Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1250. doi: 10.1107/S160053680801622X

(1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18-Undeca­chloro­penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­deca-7,15-diene

Nicole Riddell a, Robert McCrindle b, Gilles Arsenault a, Alan J Lough c,*
PMCID: PMC2961815  PMID: 21202884

Abstract

The title compound, C18H13Cl11, is an undecachlorinated commercial flame retardant. The asymmetric unit contains two independent half-mol­ecules. The complete mol­ecules are generated by crystallographic inversion symmetry, causing the terminal H atoms and one of the Cl atoms to be disordered equally over two sites in each mol­ecule. The central eight-membered rings are in chair-type conformations. In the crystal structure, there is a single weak inter­molecular C—H⋯Cl hydrogen bond.

Related literature

For related literature, see: Riddell et al. (2008).graphic file with name e-64-o1250-scheme1.jpg

Experimental

Crystal data

  • C18H13Cl11

  • M r = 619.23

  • Monoclinic, Inline graphic

  • a = 13.3129 (5) Å

  • b = 12.1263 (6) Å

  • c = 14.7229 (7) Å

  • β = 99.505 (3)°

  • V = 2344.18 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 150 (1) K

  • 0.26 × 0.20 × 0.15 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.715, T max = 0.825

  • 15654 measured reflections

  • 5338 independent reflections

  • 3481 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.118

  • S = 1.05

  • 5338 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZOSMN (Otwinowski & Minor, 1997); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801622X/pk2101sup1.cif

e-64-o1250-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801622X/pk2101Isup2.hkl

e-64-o1250-Isup2.hkl (261.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1B⋯Cl4Ai 1.00 2.70 3.656 (4) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

For background information and related references see the previous paper (Riddell et al., 2008). Dechlorane Plus (DP) is a commercial chlorinated flame retardant used in styrenic plastics (http://www.inchem.org/documents/ehc/ehc/ehc192.htm) to protect human life and property against fires. We have synthesized the dechlorinated compound (1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18- undecachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene. GC/MS and 1H NMR spectroscopy have confirmed the basic structure of as having the DP-like structure with only 11 chlorine atoms. An NOE NMR experiment also strongly indicated that the proton on the bridging carbon atom was facing towards the cyclooctadiene ring since a positive through space interaction was observed. However, an X-ray structure determination was required to positively confirm the stereochemistry.

The asymmetric unit contains two independent half molecules. The symmetry complete molecules are generated by crystallographic inversion symmetry, causing atoms Cl6A and Cl6B, as well as the H atoms bonded to C9A and C9B to be disordered over two sites with equal occupancies. In both independent molecules the geometric parameters are the same within experimental error. The asymmetric unit is shown in Fig. 2. In the crystal structure there is a single weak intermolecular C—H···Cl interaction (Table 1).

Experimental

The synthesis of the title compound was carried out at Wellington Laboratories using proprietary methods. The compound was isolated and purified using chromatographic techniques. For single-crystal x-ray crystallography, colourless crystals were grown from a solution in toluene.

Refinement

All hydrogen atoms were placed in calculated positions with C—H distances of 0.99 and 1.00 Å and they were included in the refinement in a riding-model approximation with Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The disorder is not shown and the atoms labeled with lower case suffixes a and b are related by the symmetry operators (-x, -y+1, -z+1) and (-x+1, - y+1, -z) respectively.

Crystal data

C18H13Cl11 F000 = 1232
Mr = 619.23 Dx = 1.755 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15654 reflections
a = 13.3129 (5) Å θ = 2.8–27.5º
b = 12.1263 (6) Å µ = 1.31 mm1
c = 14.7229 (7) Å T = 150 (1) K
β = 99.505 (3)º Block, colourless
V = 2344.18 (18) Å3 0.26 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer 5338 independent reflections
Radiation source: fine-focus sealed tube 3481 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.052
Detector resolution: 9 pixels mm-1 θmax = 27.5º
T = 150(2) K θmin = 2.8º
φ scans and ω scans with κ offsets h = −17→17
Absorption correction: multi-scan(SORTAV; Blessing, 1995) k = −14→15
Tmin = 0.715, Tmax = 0.825 l = −16→19
15654 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050   w = 1/[σ2(Fo2) + (0.0314P)2 + 4.5718P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.53 e Å3
5338 reflections Δρmin = −0.68 e Å3
272 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0011 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1A 0.12630 (8) 0.59357 (8) 0.23239 (6) 0.0351 (3)
Cl2A −0.04105 (8) 0.77914 (9) 0.28215 (7) 0.0390 (3)
Cl3A 0.03958 (8) 0.87394 (8) 0.49922 (7) 0.0371 (3)
Cl4A 0.25958 (7) 0.75232 (9) 0.58340 (7) 0.0375 (3)
Cl5A 0.28655 (8) 0.77926 (10) 0.35627 (7) 0.0449 (3)
Cl6A 0.32477 (14) 0.57426 (16) 0.42481 (15) 0.0351 (5) 0.50
C1A 0.0896 (3) 0.5390 (3) 0.4083 (2) 0.0235 (8)
H1A 0.1293 0.4710 0.3993 0.028*
C2A 0.1294 (3) 0.5849 (3) 0.5085 (2) 0.0229 (8)
H2A 0.1854 0.5355 0.5384 0.027*
C3A 0.0525 (3) 0.5978 (3) 0.5746 (2) 0.0246 (8)
H3A1 −0.0099 0.6331 0.5412 0.030*
H3A2 0.0817 0.6477 0.6254 0.030*
C4A −0.0227 (3) 0.5119 (3) 0.3837 (2) 0.0268 (8)
H4A1 −0.0412 0.5080 0.3158 0.032*
H4A2 −0.0626 0.5724 0.4054 0.032*
C5A 0.1236 (3) 0.6328 (3) 0.3464 (2) 0.0255 (8)
C6A 0.0612 (3) 0.7346 (3) 0.3593 (3) 0.0263 (8)
C7A 0.0923 (3) 0.7720 (3) 0.4438 (3) 0.0243 (8)
C8A 0.1776 (3) 0.6973 (3) 0.4878 (2) 0.0245 (8)
C9A 0.2268 (3) 0.6680 (3) 0.4039 (3) 0.0289 (9)
H9C 0.2739 0.6037 0.4170 0.035* 0.50
Cl1B 0.50434 (8) 0.70192 (12) 0.26767 (8) 0.0573 (4)
Cl2B 0.68792 (8) 0.51251 (11) 0.29107 (7) 0.0488 (3)
Cl3B 0.83732 (7) 0.55922 (9) 0.12642 (7) 0.0400 (3)
Cl4B 0.74566 (9) 0.77648 (10) 0.00260 (9) 0.0501 (3)
Cl5B 0.70173 (9) 0.85653 (11) 0.21603 (10) 0.0647 (4)
Cl6B 0.52623 (17) 0.8699 (2) 0.0840 (2) 0.0609 (8) 0.50
C1B 0.5100 (3) 0.6208 (3) 0.0915 (3) 0.0312 (9)
H1B 0.4460 0.6647 0.0747 0.037*
C2B 0.5781 (3) 0.6426 (3) 0.0152 (3) 0.0306 (9)
H2B 0.5410 0.6952 −0.0308 0.037*
C3B 0.6089 (3) 0.5433 (3) −0.0368 (3) 0.0310 (9)
H3B1 0.6333 0.4843 0.0079 0.037*
H3B2 0.6663 0.5644 −0.0683 0.037*
C4B 0.4792 (3) 0.5024 (3) 0.1091 (3) 0.0304 (9)
H4B1 0.4586 0.4988 0.1706 0.037*
H4B2 0.5394 0.4542 0.1104 0.037*
C5B 0.5738 (3) 0.6757 (4) 0.1780 (3) 0.0362 (10)
C6B 0.6701 (3) 0.6059 (4) 0.2039 (3) 0.0344 (10)
C7B 0.7274 (3) 0.6241 (3) 0.1398 (3) 0.0324 (9)
C8B 0.6712 (3) 0.7049 (3) 0.0715 (3) 0.0343 (9)
C9B 0.6180 (3) 0.7760 (4) 0.1363 (3) 0.0444 (11)
H9D 0.5630 0.8225 0.1008 0.053* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0514 (6) 0.0324 (5) 0.0245 (5) −0.0025 (5) 0.0149 (4) −0.0003 (4)
Cl2A 0.0392 (6) 0.0357 (6) 0.0398 (6) 0.0080 (5) −0.0005 (4) 0.0127 (5)
Cl3A 0.0473 (6) 0.0243 (5) 0.0446 (6) 0.0049 (5) 0.0217 (5) −0.0033 (4)
Cl4A 0.0297 (5) 0.0500 (7) 0.0331 (5) −0.0137 (5) 0.0057 (4) −0.0082 (5)
Cl5A 0.0406 (6) 0.0562 (7) 0.0428 (6) −0.0200 (5) 0.0212 (5) −0.0039 (5)
Cl6A 0.0289 (10) 0.0275 (10) 0.0519 (13) 0.0056 (8) 0.0154 (9) 0.0000 (9)
C1A 0.0272 (18) 0.0192 (19) 0.025 (2) 0.0036 (16) 0.0068 (15) 0.0029 (15)
C2A 0.0234 (18) 0.0228 (19) 0.0222 (19) 0.0048 (16) 0.0031 (15) −0.0005 (15)
C3A 0.0278 (19) 0.024 (2) 0.0225 (19) −0.0043 (16) 0.0055 (15) 0.0007 (16)
C4A 0.034 (2) 0.026 (2) 0.0194 (19) −0.0004 (17) 0.0010 (16) 0.0025 (16)
C5A 0.033 (2) 0.024 (2) 0.0217 (19) 0.0011 (17) 0.0105 (16) 0.0037 (16)
C6A 0.0250 (19) 0.024 (2) 0.031 (2) −0.0031 (16) 0.0074 (16) 0.0079 (16)
C7A 0.0302 (19) 0.0164 (18) 0.029 (2) −0.0018 (16) 0.0139 (16) −0.0012 (15)
C8A 0.0234 (18) 0.028 (2) 0.0231 (19) −0.0042 (16) 0.0059 (15) −0.0017 (16)
C9A 0.0264 (19) 0.031 (2) 0.031 (2) 0.0052 (17) 0.0111 (16) 0.0046 (17)
Cl1B 0.0337 (6) 0.0861 (10) 0.0536 (8) 0.0007 (6) 0.0119 (5) −0.0381 (7)
Cl2B 0.0441 (6) 0.0722 (9) 0.0271 (6) 0.0022 (6) −0.0024 (5) 0.0005 (5)
Cl3B 0.0233 (5) 0.0504 (7) 0.0458 (6) 0.0043 (5) 0.0042 (4) −0.0118 (5)
Cl4B 0.0484 (7) 0.0451 (7) 0.0570 (8) −0.0176 (6) 0.0088 (5) −0.0010 (6)
Cl5B 0.0413 (6) 0.0622 (8) 0.0884 (10) −0.0096 (6) 0.0042 (6) −0.0458 (8)
Cl6B 0.0358 (12) 0.0373 (13) 0.100 (2) 0.0108 (10) −0.0158 (12) −0.0205 (13)
C1B 0.0195 (18) 0.040 (2) 0.032 (2) 0.0056 (18) −0.0011 (16) −0.0101 (19)
C2B 0.0257 (19) 0.030 (2) 0.034 (2) 0.0015 (17) −0.0028 (17) −0.0019 (17)
C3B 0.0255 (19) 0.038 (2) 0.028 (2) −0.0051 (18) 0.0023 (16) −0.0041 (18)
C4B 0.0238 (19) 0.042 (2) 0.025 (2) −0.0002 (18) 0.0016 (15) −0.0035 (18)
C5B 0.0232 (19) 0.048 (3) 0.038 (2) 0.0026 (19) 0.0056 (17) −0.016 (2)
C6B 0.027 (2) 0.050 (3) 0.024 (2) 0.0022 (19) −0.0012 (16) −0.0133 (19)
C7B 0.0218 (19) 0.041 (2) 0.033 (2) 0.0013 (18) −0.0002 (16) −0.0141 (19)
C8B 0.029 (2) 0.033 (2) 0.039 (2) −0.0032 (18) 0.0017 (18) −0.0076 (19)
C9B 0.031 (2) 0.041 (3) 0.058 (3) 0.006 (2) −0.004 (2) −0.017 (2)

Geometric parameters (Å, °)

Cl1A—C5A 1.751 (4) Cl1B—C5B 1.761 (4)
Cl2A—C6A 1.710 (4) Cl2B—C6B 1.698 (4)
Cl3A—C7A 1.696 (4) Cl3B—C7B 1.701 (4)
Cl4A—C8A 1.763 (4) Cl4B—C8B 1.760 (4)
Cl5A—C9A 1.769 (4) Cl5B—C9B 1.772 (4)
Cl6A—C9A 1.720 (4) Cl6B—C9B 1.752 (5)
C1A—C4A 1.515 (5) C1B—C4B 1.527 (6)
C1A—C5A 1.570 (5) C1B—C5B 1.559 (5)
C1A—C2A 1.584 (5) C1B—C2B 1.579 (5)
C1A—H1A 1.0000 C1B—H1B 1.0000
C2A—C3A 1.533 (5) C2B—C3B 1.518 (5)
C2A—C8A 1.558 (5) C2B—C8B 1.567 (5)
C2A—H2A 1.0000 C2B—H2B 1.0000
C3A—C4Ai 1.544 (5) C3B—C4Bii 1.551 (5)
C3A—H3A1 0.9900 C3B—H3B1 0.9900
C3A—H3A2 0.9900 C3B—H3B2 0.9900
C4A—C3Ai 1.544 (5) C4B—C3Bii 1.551 (5)
C4A—H4A1 0.9900 C4B—H4B1 0.9900
C4A—H4A2 0.9900 C4B—H4B2 0.9900
C5A—C6A 1.518 (5) C5B—C9B 1.524 (7)
C5A—C9A 1.548 (5) C5B—C6B 1.531 (6)
C6A—C7A 1.324 (5) C6B—C7B 1.328 (5)
C7A—C8A 1.512 (5) C7B—C8B 1.511 (6)
C8A—C9A 1.533 (5) C8B—C9B 1.542 (6)
C4A—C1A—C5A 112.7 (3) C4B—C1B—C5B 112.8 (3)
C4A—C1A—C2A 117.6 (3) C4B—C1B—C2B 118.7 (3)
C5A—C1A—C2A 101.6 (3) C5B—C1B—C2B 102.2 (3)
C4A—C1A—H1A 108.1 C4B—C1B—H1B 107.5
C5A—C1A—H1A 108.1 C5B—C1B—H1B 107.5
C2A—C1A—H1A 108.1 C2B—C1B—H1B 107.5
C3A—C2A—C8A 112.0 (3) C3B—C2B—C8B 113.2 (3)
C3A—C2A—C1A 118.2 (3) C3B—C2B—C1B 117.4 (3)
C8A—C2A—C1A 102.2 (3) C8B—C2B—C1B 101.6 (3)
C3A—C2A—H2A 108.0 C3B—C2B—H2B 108.1
C8A—C2A—H2A 108.0 C8B—C2B—H2B 108.1
C1A—C2A—H2A 108.0 C1B—C2B—H2B 108.1
C2A—C3A—C4Ai 114.1 (3) C2B—C3B—C4Bii 113.1 (3)
C2A—C3A—H3A1 108.7 C2B—C3B—H3B1 109.0
C4Ai—C3A—H3A1 108.7 C4Bii—C3B—H3B1 109.0
C2A—C3A—H3A2 108.7 C2B—C3B—H3B2 109.0
C4Ai—C3A—H3A2 108.7 C4Bii—C3B—H3B2 109.0
H3A1—C3A—H3A2 107.6 H3B1—C3B—H3B2 107.8
C1A—C4A—C3Ai 113.6 (3) C1B—C4B—C3Bii 114.4 (3)
C1A—C4A—H4A1 108.8 C1B—C4B—H4B1 108.7
C3Ai—C4A—H4A1 108.8 C3Bii—C4B—H4B1 108.7
C1A—C4A—H4A2 108.8 C1B—C4B—H4B2 108.7
C3Ai—C4A—H4A2 108.8 C3Bii—C4B—H4B2 108.7
H4A1—C4A—H4A2 107.7 H4B1—C4B—H4B2 107.6
C6A—C5A—C9A 99.3 (3) C9B—C5B—C6B 100.3 (3)
C6A—C5A—C1A 107.5 (3) C9B—C5B—C1B 101.9 (3)
C9A—C5A—C1A 101.4 (3) C6B—C5B—C1B 106.8 (3)
C6A—C5A—Cl1A 116.0 (3) C9B—C5B—Cl1B 116.3 (3)
C9A—C5A—Cl1A 116.2 (2) C6B—C5B—Cl1B 115.8 (3)
C1A—C5A—Cl1A 114.4 (3) C1B—C5B—Cl1B 114.0 (3)
C7A—C6A—C5A 107.6 (3) C7B—C6B—C5B 106.7 (4)
C7A—C6A—Cl2A 127.4 (3) C7B—C6B—Cl2B 128.5 (3)
C5A—C6A—Cl2A 124.5 (3) C5B—C6B—Cl2B 124.3 (3)
C6A—C7A—C8A 107.1 (3) C6B—C7B—C8B 107.5 (3)
C6A—C7A—Cl3A 127.7 (3) C6B—C7B—Cl3B 127.8 (4)
C8A—C7A—Cl3A 124.8 (3) C8B—C7B—Cl3B 124.4 (3)
C7A—C8A—C9A 100.6 (3) C7B—C8B—C9B 100.3 (3)
C7A—C8A—C2A 107.6 (3) C7B—C8B—C2B 107.5 (3)
C9A—C8A—C2A 101.5 (3) C9B—C8B—C2B 101.2 (3)
C7A—C8A—Cl4A 116.0 (3) C7B—C8B—Cl4B 116.0 (3)
C9A—C8A—Cl4A 116.2 (3) C9B—C8B—Cl4B 116.2 (3)
C2A—C8A—Cl4A 113.3 (3) C2B—C8B—Cl4B 113.8 (3)
C8A—C9A—C5A 92.6 (3) C5B—C9B—C8B 92.9 (3)
C8A—C9A—Cl6A 114.9 (3) C5B—C9B—Cl6B 114.1 (3)
C5A—C9A—Cl6A 119.6 (3) C8B—C9B—Cl6B 116.7 (3)
C8A—C9A—Cl5A 115.0 (3) C5B—C9B—Cl5B 114.6 (3)
C5A—C9A—Cl5A 114.2 (3) C8B—C9B—Cl5B 114.5 (3)
Cl6A—C9A—Cl5A 101.4 (2) Cl6B—C9B—Cl5B 104.5 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1B—H1B···Cl4Aiii 1.00 2.70 3.656 (4) 160

Symmetry codes: (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2101).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  4. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  5. Riddell, N., McCrindle, R., Arsenault, G. & Lough, A. J. (2008). Acta Cryst. E64, o1249. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801622X/pk2101sup1.cif

e-64-o1250-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801622X/pk2101Isup2.hkl

e-64-o1250-Isup2.hkl (261.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES