Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1270. doi: 10.1107/S1600536808017510

3,3-Dibromo-1-ethyl-1H-2,1-benzo­thiazin-4(3H)-one 2,2-dioxide

Muhammad Shafiq a, M Nawaz Tahir b,*, Islam Ullah Khan a, Saeed Ahmad c, Waseeq Ahmad Siddiqui d
PMCID: PMC2961809  PMID: 21202903

Abstract

In the mol­ecule of the title compound, C10H9Br2NO3S, the S atom is four-coordinated in distorted tetra­hedral configuration. The heterocyclic thia­zine ring adopts a twist conformation. An intra­molecular C—H⋯O hydrogen bond results in the formation of a non-planar five-membered ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the c axis.

Related literature

For related literature, see: Franzén (2000); Misu & Togo (2003); Shafiq et al. (2008); Tahir et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-64-o1270-scheme1.jpg

Experimental

Crystal data

  • C10H9Br2NO3S

  • M r = 383.06

  • Monoclinic, Inline graphic

  • a = 7.7979 (5) Å

  • b = 11.9645 (7) Å

  • c = 13.1231 (8) Å

  • β = 95.374 (3)°

  • V = 1218.98 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.82 mm−1

  • T = 296 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.400, T max = 0.508

  • 14754 measured reflections

  • 3281 independent reflections

  • 1708 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.221

  • S = 1.02

  • 3281 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.61 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017510/hk2472sup1.cif

e-64-o1270-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017510/hk2472Isup2.hkl

e-64-o1270-Isup2.hkl (97.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.52 3.390 (10) 157
C9—H9A⋯O1 0.97 2.38 2.876 (11) 111

Symmetry code: (i) Inline graphic.

Acknowledgments

Muhammad Shafiq greatfully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program.

supplementary crystallographic information

Comment

The synthesis of heterocyclic system is of continuing interest because a large number of biologically active molecules contain heterocyclic rings (Franzén, 2000). 2,1-Benzothiazine is a relatively unexplored ring system with respect to both its synthesis and biological activity, in which it belongs to an important heterocyclic class of compounds, although it finds a number of applications in medicinal chemistry. The derivatives of 2,1-benzothiazine are used as drugs for heart diseases and also show lipoxygenase inhibition activity (Misu & Togo, 2003). Recently we have reported the crystal structures of 1-ethyl-1H -2,1-benzothiazin-4(3H) one 2,2-dioxide, (II) (Shafiq et al., 2008) and 1-methyl-1H-2,1-benzothiazin-4(3H) one 2,2-dioxide, (III) (Tahir et al., 2008), in which they contain the same heterocyclic ring. We report herein the syntesis and crystal structure of the title compound, (I), which is obtained from the bromination of (II).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges, which are comparable with the corresponding values in (II). The S1-N1 [1.617 (6) Å], S1-C8 [1.792 (8) Å] and C7-C8 [1.540 (11) Å] bonds in (I) are reported as 1.6405 (15), 1.750 (2) and 1.510 (3) Å, respectively, in (II). The S atom is four-coordinated in distorted tetrahedral configuration (Table 1) by one N and one C atoms of the heterocyclic ring and two O atoms. Ring A (C1-C6) is, of course, planar, and it is oriented with respect to (S1/O1/O2) and (C8/Br1/Br2) planes at dihedral angles of 78.44 (32)° and 77.79 (28)°, respectively. Ring B (S1/N1/C1/C6-C8) adopts twisted conformation, having total puckering amplitude, QT, of 0.763 (2) Å (Cremer & Pople, 1975). The intra- molecular C-H···O hydrogen bond (Table 2) results in the formation of a non-planar five-membered ring C (O1/S1/N1/C9/H9A).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into infinine chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

Compound (I) was prepared by the reaction of (II) (34.0 mg, 0.15 mmol), N-bromosuccinimide (57.0 mg, 0.32 mmol) and dibenzoyl peroxide (2.1 mg, 0.009 mmol) in CCl4 (8 ml) by heating under reflux for 2 h. Crystals suitable for X-ray analysis were obtained by evaporating the solvent slowly at room temperature for about 7 d (m.p. 394-395 K).

Refinement

The highest peak and deepest hole in the final difference electron density map are located 1.27 and 1.61 Å from Br1 and Br2 atoms, respectively. H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C10H9Br2NO3S F000 = 744
Mr = 383.06 Dx = 2.087 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 708 reflections
a = 7.7979 (5) Å θ = 2.3–29.2º
b = 11.9645 (7) Å µ = 6.82 mm1
c = 13.1231 (8) Å T = 296 (2) K
β = 95.374 (3)º Prismatic, red
V = 1218.98 (13) Å3 0.15 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker KappaAPEXII CCD diffractometer 3281 independent reflections
Radiation source: fine-focus sealed tube 1708 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.059
Detector resolution: 7.40 pixels mm-1 θmax = 29.2º
T = 296(2) K θmin = 2.3º
ω scans h = −8→10
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −16→15
Tmin = 0.400, Tmax = 0.508 l = −17→18
14754 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.221   w = 1/[σ2(Fo2) + (0.1081P)2 + 4.0099P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3281 reflections Δρmax = 1.27 e Å3
154 parameters Δρmin = −1.61 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.97364 (12) 0.08723 (8) 0.18987 (7) 0.0520 (3)
Br2 0.71557 (15) −0.05878 (9) 0.04712 (7) 0.0616 (4)
S1 0.5854 (3) 0.09863 (16) 0.20346 (14) 0.0353 (5)
O1 0.5802 (9) 0.1912 (5) 0.1362 (5) 0.0554 (17)
O2 0.4378 (7) 0.0280 (5) 0.2029 (4) 0.0427 (14)
O3 0.7951 (9) −0.1813 (5) 0.2399 (5) 0.0521 (16)
N1 0.6503 (9) 0.1398 (5) 0.3180 (5) 0.0346 (15)
C1 0.6964 (10) 0.0579 (6) 0.3926 (6) 0.0296 (16)
C2 0.6905 (11) 0.0854 (7) 0.4974 (6) 0.0405 (19)
H2 0.6569 0.1565 0.5163 0.049*
C3 0.7351 (12) 0.0054 (9) 0.5708 (7) 0.051 (2)
H3 0.7337 0.0242 0.6395 0.062*
C4 0.7809 (13) −0.0996 (8) 0.5460 (7) 0.054 (2)
H4 0.8088 −0.1523 0.5970 0.064*
C5 0.7859 (11) −0.1275 (7) 0.4450 (6) 0.044 (2)
H5 0.8149 −0.2001 0.4278 0.053*
C6 0.7480 (10) −0.0488 (6) 0.3675 (6) 0.0319 (16)
C7 0.7694 (10) −0.0849 (6) 0.2634 (6) 0.0347 (17)
C8 0.7569 (10) 0.0054 (7) 0.1794 (6) 0.0348 (17)
C9 0.6490 (12) 0.2600 (6) 0.3460 (7) 0.047 (2)
H9A 0.5998 0.3023 0.2873 0.056*
H9B 0.5745 0.2700 0.4005 0.056*
C10 0.8162 (14) 0.3057 (8) 0.3789 (9) 0.065 (3)
H10A 0.8047 0.3832 0.3958 0.098*
H10B 0.8902 0.2984 0.3248 0.098*
H10C 0.8651 0.2657 0.4381 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0447 (6) 0.0622 (6) 0.0509 (6) −0.0139 (4) 0.0134 (4) −0.0031 (4)
Br2 0.0757 (8) 0.0722 (7) 0.0374 (5) −0.0052 (5) 0.0077 (5) −0.0101 (4)
S1 0.0405 (12) 0.0358 (10) 0.0293 (10) 0.0021 (9) 0.0010 (8) 0.0063 (8)
O1 0.069 (4) 0.048 (3) 0.049 (4) 0.003 (3) −0.001 (3) 0.021 (3)
O2 0.032 (3) 0.053 (4) 0.043 (3) −0.010 (3) 0.005 (3) −0.007 (3)
O3 0.074 (5) 0.035 (3) 0.047 (4) 0.009 (3) 0.010 (3) −0.009 (3)
N1 0.049 (4) 0.026 (3) 0.028 (3) 0.002 (3) 0.000 (3) −0.001 (2)
C1 0.027 (4) 0.031 (4) 0.030 (4) −0.006 (3) 0.000 (3) −0.002 (3)
C2 0.041 (5) 0.050 (5) 0.031 (4) −0.003 (4) 0.001 (4) −0.012 (4)
C3 0.057 (6) 0.066 (6) 0.032 (4) −0.012 (5) 0.005 (4) −0.005 (4)
C4 0.056 (6) 0.060 (6) 0.043 (5) −0.004 (5) −0.003 (4) 0.020 (4)
C5 0.046 (5) 0.044 (5) 0.044 (5) 0.000 (4) 0.009 (4) 0.014 (4)
C6 0.030 (4) 0.034 (4) 0.033 (4) −0.001 (3) 0.006 (3) −0.004 (3)
C7 0.031 (4) 0.035 (4) 0.038 (4) 0.001 (3) 0.000 (3) 0.000 (3)
C8 0.037 (5) 0.040 (4) 0.027 (4) −0.008 (4) 0.004 (3) −0.004 (3)
C9 0.058 (6) 0.026 (4) 0.056 (5) 0.013 (4) 0.005 (4) 0.000 (4)
C10 0.069 (7) 0.036 (5) 0.091 (8) −0.011 (5) 0.008 (6) −0.011 (5)

Geometric parameters (Å, °)

Br1—C8 1.947 (8) C3—H3 0.9300
Br2—C8 1.898 (7) C4—C5 1.371 (13)
S1—O1 1.415 (6) C4—H4 0.9300
S1—O2 1.428 (6) C5—C6 1.397 (11)
S1—N1 1.617 (6) C5—H5 0.9300
S1—C8 1.792 (8) C6—C7 1.457 (11)
O3—C7 1.215 (9) C7—C8 1.540 (11)
N1—C1 1.408 (9) C9—C10 1.442 (14)
N1—C9 1.486 (9) C9—H9A 0.9700
C1—C6 1.388 (10) C9—H9B 0.9700
C1—C2 1.418 (11) C10—H10A 0.9600
C2—C3 1.380 (13) C10—H10B 0.9600
C2—H2 0.9300 C10—H10C 0.9600
C3—C4 1.354 (14)
O1—S1—O2 119.0 (4) C1—C6—C5 119.6 (7)
O1—S1—N1 109.3 (4) C1—C6—C7 123.8 (7)
O2—S1—N1 111.5 (3) C5—C6—C7 116.6 (7)
O1—S1—C8 110.8 (4) O3—C7—C6 123.7 (7)
O2—S1—C8 104.2 (4) O3—C7—C8 119.1 (7)
N1—S1—C8 100.3 (3) C6—C7—C8 117.3 (6)
C1—N1—C9 120.6 (6) C7—C8—S1 108.0 (5)
C1—N1—S1 118.2 (5) C7—C8—Br2 111.4 (5)
C9—N1—S1 121.1 (5) S1—C8—Br2 110.3 (4)
C6—C1—N1 122.4 (7) C7—C8—Br1 107.8 (5)
C6—C1—C2 118.7 (7) S1—C8—Br1 109.4 (4)
N1—C1—C2 118.9 (7) Br2—C8—Br1 109.9 (4)
C3—C2—C1 119.1 (8) C10—C9—N1 114.5 (7)
C3—C2—H2 120.4 C10—C9—H9A 108.6
C1—C2—H2 120.4 N1—C9—H9A 108.6
C4—C3—C2 122.1 (8) C10—C9—H9B 108.6
C4—C3—H3 119.0 N1—C9—H9B 108.6
C2—C3—H3 119.0 H9A—C9—H9B 107.6
C3—C4—C5 119.4 (8) C9—C10—H10A 109.5
C3—C4—H4 120.3 C9—C10—H10B 109.5
C5—C4—H4 120.3 H10A—C10—H10B 109.5
C4—C5—C6 121.1 (8) C9—C10—H10C 109.5
C4—C5—H5 119.5 H10A—C10—H10C 109.5
C6—C5—H5 119.5 H10B—C10—H10C 109.5
O1—S1—N1—C1 −167.9 (6) C1—C6—C7—O3 −171.2 (8)
O2—S1—N1—C1 58.5 (7) C5—C6—C7—O3 10.1 (12)
C8—S1—N1—C1 −51.4 (6) C1—C6—C7—C8 8.3 (11)
O1—S1—N1—C9 16.6 (8) C5—C6—C7—C8 −170.4 (7)
O2—S1—N1—C9 −117.0 (7) O3—C7—C8—S1 139.1 (7)
C8—S1—N1—C9 133.1 (7) C6—C7—C8—S1 −40.4 (8)
C9—N1—C1—C6 −160.8 (7) O3—C7—C8—Br2 17.8 (10)
S1—N1—C1—C6 23.7 (10) C6—C7—C8—Br2 −161.7 (6)
C9—N1—C1—C2 19.1 (11) O3—C7—C8—Br1 −102.8 (8)
S1—N1—C1—C2 −156.4 (6) C6—C7—C8—Br1 77.7 (7)
C6—C1—C2—C3 −0.3 (12) O1—S1—C8—C7 173.0 (5)
N1—C1—C2—C3 179.8 (8) O2—S1—C8—C7 −57.8 (6)
C1—C2—C3—C4 −1.5 (14) N1—S1—C8—C7 57.7 (6)
C2—C3—C4—C5 1.0 (15) O1—S1—C8—Br2 −65.0 (5)
C3—C4—C5—C6 1.4 (14) O2—S1—C8—Br2 64.1 (4)
N1—C1—C6—C5 −177.6 (7) N1—S1—C8—Br2 179.6 (4)
C2—C1—C6—C5 2.6 (11) O1—S1—C8—Br1 55.9 (5)
N1—C1—C6—C7 3.7 (12) O2—S1—C8—Br1 −174.9 (4)
C2—C1—C6—C7 −176.1 (8) N1—S1—C8—Br1 −59.4 (4)
C4—C5—C6—C1 −3.2 (13) C1—N1—C9—C10 65.8 (11)
C4—C5—C6—C7 175.6 (8) S1—N1—C9—C10 −118.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.52 3.390 (10) 157
C9—H9A···O1 0.97 2.38 2.876 (11) 111

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2472).

References

  1. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Franzén, R. G. (2000). J. Comb. Chem.2, 195–214. [DOI] [PubMed]
  7. Misu, Y. & Togo, H. (2003). Org. Biol. Chem.1, 1342–1346. [DOI] [PubMed]
  8. Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017510/hk2472sup1.cif

e-64-o1270-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017510/hk2472Isup2.hkl

e-64-o1270-Isup2.hkl (97.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES