Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1223. doi: 10.1107/S1600536808013871

(±)-1-(1H-Benzimidazol-2-yl)ethanol

Rong Xia a, Hai-Jun Xu a,*
PMCID: PMC2961813  PMID: 21202860

Abstract

The asymmetric unit of the title mol­ecule, C9H10N2O, contains two mol­ecules. The fused benzene and imidazole rings are nearly coplanar, the largest deviations from the mean plane being 0.025 (3) Å at the non-bridgehead imidazole C atom of one mol­ecule and 0.018 (3) Å at one of the bridgehead C atoms in the other mol­ecule. Intermolecular O—H⋯N and N—H⋯O hydrogen bonds result in the formation of a sheet parallel to the (010) plane.

Related literature

For related literature, see: Allen et al. (1987); Chen & Ruan (2007); Garuti et al. (1999); Matsuno et al. (2000); Tlahuext et al. (2007).graphic file with name e-64-o1223-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O

  • M r = 162.19

  • Orthorhombic, Inline graphic

  • a = 13.734 (3) Å

  • b = 15.376 (3) Å

  • c = 7.9163 (16) Å

  • V = 1671.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.05 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.912, T max = 1.00 (expected range = 0.908–0.996)

  • 17487 measured reflections

  • 2199 independent reflections

  • 1380 reflections with I > 2σ(I)

  • R int = 0.115

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.123

  • S = 1.07

  • 2199 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013871/dn2341sup1.cif

e-64-o1223-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013871/dn2341Isup2.hkl

e-64-o1223-Isup2.hkl (108.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 1.91 2.713 (4) 165
N4—H4⋯O1i 0.86 1.97 2.828 (4) 178
O2—H2⋯N2ii 0.82 1.93 2.743 (4) 170
N1—H1A⋯O2iii 0.86 1.93 2.751 (4) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HJX acknowledges a Start-up Grant from Southeast University, P. R. China

supplementary crystallographic information

Comment

Imidazole and benzimidazole derivatives are important heteroaromatic compounds and have attracted considerable attention because of good biological and pharmaceutical activities (Matsuno et al., 2000; Garuti et al., 1999). These compounds also play an important role in the development of coordination chemistry. Many derivatives of benzimidazole have been prepared and their complexes have been studied (Tlahuext et al., 2007; Chen & Ruan, 2007). In this paper, we report the crystal structure of the title compound.

There are two crystallographically independent molecules, A and B, linked by a O-H···N hydrogen bond in the asymmetric unit . The bond lengths and angles in A and B are within normal ranges (Allen et al., 1987). The two fused benzene and imidazole rings are nearly planar with the largest deviations from the mean plane being 0.025 (3) Å at C7 and 0.018 (3) Å at C10 . These two fused rings make a dihedral angle of 35.01 (9)°.

The molecules are further connected through O-H···N and N-H···O hydrogen bond buiding up a two dimmensional network which is parallel to the (0 1 0) plane (Table 1, Fig. 2).

Only the relative absolute configuration could be determined, the C8 and C17 have the same absolute configuration (S,S) or (R,R). The (S,S) configuration is represented in Fig. 1.

Experimental

All chemicals were obtained from commercial sources and used directly without further purification. Benzene-1, 2-diamine (2.16 g, 20 mmol) was dissolved in hydrochloric acid (25 mL, 4 M) at 100°C, and ethyl 2-hydroxypropanoate (2.48 g, 21 mmol) was added to the solution. The mixture were then heated to reflux for 7 h at 115°C. After cooling to room temperature, the product was divided by neutralizing the mixture solution using NaOH to make the pH 7–9. Solid product was collected by filtration and the yield was 80%. 1H-NMR(CDCl3, 300 MHz): δ1.72 (d, 3 H), 5.22 (q, 1 H), 7.47(m, 1 H), 7.58 (m, 2 H), 7.81 (m, 1 H). Esi-MS: calcd for C14H9N2O–H m/z 161.19, found 161.18. Deep-red single crystals of the title compound suitable for X-ray diffraction analysis were obtained from methanol solution by slow evaporation after a week.

Refinement

All H atoms attached to C, O and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.96 Å (methyl or 0.93 Å (aromatic), O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(Cmethyl, O).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the hydrogen bonds network. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x, y, z-1; (iii) x+1/2, -y+1/2, -z+1 ]

Crystal data

C9H10N2O F000 = 688
Mr = 162.19 Dx = 1.289 Mg m3
Orthorhombic, P21212 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2 2ab Cell parameters from 10749 reflections
a = 13.734 (3) Å θ = 2.4–28.0º
b = 15.376 (3) Å µ = 0.09 mm1
c = 7.9163 (16) Å T = 293 (2) K
V = 1671.7 (6) Å3 Block, red
Z = 8 0.20 × 0.18 × 0.05 mm

Data collection

Rigaku Mercury2 diffractometer 2199 independent reflections
Radiation source: fine-focus sealed tube 1380 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.115
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 3.0º
ω scans h = −17→17
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −19→19
Tmin = 0.912, Tmax = 1.00 l = −10→10
17487 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.0395P)2 + 0.22P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2199 reflections Δρmax = 0.17 e Å3
221 parameters Δρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6823 (3) 0.3355 (2) 1.1332 (4) 0.0383 (9)
C2 0.7541 (3) 0.3880 (2) 1.1995 (5) 0.0496 (10)
H2A 0.8168 0.3885 1.1551 0.060*
C3 0.7292 (3) 0.4388 (3) 1.3323 (5) 0.0605 (12)
H3 0.7760 0.4750 1.3801 0.073*
C4 0.6362 (4) 0.4384 (3) 1.3984 (6) 0.0652 (13)
H4A 0.6219 0.4740 1.4900 0.078*
C5 0.5647 (3) 0.3868 (3) 1.3328 (6) 0.0622 (12)
H5 0.5021 0.3872 1.3774 0.075*
C6 0.5887 (3) 0.3340 (2) 1.1975 (5) 0.0427 (9)
C7 0.5899 (3) 0.2474 (2) 0.9864 (5) 0.0428 (9)
C8 0.5593 (3) 0.1874 (3) 0.8498 (5) 0.0520 (11)
H8 0.4882 0.1823 0.8527 0.062*
C9 0.6018 (4) 0.0985 (3) 0.8690 (6) 0.0919 (18)
H9A 0.5832 0.0632 0.7743 0.138*
H9B 0.5781 0.0725 0.9713 0.138*
H9C 0.6715 0.1027 0.8737 0.138*
C10 0.3684 (3) 0.3451 (2) 0.6778 (5) 0.0423 (9)
C11 0.4085 (3) 0.3972 (3) 0.8015 (5) 0.0563 (11)
H11 0.4721 0.3888 0.8385 0.068*
C12 0.3517 (3) 0.4614 (3) 0.8676 (5) 0.0614 (12)
H12 0.3768 0.4974 0.9514 0.074*
C13 0.2571 (3) 0.4740 (3) 0.8120 (5) 0.0576 (11)
H13 0.2203 0.5186 0.8591 0.069*
C14 0.2166 (3) 0.4234 (2) 0.6914 (5) 0.0511 (10)
H14 0.1527 0.4317 0.6561 0.061*
C15 0.2740 (3) 0.3592 (2) 0.6231 (4) 0.0401 (9)
C16 0.3419 (2) 0.2520 (2) 0.4833 (4) 0.0380 (8)
C17 0.3509 (3) 0.1825 (2) 0.3527 (4) 0.0463 (10)
H17 0.2934 0.1450 0.3628 0.056*
C18 0.4389 (3) 0.1262 (3) 0.3790 (6) 0.0581 (11)
H18A 0.4414 0.0826 0.2924 0.087*
H18B 0.4349 0.0986 0.4876 0.087*
H18C 0.4965 0.1614 0.3739 0.087*
N1 0.68087 (19) 0.27939 (19) 0.9990 (3) 0.0451 (8)
H1A 0.7292 0.2669 0.9345 0.054*
N2 0.5316 (2) 0.2773 (2) 1.1042 (4) 0.0486 (8)
N3 0.4093 (2) 0.27755 (19) 0.5867 (4) 0.0443 (8)
N4 0.25902 (19) 0.29851 (18) 0.4998 (4) 0.0425 (7)
H4 0.2063 0.2912 0.4429 0.051*
O1 0.58658 (16) 0.2215 (2) 0.6915 (3) 0.0532 (7)
H1 0.5385 0.2415 0.6440 0.080*
O2 0.34919 (16) 0.21938 (19) 0.1892 (3) 0.0546 (7)
H2 0.4018 0.2426 0.1697 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.041 (2) 0.046 (2) 0.0280 (19) −0.0019 (17) 0.0020 (17) 0.0067 (17)
C2 0.042 (2) 0.060 (3) 0.047 (2) −0.0057 (19) 0.000 (2) 0.008 (2)
C3 0.065 (3) 0.065 (3) 0.052 (3) −0.006 (2) −0.009 (3) −0.005 (2)
C4 0.086 (4) 0.060 (3) 0.050 (3) 0.001 (3) 0.002 (3) −0.009 (2)
C5 0.059 (3) 0.073 (3) 0.055 (3) 0.000 (2) 0.018 (2) −0.008 (3)
C6 0.041 (2) 0.051 (2) 0.036 (2) −0.0025 (18) 0.0054 (19) 0.0037 (19)
C7 0.039 (2) 0.052 (2) 0.037 (2) −0.0042 (19) −0.0017 (19) 0.0043 (18)
C8 0.047 (2) 0.063 (3) 0.046 (2) −0.0012 (19) −0.002 (2) 0.000 (2)
C9 0.135 (5) 0.062 (3) 0.078 (4) 0.008 (3) −0.040 (4) −0.005 (3)
C10 0.042 (2) 0.044 (2) 0.040 (2) −0.0017 (17) −0.007 (2) 0.0045 (18)
C11 0.057 (3) 0.057 (3) 0.055 (3) 0.005 (2) −0.015 (2) −0.003 (2)
C12 0.076 (3) 0.057 (3) 0.051 (3) −0.002 (2) −0.009 (3) −0.003 (2)
C13 0.064 (3) 0.056 (3) 0.053 (3) 0.003 (2) 0.006 (3) −0.006 (2)
C14 0.043 (2) 0.054 (3) 0.057 (3) 0.0029 (19) 0.005 (2) 0.003 (2)
C15 0.040 (2) 0.048 (2) 0.0323 (19) 0.0002 (18) −0.0009 (18) 0.0053 (18)
C16 0.0317 (19) 0.042 (2) 0.040 (2) −0.0067 (16) −0.0017 (18) 0.0069 (17)
C17 0.041 (2) 0.055 (2) 0.042 (2) −0.0082 (18) −0.0007 (19) −0.0018 (19)
C18 0.053 (2) 0.056 (3) 0.065 (3) 0.009 (2) −0.005 (2) −0.005 (2)
N1 0.0335 (16) 0.066 (2) 0.0355 (16) 0.0029 (15) 0.0070 (15) −0.0025 (17)
N2 0.0388 (17) 0.063 (2) 0.0443 (17) −0.0022 (16) 0.0071 (15) 0.0033 (17)
N3 0.0394 (17) 0.048 (2) 0.0453 (17) 0.0020 (16) −0.0106 (16) −0.0019 (16)
N4 0.0292 (15) 0.0576 (19) 0.0407 (16) 0.0002 (15) −0.0056 (15) 0.0033 (17)
O1 0.0353 (14) 0.088 (2) 0.0368 (14) 0.0083 (14) −0.0012 (13) 0.0011 (16)
O2 0.0335 (14) 0.089 (2) 0.0413 (14) −0.0056 (14) −0.0032 (13) −0.0031 (15)

Geometric parameters (Å, °)

C1—N1 1.368 (4) C10—C15 1.385 (5)
C1—C2 1.379 (5) C11—C12 1.364 (5)
C1—C6 1.383 (5) C11—H11 0.9300
C2—C3 1.354 (5) C12—C13 1.385 (5)
C2—H2A 0.9300 C12—H12 0.9300
C3—C4 1.381 (6) C13—C14 1.352 (5)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.364 (6) C14—C15 1.374 (5)
C4—H4A 0.9300 C14—H14 0.9300
C5—C6 1.384 (5) C15—N4 1.366 (4)
C5—H5 0.9300 C16—N3 1.297 (4)
C6—N2 1.386 (5) C16—N4 1.350 (4)
C7—N2 1.312 (4) C16—C17 1.492 (5)
C7—N1 1.347 (4) C17—O2 1.413 (4)
C7—C8 1.482 (5) C17—C18 1.501 (5)
C8—O1 1.410 (4) C17—H17 0.9800
C8—C9 1.494 (6) C18—H18A 0.9600
C8—H8 0.9800 C18—H18B 0.9600
C9—H9A 0.9600 C18—H18C 0.9600
C9—H9B 0.9600 N1—H1A 0.8600
C9—H9C 0.9600 N4—H4 0.8600
C10—C11 1.379 (5) O1—H1 0.8200
C10—N3 1.384 (4) O2—H2 0.8200
N1—C1—C2 132.5 (3) C10—C11—H11 121.2
N1—C1—C6 105.2 (3) C11—C12—C13 121.1 (4)
C2—C1—C6 122.3 (3) C11—C12—H12 119.5
C3—C2—C1 116.9 (4) C13—C12—H12 119.5
C3—C2—H2A 121.5 C14—C13—C12 122.0 (4)
C1—C2—H2A 121.5 C14—C13—H13 119.0
C2—C3—C4 121.7 (4) C12—C13—H13 119.0
C2—C3—H3 119.1 C13—C14—C15 117.1 (4)
C4—C3—H3 119.1 C13—C14—H14 121.5
C5—C4—C3 121.6 (4) C15—C14—H14 121.5
C5—C4—H4A 119.2 N4—C15—C14 133.3 (4)
C3—C4—H4A 119.2 N4—C15—C10 105.0 (3)
C4—C5—C6 117.6 (4) C14—C15—C10 121.8 (4)
C4—C5—H5 121.2 N3—C16—N4 112.4 (3)
C6—C5—H5 121.2 N3—C16—C17 126.5 (3)
C1—C6—C5 119.8 (4) N4—C16—C17 121.1 (3)
C1—C6—N2 109.9 (3) O2—C17—C16 110.2 (3)
C5—C6—N2 130.3 (4) O2—C17—C18 111.8 (3)
N2—C7—N1 112.6 (3) C16—C17—C18 112.6 (3)
N2—C7—C8 124.3 (3) O2—C17—H17 107.3
N1—C7—C8 123.0 (3) C16—C17—H17 107.3
O1—C8—C7 110.0 (3) C18—C17—H17 107.3
O1—C8—C9 109.1 (4) C17—C18—H18A 109.5
C7—C8—C9 112.6 (3) C17—C18—H18B 109.5
O1—C8—H8 108.4 H18A—C18—H18B 109.5
C7—C8—H8 108.4 C17—C18—H18C 109.5
C9—C8—H8 108.4 H18A—C18—H18C 109.5
C8—C9—H9A 109.5 H18B—C18—H18C 109.5
C8—C9—H9B 109.5 C7—N1—C1 107.5 (3)
H9A—C9—H9B 109.5 C7—N1—H1A 126.2
C8—C9—H9C 109.5 C1—N1—H1A 126.2
H9A—C9—H9C 109.5 C7—N2—C6 104.7 (3)
H9B—C9—H9C 109.5 C16—N3—C10 105.4 (3)
C11—C10—N3 130.1 (3) C16—N4—C15 107.7 (3)
C11—C10—C15 120.4 (4) C16—N4—H4 126.2
N3—C10—C15 109.5 (3) C15—N4—H4 126.2
C12—C11—C10 117.6 (4) C8—O1—H1 109.5
C12—C11—H11 121.2 C17—O2—H2 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N3 0.82 1.91 2.713 (4) 165
N4—H4···O1i 0.86 1.97 2.828 (4) 178
O2—H2···N2ii 0.82 1.93 2.743 (4) 170
N1—H1A···O2iii 0.86 1.93 2.751 (4) 160

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x, y, z−1; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2341).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  3. Chen, J. & Ruan, Y. (2007). Acta Cryst. E63, m2964.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett.9, 2525–2530. [DOI] [PubMed]
  6. Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull.48, 1778–1781. [DOI] [PubMed]
  7. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Tlahuext, H., Tlahuextl, M., López-Gómez, S. & Tapia-Benavides, A. R. (2007). Acta Cryst E63, m1263–m1265.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013871/dn2341sup1.cif

e-64-o1223-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013871/dn2341Isup2.hkl

e-64-o1223-Isup2.hkl (108.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES