4)
C25 0.2369 (2) 0.6683 (3) 0.55726 (19) 0.0297 (5)
H25A 0.2941 0.5906 0.5523 0.045*
H25B 0.1622 0.6236 0.5667 0.045*
H25C 0.2541 0.7318 0.6213 0.045*
C26 0.19021 (17) 1.0997 (2) 0.11612 (16) 0.0189 (4)
H26A 0.1087 1.1175 0.1091 0.028*
H26B 0.2287 1.1414 0.0513 0.028*
H26C 0.2190 1.1465 0.1844 0.028*
C27 0.64551 (17) 0.7674 (2) 0.19245 (17) 0.0207 (4)
H27A 0.6370 0.8298 0.1262 0.031*
H27B 0.6782 0.6725 0.1710 0.031*
H27C 0.6956 0.8161 0.2466 0.031*
O1W 0.01243 (14) 0.81352 (19) 0.74563 (13) 0.0267 (3)
H1W1 0.058 (2) 0.838 (4) 0.798 (2) 0.040*
H2W1 0.044 (2) 0.825 (4) 0.6819 (14) 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0206 (6) 0.0259 (7) 0.0140 (6) 0.0037 (6) −0.0005 (5) 0.0029 (5)
O2 0.0224 (7) 0.0211 (7) 0.0212 (7) 0.0004 (6) 0.0047 (5) 0.0050 (6)
O3 0.0198 (6) 0.0185 (6) 0.0152 (6) 0.0036 (5) 0.0005 (5) −0.0004 (5)
O4 0.0310 (8) 0.0233 (7) 0.0205 (7) 0.0089 (6) −0.0003 (6) −0.0039 (6)
O5 0.0347 (9) 0.0249 (8) 0.0249 (7) 0.0099 (7) 0.0088 (6) 0.0019 (6)
O6 0.0422 (9) 0.0274 (8) 0.0161 (7) 0.0006 (7) 0.0064 (6) −0.0004 (6)
O7 0.0362 (8) 0.0245 (7) 0.0155 (6) 0.0021 (7) 0.0004 (6) 0.0027 (6)
O8 0.0296 (8) 0.0385 (9) 0.0238 (7) 0.0001 (7) −0.0045 (6) −0.0118 (7)
C1 0.0154 (8) 0.0208 (9) 0.0160 (8) −0.0025 (7) 0.0013 (6) 0.0009 (7)
C2 0.0150 (8) 0.0217 (9) 0.0162 (8) −0.0008 (7) 0.0025 (6) 0.0003 (7)
C3 0.0187 (8) 0.0174 (8) 0.0109 (7) 0.0001 (6) 0.0019 (6) 0.0009 (6)
C4 0.0157 (8) 0.0172 (8) 0.0115 (7) 0.0016 (6) 0.0018 (6) 0.0005 (6)
C5 0.0114 (7) 0.0223 (9) 0.0167 (8) 0.0011 (7) 0.0014 (6) 0.0006 (7)
C6 0.0151 (8) 0.0214 (9) 0.0130 (8) −0.0011 (7) −0.0002 (6) −0.0002 (7)
C7 0.0157 (8) 0.0194 (8) 0.0129 (7) −0.0005 (7) 0.0014 (6) −0.0014 (6)
C8 0.0138 (8) 0.0175 (8) 0.0145 (8) −0.0005 (6) 0.0028 (6) −0.0004 (6)
C9 0.0158 (8) 0.0169 (8) 0.0160 (8) −0.0009 (6) 0.0004 (6) 0.0012 (6)
C10 0.0183 (8) 0.0161 (8) 0.0252 (9) −0.0013 (7) −0.0041 (7) 0.0018 (7)
C11 0.0178 (8) 0.0177 (9) 0.0211 (9) 0.0002 (7) −0.0033 (7) −0.0019 (7)
C12 0.0130 (7) 0.0167 (8) 0.0154 (8) −0.0001 (6) 0.0001 (6) 0.0007 (6)
C13 0.0145 (8) 0.0173 (8) 0.0138 (8) −0.0003 (6) 0.0029 (6) −0.0008 (6)
C14 0.0193 (8) 0.0180 (8) 0.0141 (8) 0.0024 (7) 0.0015 (6) −0.0005 (6)
C15 0.0212 (9) 0.0210 (9) 0.0143 (8) 0.0024 (7) 0.0027 (6) 0.0004 (7)
C16 0.0146 (8) 0.0182 (8) 0.0141 (8) 0.0011 (6) 0.0014 (6) −0.0007 (6)
C17 0.0161 (8) 0.0187 (8) 0.0170 (8) 0.0011 (7) −0.0004 (6) 0.0006 (7)
C18 0.0179 (9) 0.0307 (11) 0.0237 (10) 0.0016 (8) −0.0014 (7) 0.0001 (8)
C19 0.0223 (10) 0.0262 (10) 0.0253 (10) −0.0013 (8) −0.0072 (8) 0.0019 (8)
C20 0.0219 (9) 0.0410 (12) 0.0223 (10) 0.0003 (9) 0.0001 (7) −0.0116 (9)
C21 0.0162 (8) 0.0321 (11) 0.0218 (9) 0.0018 (8) 0.0020 (7) 0.0011 (8)
C22 0.0249 (10) 0.0241 (10) 0.0193 (9) −0.0040 (8) 0.0062 (8) 0.0008 (7)
C23 0.0273 (10) 0.0183 (8) 0.0134 (8) 0.0012 (7) 0.0041 (7) 0.0004 (7)
C24 0.0360 (11) 0.0195 (9) 0.0158 (9) −0.0037 (8) 0.0003 (7) −0.0007 (7)
C25 0.0349 (12) 0.0294 (11) 0.0248 (10) 0.0016 (9) −0.0009 (9) 0.0061 (9)
C26 0.0221 (9) 0.0189 (8) 0.0156 (8) 0.0026 (7) 0.0019 (7) 0.0025 (7)
C27 0.0169 (8) 0.0252 (9) 0.0200 (9) −0.0019 (7) 0.0031 (7) 0.0035 (8)
O1W 0.0309 (8) 0.0285 (8) 0.0209 (7) −0.0014 (7) 0.0036 (6) −0.0020 (6)

Geometric parameters (Å, °)

O1—C5 1.224 (2) C11—C12 1.534 (3)
O2—C1 1.432 (2) C11—H11A 0.9700
O2—H2A 0.8200 C11—H11B 0.9700
O3—C15 1.346 (2) C12—C13 1.513 (3)
O3—C16 1.457 (2) C12—C27 1.541 (3)
O4—C15 1.208 (2) C12—C16 1.544 (3)
O5—C23 1.414 (2) C13—C14 1.521 (3)
O5—H5A 0.8200 C14—C15 1.504 (3)
O6—C24 1.208 (3) C14—H14A 0.9700
O7—C24 1.335 (3) C14—H14B 0.9700
O7—C25 1.458 (3) C16—C17 1.491 (3)
O8—C19 1.363 (3) C16—H16A 0.9800
O8—C20 1.368 (3) C17—C20 1.346 (3)
C1—C2 1.545 (3) C17—C18 1.428 (3)
C1—C6 1.555 (3) C18—C19 1.344 (3)
C1—H1A 0.9800 C18—H18A 0.9300
C2—C22 1.540 (3) C19—H19A 0.9300
C2—C21 1.544 (3) C20—H20A 0.9300
C2—C3 1.552 (3) C21—H21A 0.9600
C3—C23 1.551 (3) C21—H21B 0.9600
C3—C4 1.577 (2) C21—H21C 0.9600
C3—H3A 0.9800 C22—H22A 0.9600
C4—C26 1.526 (3) C22—H22B 0.9600
C4—C5 1.533 (3) C22—H22C 0.9600
C4—C9 1.598 (2) C23—C24 1.531 (3)
C5—C6 1.500 (3) C23—H23A 0.9800
C6—C7 1.555 (3) C25—H25A 0.9600
C6—H6A 0.9800 C25—H25B 0.9600
C7—C8 1.512 (3) C25—H25C 0.9600
C7—H7A 0.9700 C26—H26A 0.9600
C7—H7B 0.9700 C26—H26B 0.9600
C8—C13 1.340 (3) C26—H26C 0.9600
C8—C9 1.518 (3) C27—H27A 0.9600
C9—C10 1.536 (3) C27—H27B 0.9600
C9—H9A 0.9800 C27—H27C 0.9600
C10—C11 1.518 (3) O1W—H1W1 0.834 (10)
C10—H10A 0.9700 O1W—H2W1 0.843 (10)
C10—H10B 0.9700
C1—O2—H2A 109.5 C8—C13—C12 123.60 (17)
C15—O3—C16 118.08 (15) C8—C13—C14 120.57 (17)
C23—O5—H5A 109.5 C12—C13—C14 115.82 (16)
C24—O7—C25 114.02 (17) C15—C14—C13 116.77 (17)
C19—O8—C20 106.00 (16) C15—C14—H14A 108.1
O2—C1—C2 112.61 (15) C13—C14—H14A 108.1
O2—C1—C6 108.45 (15) C15—C14—H14B 108.1
C2—C1—C6 112.51 (16) C13—C14—H14B 108.1
O2—C1—H1A 107.7 H14A—C14—H14B 107.3
C2—C1—H1A 107.7 O4—C15—O3 117.75 (18)
C6—C1—H1A 107.7 O4—C15—C14 123.19 (18)
C22—C2—C21 106.37 (16) O3—C15—C14 119.02 (16)
C22—C2—C1 108.60 (16) O3—C16—C17 105.89 (15)
C21—C2—C1 108.38 (15) O3—C16—C12 110.70 (14)
C22—C2—C3 111.68 (15) C17—C16—C12 115.75 (16)
C21—C2—C3 114.95 (17) O3—C16—H16A 108.1
C1—C2—C3 106.68 (14) C17—C16—H16A 108.1
C23—C3—C2 114.79 (15) C12—C16—H16A 108.1
C23—C3—C4 113.45 (15) C20—C17—C18 105.48 (18)
C2—C3—C4 111.33 (14) C20—C17—C16 125.14 (18)
C23—C3—H3A 105.4 C18—C17—C16 129.34 (17)
C2—C3—H3A 105.4 C19—C18—C17 107.01 (19)
C4—C3—H3A 105.4 C19—C18—H18A 126.5
C26—C4—C5 108.80 (15) C17—C18—H18A 126.5
C26—C4—C3 116.15 (15) C18—C19—O8 110.39 (19)
C5—C4—C3 109.99 (15) C18—C19—H19A 124.8
C26—C4—C9 110.15 (15) O8—C19—H19A 124.8
C5—C4—C9 98.41 (13) C17—C20—O8 111.09 (19)
C3—C4—C9 111.86 (14) C17—C20—H20A 124.5
O1—C5—C6 122.52 (18) O8—C20—H20A 124.5
O1—C5—C4 122.26 (17) C2—C21—H21A 109.5
C6—C5—C4 114.33 (16) C2—C21—H21B 109.5
C5—C6—C7 104.25 (15) H21A—C21—H21B 109.5
C5—C6—C1 111.81 (16) C2—C21—H21C 109.5
C7—C6—C1 115.12 (16) H21A—C21—H21C 109.5
C5—C6—H6A 108.5 H21B—C21—H21C 109.5
C7—C6—H6A 108.5 C2—C22—H22A 109.5
C1—C6—H6A 108.5 C2—C22—H22B 109.5
C8—C7—C6 114.23 (15) H22A—C22—H22B 109.5
C8—C7—H7A 108.7 C2—C22—H22C 109.5
C6—C7—H7A 108.7 H22A—C22—H22C 109.5
C8—C7—H7B 108.7 H22B—C22—H22C 109.5
C6—C7—H7B 108.7 O5—C23—C24 104.23 (15)
H7A—C7—H7B 107.6 O5—C23—C3 115.01 (16)
C13—C8—C7 121.79 (17) C24—C23—C3 113.71 (16)
C13—C8—C9 123.16 (17) O5—C23—H23A 107.9
C7—C8—C9 114.99 (16) C24—C23—H23A 107.9
C8—C9—C10 113.69 (16) C3—C23—H23A 107.9
C8—C9—C4 109.64 (15) O6—C24—O7 123.39 (19)
C10—C9—C4 115.77 (15) O6—C24—C23 124.0 (2)
C8—C9—H9A 105.6 O7—C24—C23 112.54 (17)
C10—C9—H9A 105.6 O7—C25—H25A 109.5
C4—C9—H9A 105.6 O7—C25—H25B 109.5
C11—C10—C9 113.56 (16) H25A—C25—H25B 109.5
C11—C10—H10A 108.9 O7—C25—H25C 109.5
C9—C10—H10A 108.9 H25A—C25—H25C 109.5
C11—C10—H10B 108.9 H25B—C25—H25C 109.5
C9—C10—H10B 108.9 C4—C26—H26A 109.5
H10A—C10—H10B 107.7 C4—C26—H26B 109.5
C10—C11—C12 111.75 (16) H26A—C26—H26B 109.5
C10—C11—H11A 109.3 C4—C26—H26C 109.5
C12—C11—H11A 109.3 H26A—C26—H26C 109.5
C10—C11—H11B 109.3 H26B—C26—H26C 109.5
C12—C11—H11B 109.3 C12—C27—H27A 109.5
H11A—C11—H11B 107.9 C12—C27—H27B 109.5
C13—C12—C11 110.05 (15) H27A—C27—H27B 109.5
C13—C12—C27 110.61 (15) C12—C27—H27C 109.5
C11—C12—C27 111.21 (16) H27A—C27—H27C 109.5
C13—C12—C16 105.90 (15) H27B—C27—H27C 109.5
C11—C12—C16 108.13 (14) H1W1—O1W—H2W1 110 (3)
C27—C12—C16 110.78 (15)
O2—C1—C2—C22 −48.6 (2) C10—C11—C12—C13 −50.7 (2)
C6—C1—C2—C22 −171.55 (16) C10—C11—C12—C27 72.3 (2)
O2—C1—C2—C21 −163.78 (15) C10—C11—C12—C16 −165.89 (15)
C6—C1—C2—C21 73.28 (19) C7—C8—C13—C12 177.37 (16)
O2—C1—C2—C3 71.90 (18) C9—C8—C13—C12 0.4 (3)
C6—C1—C2—C3 −51.0 (2) C7—C8—C13—C14 −4.0 (3)
C22—C2—C3—C23 −44.9 (2) C9—C8—C13—C14 178.97 (17)
C21—C2—C3—C23 76.4 (2) C11—C12—C13—C8 23.8 (2)
C1—C2—C3—C23 −163.39 (15) C27—C12—C13—C8 −99.5 (2)
C22—C2—C3—C4 −175.47 (16) C16—C12—C13—C8 140.46 (17)
C21—C2—C3—C4 −54.2 (2) C11—C12—C13—C14 −154.82 (15)
C1—C2—C3—C4 66.01 (19) C27—C12—C13—C14 81.9 (2)
C23—C3—C4—C26 −26.9 (2) C16—C12—C13—C14 −38.18 (19)
C2—C3—C4—C26 104.35 (19) C8—C13—C14—C15 177.96 (16)
C23—C3—C4—C5 −151.03 (16) C12—C13—C14—C15 −3.4 (2)
C2—C3—C4—C5 −19.7 (2) C16—O3—C15—O4 −175.46 (16)
C23—C3—C4—C9 100.69 (18) C16—O3—C15—C14 2.0 (2)
C2—C3—C4—C9 −128.02 (16) C13—C14—C15—O4 −157.87 (18)
C26—C4—C5—O1 20.6 (2) C13—C14—C15—O3 24.8 (2)
C3—C4—C5—O1 148.82 (17) C15—O3—C16—C17 −174.57 (15)
C9—C4—C5—O1 −94.16 (19) C15—O3—C16—C12 −48.4 (2)
C26—C4—C5—C6 −169.93 (15) C13—C12—C16—O3 64.86 (17)
C3—C4—C5—C6 −41.7 (2) C11—C12—C16—O3 −177.22 (14)
C9—C4—C5—C6 75.35 (17) C27—C12—C16—O3 −55.1 (2)
O1—C5—C6—C7 101.4 (2) C13—C12—C16—C17 −174.66 (15)
C4—C5—C6—C7 −68.06 (18) C11—C12—C16—C17 −56.7 (2)
O1—C5—C6—C1 −133.60 (18) C27—C12—C16—C17 65.4 (2)
C4—C5—C6—C1 56.9 (2) O3—C16—C17—C20 −135.1 (2)
O2—C1—C6—C5 −132.57 (17) C12—C16—C17—C20 101.9 (2)
C2—C1—C6—C5 −7.3 (2) O3—C16—C17—C18 47.3 (3)
O2—C1—C6—C7 −13.8 (2) C12—C16—C17—C18 −75.7 (3)
C2—C1—C6—C7 111.39 (18) C20—C17—C18—C19 −1.6 (3)
C5—C6—C7—C8 47.4 (2) C16—C17—C18—C19 176.3 (2)
C1—C6—C7—C8 −75.5 (2) C17—C18—C19—O8 0.7 (3)
C6—C7—C8—C13 137.38 (17) C20—O8—C19—C18 0.5 (3)
C6—C7—C8—C9 −45.4 (2) C18—C17—C20—O8 2.0 (3)
C13—C8—C9—C10 2.5 (3) C16—C17—C20—O8 −176.02 (19)
C7—C8—C9—C10 −174.69 (15) C19—O8—C20—C17 −1.6 (3)
C13—C8—C9—C4 −128.88 (17) C2—C3—C23—O5 −46.9 (2)
C7—C8—C9—C4 54.0 (2) C4—C3—C23—O5 82.7 (2)
C26—C4—C9—C8 −176.16 (16) C2—C3—C23—C24 73.2 (2)
C5—C4—C9—C8 −62.51 (17) C4—C3—C23—C24 −157.22 (17)
C3—C4—C9—C8 53.1 (2) C25—O7—C24—O6 6.5 (3)
C26—C4—C9—C10 53.6 (2) C25—O7—C24—C23 −177.14 (18)
C5—C4—C9—C10 167.24 (15) O5—C23—C24—O6 −12.4 (3)
C3—C4—C9—C10 −77.2 (2) C3—C23—C24—O6 −138.4 (2)
C8—C9—C10—C11 −30.4 (2) O5—C23—C24—O7 171.26 (17)
C4—C9—C10—C11 97.84 (19) C3—C23—C24—O7 45.3 (2)
C9—C10—C11—C12 55.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1Wi 0.82 2.02 2.835 (2) 171
O5—H5A···O1Wii 0.82 2.05 2.760 (2) 144
O1W—H1W1···O1iii 0.84 (2) 1.98 (3) 2.809 (2) 169 (3)
O1W—H2W1···O6 0.842 (19) 1.994 (19) 2.821 (2) 167 (3)
C1—H1A···O1iv 0.98 2.39 3.325 (2) 160
C3—H3A···O2 0.98 2.57 3.032 (2) 109
C3—H3A···O7 0.98 2.40 2.861 (2) 108
C7—H7A···O2 0.97 2.34 2.690 (2) 100
C7—H7B···O4v 0.97 2.38 3.282 (2) 155
C21—H21B···O1 0.96 2.59 3.459 (2) 150
C21—H21C···O5 0.96 2.46 3.077 (3) 122
C27—H27B···O3 0.96 2.57 2.911 (2) 101
C23—H23A···Cg1vi 0.98 3.04 3.884 (2) 146
C25—H25A···Cg1vii 0.96 3.15 3.981 (3) 146

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x, y+1/2, −z+1; (iii) x, y, z+1; (iv) −x, y−1/2, −z; (v) −x+1, y+1/2, −z; (vi) −x+1, y+1/2, −z+1; (vii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2302).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chan, K. C., Tang, T. S. & Toh, H. T. (1976). Phytochemistry, 15, 429–430.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Fowles, R. G., Mootoo, B. S., Ramsewak, R., Reynolds, W. & Lough, A. J. (2007). Acta Cryst E63, o660–o661.
  6. Jean, B., Njikam, N., Johnson, A. F., Leonardo, K. B. & Pascal, R. (2000). J. Ethnopharmacol.69, 27–33.
  7. Kipassa, N. T., Iwagawa, T., Okamura, H., Doe, M., Morimoto, Y. & Nakatani, M. (2008). Phytochemistry, 69, 1782–1787. [DOI] [PubMed]
  8. Munoz, V., Sauvain, M., Bourdy, G., Callapa, J., Rojas, I., Vargas, L., Tae, A. & Deharo, E. (2000). J. Ethnopharmacol.69, 139–155. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Soediro, I., Padmawinata, K., Wattimena, J. R. & Sekita, S. (1990). Acta Pharm. Indones 15, 1–13.
  11. Solomon, K. A., Malathi, R., Rajan, S. S., Narasimhan, S. & Nethaji, M. (2003). Acta Cryst. E59, o1519–o1521.
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017431/is2302sup1.cif

e-64-o1267-sup1.cif (28.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017431/is2302Isup2.hkl

e-64-o1267-Isup2.hkl (183.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES