Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):m909–m910. doi: 10.1107/S1600536808017078

{2,2′-[(2,2-Dimethyl­propane-1,3-di­yl)bis­(nitrilo­methyl­idyne)]diphenolato}palladium(II) ethanol hemisolvate

Wan Nazihah Wan Ibrahim a, Mustaffa Shamsuddin a, Suchada Chantrapromma b,, Hoong-Kun Fun c,*
PMCID: PMC2961822  PMID: 21202771

Abstract

The asymmetric unit of the title complex, [Pd(C19H20N2O2)]·0.5C2H5OH, contains two mol­ecules of a PdII complex of a Schiff base ligand with an N2O2 donor set and one ethanol mol­ecule. The PdII centers are in distorted square-planar geometries with the N2O2 donor atoms of the tetra­dentate Schiff base dianions. The ethanol mol­ecule takes part in an O—H⋯O hydrogen bond. In the crystal structure, mol­ecules are stacked approximately along the b-axis direction. The O atom and three H atoms of the solvent molecule are disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

For related structures, see, for example: Adrian et al. (2008). For background to applications of palladium(II) complexes, see, for example: Abu-Surrah et al. (1999); Adrian et al. (2008); Ayala et al. (2004); Caselli et al. (2005); Lai et al. (2005); Pou et al. (2007); Ramírez et al. (2008); Roy et al. (2008). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-64-0m909-scheme1.jpg

Experimental

Crystal data

  • [Pd(C19H20N2O2)]·0.5C2H6O

  • M r = 437.83

  • Monoclinic, Inline graphic

  • a = 12.2453 (3) Å

  • b = 13.7334 (3) Å

  • c = 22.8442 (5) Å

  • β = 101.092 (1)°

  • V = 3769.94 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 296 (2) K

  • 0.38 × 0.33 × 0.23 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.690, T max = 0.804

  • 93296 measured reflections

  • 11002 independent reflections

  • 8985 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.130

  • S = 1.13

  • 11002 reflections

  • 474 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017078/ez2126sup1.cif

e-64-0m909-sup1.cif (34.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017078/ez2126Isup2.hkl

e-64-0m909-Isup2.hkl (538KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5A—H5AB⋯O1Ai 0.82 2.33 3.020 (13) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Ministry of Science Technology and Innovation (MOSTI) for the Science Fund grant No. 03–01-06-SF0273 (Vot: 79121), the National Science Fellowship (NSF), and the Faculty of Science, UTM Skudai for the research facilities. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312.

supplementary crystallographic information

Comment

In the field of coordination chemistry, the unique properties of Schiff bases as chelating ligands have attracted significant attention (Caselli et al., 2005; Pou et al., 2007; Ramírez et al., 2008; Roy et al., 2008). Their complexes with palladium(II) ions are found to be efficient catalysts in organic synthesis, especially in C—C bond formation (Abu-Surrah et al., 1999; Ayala et al., 2004; Lai et al., 2005). In the present paper, the preparation and crystal structure of the complex N,N'-bis-salicylidene-2,2-dimethylpropane-1,3-diamine palladium(II) is described.

The asymmetric unit of the title complex (Fig. 1) contains two molecules of the PdII complex (A and B) of the Schiff base ligand and one solvated ethanol molecule. The ethanol molecule shows disorder. The PdII ion in both A and B has a distorted square-planar environment in which the ligand is coordinated to the PdII ion as a tetradentate chelating ligand via the two phenolic oxygen atoms and two imine nitrogen atoms, yielding three six-membered rings. In A, two rings are essentially planar (Pd1A/N1A/C2A/C3A/C8A/O1A and Pd1A/N2A/C9A/C14A/C15A/O2A) and one adopts a half-chair conformation; Pd1A/N1A/C1A/C17A/C16A/N2A with atom C17A displaced from the Pd1A/N1A/C1A/C16A/N2A plane by 0.425 (4) Å and with Cremer & Pople (1975) puckering parameters: Q = 0.573 (4) Å, θ = 126.0 (3)° and φ = 11.1 (5)°. In B, one ring is essentially planar (Pd1B/N1B/C2B/C3B/C8B/O1B) and two rings have half-chair conformations; Pd1B/N1B/C1B/C17B/C16B/N2B with atom C17B displaced from the Pd1B/N1B/C1B/C16B/N2B plane by -0.443 (4) Å and with Cremer & Pople (1975) puckering parameters: Q = 0.618 (5) Å, θ = 115.8 (4)° and φ = 340.2 (5)°; Pd1B/N2B/C9B/C14B/C15B/O2B with atom O2B deviated from the Pd1B/N2B/C9B/C14B/C15B plane by -0.125 (4) Å and with Cremer & Pople (1975) puckering parameters: Q = 0.199 (5) Å, θ = 62.9 (14)° and φ = 24.4 (17)°. The PdII ions are coordinated in a cis-planar fashion by the two phenolic oxygen atoms and two imine nitrogen atoms. The Pd—O distances are in the range 1.979 (3)–2.008 (4) Å with Pd—N distances 1.981 (3)–2.014 (3) Å, which are typical of the square-planar PdII complexes of Schiff base ligands (Adrian et al., 2008). The bond angles around PdII ions indicate that the complex has a distorted square-planar geometry as indicated by the angles O—Pd—O in the range 79.66 (11)–80.54 (16)°, O—Pd—N in the range 92.14 (13)–92.95 (11)° and N—Pd—N in the range 94.92 (12)–94.95 (15)°, deviating substantially from that expected for a regular square-planar geometry. The distortion can be attributed to the restricted bite angle of the Schiff base ligand. Other bond lengths and angles observed in the structure are normal (Allen et al., 1987). The dihedral angles between the two phenolate rings [(C3–C8) and (C9–C14)] of the tetradentate Schiff base ligand are 8.3 (2)° in A and 18.5 (3)° in B.

In the crystal packing (Fig. 2), the neighbouring complex molecules are stacked approximately along the b direction by π···π interactions between the Pd1A/N1A/C2A/C3A/C8A/O1A and Pd1B/N1B/C2B/C3B/C8B/O1B rings with the Cg···Cg distance of 3.5724 (19) Å. The crystal is stabilized by O—H···O hydrogen bonds involving the solvated ethanol molecule (Table 1).

Experimental

The title complex was synthesized by dissolving the N,N'-bis-salicylidene-2,2-dimethylpropane-1,3-diamine ligand (0.9313 g, 3 mmol) in dry ethanol (10 ml). Palladium(II) acetate (0.6735 g, 3 mmol) was then added to the resulting solution and refluxed under nitrogen atmosphere for 5 hr. An orange solid was obtained and washed with cold acetonitrile. Yellow single crystals suitable for X-ray structure determination were obtained by recrystallization from a mixture of chloroform/hexane (1:1 v/v) by slow evaporation of the solvent at room temperature over several weeks. Yield: 80%, M.p. 608.1–608.6 K.

Refinement

All H atoms were placed in calculated positions with d(O—H) = 0.82 Å, Uiso=1.2Ueq, d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. A large peak on the difference electron density map indicated that the oxygen atom (O5) in the ethanol molecule was disordered. The occupancies of the two disorder components were refined to full convergence yielding a ratio of the major-to-minor components of 0.77 (2):0.23 (2).The highest residual electron density peak is located at 1.17 Å from H19D and the deepest hole is located at 0.76 Å from Pd1A.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Disorder of the ethanol molecule is shown.

Fig. 2.

Fig. 2.

Crystal packing of (I), viewed along the a axis showing the stacking of the molecules along the b direction. The disordered ethanol molecule is omitted for clarity.

Crystal data

[Pd(C19H20N2O2)]·0.5C2H6O F000 = 1784
Mr = 437.83 Dx = 1.543 Mg m3
Monoclinic, P21/c Melting point = 608.1–608.6 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 12.2453 (3) Å Cell parameters from 11002 reflections
b = 13.7334 (3) Å θ = 1.7–30.0º
c = 22.8442 (5) Å µ = 1.00 mm1
β = 101.092 (1)º T = 296 (2) K
V = 3769.94 (15) Å3 Block, yellow
Z = 8 0.38 × 0.33 × 0.23 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 11002 independent reflections
Radiation source: fine-focus sealed tube 8985 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.039
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 296(2) K θmin = 1.7º
ω scans h = −17→17
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −18→19
Tmin = 0.690, Tmax = 0.804 l = −32→30
93296 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.130   w = 1/[σ2(Fo2) + (0.0432P)2 + 6.804P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.001
11002 reflections Δρmax = 0.81 e Å3
474 parameters Δρmin = −0.66 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd1A 0.20617 (2) 0.67812 (2) 0.247364 (11) 0.03888 (8)
O1A 0.1533 (2) 0.6938 (2) 0.16026 (12) 0.0555 (7)
O2A 0.0603 (2) 0.6083 (2) 0.23691 (12) 0.0530 (7)
N1A 0.3445 (2) 0.7573 (2) 0.24716 (13) 0.0404 (6)
N2A 0.2422 (3) 0.6491 (2) 0.33484 (13) 0.0419 (6)
C1A 0.4329 (3) 0.7719 (3) 0.30025 (17) 0.0516 (9)
H1A 0.4694 0.8335 0.2960 0.062*
H1B 0.4879 0.7209 0.3011 0.062*
C2A 0.3643 (3) 0.7980 (3) 0.19958 (16) 0.0441 (7)
H2A 0.4285 0.8357 0.2047 0.053*
C3A 0.3023 (3) 0.7937 (3) 0.14014 (16) 0.0447 (8)
C4A 0.3479 (4) 0.8453 (4) 0.09669 (19) 0.0603 (11)
H4A 0.4132 0.8808 0.1084 0.072*
C5A 0.2975 (5) 0.8435 (4) 0.0380 (2) 0.0778 (16)
H5A 0.3267 0.8788 0.0099 0.093*
C6A 0.2013 (5) 0.7877 (4) 0.0209 (2) 0.0783 (16)
H6A 0.1680 0.7845 −0.0193 0.094*
C7A 0.1551 (4) 0.7376 (4) 0.06169 (18) 0.0626 (11)
H7A 0.0909 0.7011 0.0489 0.075*
C8A 0.2034 (3) 0.7406 (3) 0.12297 (16) 0.0459 (8)
C9A 0.0151 (3) 0.5704 (3) 0.27855 (18) 0.0465 (8)
C10A −0.0911 (4) 0.5261 (3) 0.2617 (2) 0.0581 (10)
H10A −0.1253 0.5246 0.2216 0.070*
C11A −0.1441 (4) 0.4854 (3) 0.3035 (2) 0.0651 (12)
H11A −0.2133 0.4563 0.2913 0.078*
C12A −0.0965 (4) 0.4870 (4) 0.3633 (2) 0.0670 (12)
H12A −0.1337 0.4595 0.3911 0.080*
C13A 0.0048 (4) 0.5287 (3) 0.3815 (2) 0.0574 (10)
H13A 0.0362 0.5304 0.4219 0.069*
C14A 0.0640 (3) 0.5701 (3) 0.33940 (17) 0.0455 (8)
C15A 0.1737 (3) 0.6056 (3) 0.36258 (16) 0.0446 (8)
H15A 0.1991 0.5959 0.4032 0.054*
C16A 0.3527 (3) 0.6716 (3) 0.37029 (17) 0.0500 (9)
H16A 0.4054 0.6238 0.3612 0.060*
H16B 0.3497 0.6652 0.4122 0.060*
C17A 0.3951 (3) 0.7722 (3) 0.35969 (16) 0.0449 (8)
C18A 0.4980 (4) 0.7901 (4) 0.4079 (2) 0.0659 (12)
H18A 0.4770 0.7919 0.4463 0.099*
H18B 0.5313 0.8511 0.4006 0.099*
H18C 0.5506 0.7384 0.4072 0.099*
C19A 0.3091 (4) 0.8516 (3) 0.3627 (2) 0.0656 (12)
H19A 0.2863 0.8487 0.4006 0.098*
H19B 0.2456 0.8419 0.3313 0.098*
H19C 0.3413 0.9142 0.3581 0.098*
C20A 0.1426 (9) 0.0756 (7) 0.4083 (5) 0.130 (3)
H20A 0.1760 0.1273 0.3888 0.156* 0.77 (2)
H20B 0.1380 0.0175 0.3838 0.156* 0.77 (2)
H20C 0.0912 0.0220 0.4033 0.156* 0.23 (2)
H20D 0.1936 0.0613 0.3824 0.156* 0.23 (2)
C21A 0.2108 (10) 0.0561 (9) 0.4695 (4) 0.170 (5)
H21A 0.2848 0.0373 0.4659 0.256*
H21B 0.1770 0.0045 0.4881 0.256*
H21C 0.2141 0.1140 0.4933 0.256*
O5A 0.0483 (10) 0.1001 (10) 0.4158 (6) 0.166 (6) 0.77 (2)
H5AB 0.0085 0.1116 0.3834 0.249* 0.77 (2)
O5B 0.0875 (19) 0.143 (2) 0.3783 (14) 0.104 (11) 0.23 (2)
H5BA 0.0642 0.1245 0.3441 0.157* 0.23 (2)
Pd1B 0.31413 (3) 0.43936 (2) 0.261629 (14) 0.04845 (9)
O1B 0.4597 (2) 0.5063 (2) 0.26439 (15) 0.0637 (8)
O2B 0.3781 (3) 0.4244 (3) 0.34754 (15) 0.0747 (10)
N1B 0.2659 (3) 0.4668 (2) 0.17540 (15) 0.0490 (7)
N2B 0.1765 (3) 0.3646 (3) 0.26900 (18) 0.0598 (9)
C1B 0.1535 (4) 0.4404 (3) 0.1444 (2) 0.0632 (12)
H1C 0.1489 0.4478 0.1018 0.076*
H1D 0.1003 0.4850 0.1564 0.076*
C2B 0.3247 (3) 0.5142 (3) 0.1439 (2) 0.0537 (9)
H2B 0.2924 0.5225 0.1039 0.064*
C3B 0.4330 (3) 0.5560 (3) 0.1622 (2) 0.0556 (10)
C4B 0.4766 (5) 0.6069 (4) 0.1186 (3) 0.0770 (14)
H4B 0.4361 0.6100 0.0798 0.092*
C5B 0.5785 (6) 0.6522 (4) 0.1326 (4) 0.098 (2)
H5B 0.6068 0.6868 0.1038 0.118*
C6B 0.6377 (5) 0.6453 (4) 0.1902 (4) 0.096 (2)
H6B 0.7073 0.6746 0.1996 0.115*
C7B 0.5982 (4) 0.5973 (4) 0.2341 (3) 0.0790 (16)
H7B 0.6402 0.5949 0.2726 0.095*
C8B 0.4930 (3) 0.5509 (3) 0.2207 (2) 0.0587 (11)
C9B 0.3223 (6) 0.4019 (4) 0.3892 (2) 0.0790 (17)
C10B 0.3738 (7) 0.4180 (5) 0.4496 (3) 0.104 (2)
H10B 0.4454 0.4434 0.4587 0.125*
C11B 0.3171 (11) 0.3960 (7) 0.4949 (4) 0.145 (5)
H11B 0.3519 0.4073 0.5342 0.174*
C12B 0.2135 (11) 0.3588 (8) 0.4841 (5) 0.150 (5)
H12B 0.1769 0.3462 0.5154 0.180*
C13B 0.1631 (8) 0.3400 (5) 0.4271 (3) 0.116 (3)
H13B 0.0925 0.3123 0.4198 0.139*
C14B 0.2151 (6) 0.3613 (4) 0.3784 (3) 0.0831 (18)
C15B 0.1529 (5) 0.3416 (3) 0.3197 (3) 0.0738 (15)
H15B 0.0866 0.3076 0.3182 0.089*
C16B 0.0904 (4) 0.3331 (4) 0.2181 (3) 0.0781 (15)
H16C 0.0253 0.3739 0.2169 0.094*
H16D 0.0690 0.2670 0.2257 0.094*
C17B 0.1214 (4) 0.3358 (3) 0.1574 (2) 0.0567 (10)
C18B 0.0165 (4) 0.3119 (4) 0.1106 (3) 0.0839 (17)
H18D 0.0330 0.3177 0.0713 0.126*
H18E −0.0419 0.3566 0.1147 0.126*
H18F −0.0070 0.2466 0.1166 0.126*
C19B 0.2109 (4) 0.2634 (3) 0.1517 (2) 0.0701 (13)
H19D 0.2742 0.2737 0.1831 0.105*
H19E 0.2326 0.2716 0.1138 0.105*
H19F 0.1831 0.1986 0.1545 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1A 0.04093 (14) 0.04101 (14) 0.03494 (13) −0.00268 (10) 0.00789 (10) 0.00081 (10)
O1A 0.0576 (16) 0.0694 (18) 0.0376 (13) −0.0165 (14) 0.0042 (12) 0.0055 (12)
O2A 0.0497 (15) 0.0664 (18) 0.0427 (14) −0.0157 (13) 0.0082 (11) 0.0014 (12)
N1A 0.0385 (14) 0.0450 (15) 0.0377 (14) −0.0013 (12) 0.0070 (11) 0.0010 (12)
N2A 0.0483 (16) 0.0395 (14) 0.0373 (14) 0.0001 (12) 0.0069 (12) −0.0009 (11)
C1A 0.0415 (19) 0.065 (2) 0.046 (2) −0.0075 (17) 0.0035 (15) 0.0051 (18)
C2A 0.0438 (18) 0.0477 (19) 0.0418 (17) −0.0027 (15) 0.0106 (14) −0.0004 (15)
C3A 0.051 (2) 0.0472 (19) 0.0382 (17) −0.0010 (16) 0.0137 (15) 0.0007 (14)
C4A 0.067 (3) 0.071 (3) 0.046 (2) −0.015 (2) 0.0178 (19) 0.0035 (19)
C5A 0.095 (4) 0.097 (4) 0.045 (2) −0.034 (3) 0.021 (2) 0.009 (2)
C6A 0.100 (4) 0.098 (4) 0.035 (2) −0.024 (3) 0.008 (2) 0.002 (2)
C7A 0.072 (3) 0.073 (3) 0.041 (2) −0.019 (2) 0.0058 (19) 0.0010 (19)
C8A 0.051 (2) 0.049 (2) 0.0375 (17) 0.0014 (16) 0.0090 (15) 0.0015 (15)
C9A 0.047 (2) 0.0385 (17) 0.056 (2) −0.0025 (15) 0.0150 (16) 0.0030 (15)
C10A 0.051 (2) 0.056 (2) 0.068 (3) −0.0066 (18) 0.016 (2) 0.001 (2)
C11A 0.054 (2) 0.058 (3) 0.086 (3) −0.010 (2) 0.020 (2) 0.009 (2)
C12A 0.069 (3) 0.061 (3) 0.079 (3) −0.010 (2) 0.035 (3) 0.012 (2)
C13A 0.067 (3) 0.052 (2) 0.057 (2) −0.005 (2) 0.024 (2) 0.0073 (18)
C14A 0.051 (2) 0.0357 (17) 0.053 (2) −0.0005 (15) 0.0186 (16) 0.0023 (15)
C15A 0.060 (2) 0.0359 (17) 0.0392 (17) 0.0020 (15) 0.0132 (16) 0.0006 (13)
C16A 0.052 (2) 0.054 (2) 0.0409 (18) −0.0038 (17) 0.0004 (15) 0.0084 (16)
C17A 0.0469 (19) 0.0467 (19) 0.0393 (17) −0.0044 (15) 0.0038 (14) −0.0029 (14)
C18A 0.062 (3) 0.081 (3) 0.049 (2) −0.018 (2) −0.0036 (19) −0.001 (2)
C19A 0.069 (3) 0.053 (2) 0.076 (3) 0.004 (2) 0.014 (2) −0.017 (2)
C20A 0.149 (9) 0.095 (6) 0.161 (9) 0.019 (6) 0.066 (7) −0.002 (6)
C21A 0.214 (12) 0.200 (12) 0.090 (6) 0.054 (10) 0.012 (7) 0.001 (6)
O5A 0.127 (8) 0.172 (10) 0.199 (12) −0.001 (7) 0.032 (8) −0.037 (9)
O5B 0.068 (13) 0.12 (2) 0.113 (19) −0.026 (12) −0.005 (11) 0.008 (14)
Pd1B 0.04901 (17) 0.04124 (15) 0.05369 (17) 0.00567 (12) 0.00636 (12) −0.00465 (12)
O1B 0.0474 (16) 0.0648 (19) 0.073 (2) −0.0018 (14) −0.0043 (14) −0.0102 (16)
O2B 0.084 (2) 0.079 (2) 0.0561 (18) 0.0227 (19) 0.0020 (17) −0.0023 (16)
N1B 0.0443 (17) 0.0384 (15) 0.0600 (19) −0.0051 (13) −0.0005 (14) −0.0031 (14)
N2B 0.067 (2) 0.0447 (18) 0.073 (2) 0.0027 (16) 0.0266 (19) 0.0007 (17)
C1B 0.051 (2) 0.055 (2) 0.076 (3) −0.0099 (19) −0.008 (2) 0.006 (2)
C2B 0.052 (2) 0.0412 (19) 0.064 (2) −0.0044 (16) 0.0034 (18) −0.0022 (17)
C3B 0.048 (2) 0.0376 (18) 0.083 (3) −0.0029 (16) 0.016 (2) −0.0081 (19)
C4B 0.079 (3) 0.055 (3) 0.103 (4) −0.010 (2) 0.032 (3) 0.003 (3)
C5B 0.086 (4) 0.066 (3) 0.158 (7) −0.017 (3) 0.060 (5) −0.002 (4)
C6B 0.057 (3) 0.072 (3) 0.166 (7) −0.022 (3) 0.039 (4) −0.027 (4)
C7B 0.044 (2) 0.069 (3) 0.119 (5) −0.008 (2) 0.002 (3) −0.029 (3)
C8B 0.043 (2) 0.043 (2) 0.090 (3) −0.0023 (16) 0.011 (2) −0.018 (2)
C9B 0.123 (5) 0.059 (3) 0.055 (3) 0.041 (3) 0.016 (3) 0.006 (2)
C10B 0.157 (7) 0.087 (4) 0.063 (3) 0.057 (4) 0.010 (4) 0.005 (3)
C11B 0.262 (13) 0.114 (7) 0.060 (4) 0.102 (9) 0.032 (7) 0.023 (4)
C12B 0.241 (13) 0.130 (8) 0.098 (7) 0.070 (9) 0.083 (9) 0.047 (6)
C13B 0.173 (8) 0.092 (5) 0.099 (5) 0.041 (5) 0.069 (5) 0.041 (4)
C14B 0.122 (5) 0.059 (3) 0.077 (4) 0.039 (3) 0.043 (4) 0.023 (3)
C15B 0.092 (4) 0.050 (2) 0.091 (4) 0.018 (2) 0.046 (3) 0.014 (2)
C16B 0.062 (3) 0.077 (3) 0.098 (4) −0.021 (3) 0.021 (3) −0.014 (3)
C17B 0.047 (2) 0.046 (2) 0.076 (3) −0.0097 (17) 0.0090 (19) −0.0062 (19)
C18B 0.059 (3) 0.066 (3) 0.117 (5) −0.022 (2) −0.005 (3) −0.006 (3)
C19B 0.071 (3) 0.053 (2) 0.084 (3) 0.002 (2) 0.009 (3) −0.017 (2)

Geometric parameters (Å, °)

Pd1A—O1A 1.982 (3) C21A—H21A 0.9600
Pd1A—O2A 2.001 (3) C21A—H21B 0.9600
Pd1A—N2A 2.002 (3) C21A—H21C 0.9600
Pd1A—N1A 2.014 (3) O5A—H20C 1.2516
O1A—C8A 1.310 (4) O5A—H5AB 0.8200
O2A—C9A 1.298 (4) O5B—H5BA 0.8200
N1A—C2A 1.286 (4) Pd1B—O2B 1.979 (3)
N1A—C1A 1.475 (5) Pd1B—N1B 1.981 (3)
N2A—C15A 1.292 (5) Pd1B—O1B 1.995 (3)
N2A—C16A 1.469 (5) Pd1B—N2B 2.008 (4)
C1A—C17A 1.516 (5) O1B—C8B 1.302 (6)
C1A—H1A 0.9700 O2B—C9B 1.312 (7)
C1A—H1B 0.9700 N1B—C2B 1.288 (5)
C2A—C3A 1.423 (5) N1B—C1B 1.468 (5)
C2A—H2A 0.9300 N2B—C15B 1.287 (6)
C3A—C8A 1.405 (5) N2B—C16B 1.476 (7)
C3A—C4A 1.418 (5) C1B—C17B 1.533 (6)
C4A—C5A 1.364 (6) C1B—H1C 0.9700
C4A—H4A 0.9300 C1B—H1D 0.9700
C5A—C6A 1.397 (7) C2B—C3B 1.432 (6)
C5A—H5A 0.9300 C2B—H2B 0.9300
C6A—C7A 1.366 (6) C3B—C8B 1.397 (7)
C6A—H6A 0.9300 C3B—C4B 1.403 (7)
C7A—C8A 1.412 (5) C4B—C5B 1.376 (8)
C7A—H7A 0.9300 C4B—H4B 0.9300
C9A—C14A 1.404 (6) C5B—C6B 1.379 (10)
C9A—C10A 1.420 (6) C5B—H5B 0.9300
C10A—C11A 1.374 (6) C6B—C7B 1.363 (9)
C10A—H10A 0.9300 C6B—H6B 0.9300
C11A—C12A 1.379 (7) C7B—C8B 1.417 (6)
C11A—H11A 0.9300 C7B—H7B 0.9300
C12A—C13A 1.357 (7) C9B—C14B 1.404 (9)
C12A—H12A 0.9300 C9B—C10B 1.418 (8)
C13A—C14A 1.429 (5) C10B—C11B 1.387 (12)
C13A—H13A 0.9300 C10B—H10B 0.9300
C14A—C15A 1.431 (5) C11B—C12B 1.346 (15)
C15A—H15A 0.9300 C11B—H11B 0.9300
C16A—C17A 1.513 (5) C12B—C13B 1.354 (13)
C16A—H16A 0.9700 C12B—H12B 0.9300
C16A—H16B 0.9700 C13B—C14B 1.415 (8)
C17A—C18A 1.526 (5) C13B—H13B 0.9300
C17A—C19A 1.526 (6) C14B—C15B 1.434 (9)
C18A—H18A 0.9600 C15B—H15B 0.9300
C18A—H18B 0.9600 C16B—C17B 1.507 (7)
C18A—H18C 0.9600 C16B—H16C 0.9700
C19A—H19A 0.9600 C16B—H16D 0.9700
C19A—H19B 0.9600 C17B—C19B 1.504 (6)
C19A—H19C 0.9600 C17B—C18B 1.541 (6)
C20A—O5A 1.246 (13) C18B—H18D 0.9600
C20A—O5B 1.27 (3) C18B—H18E 0.9600
C20A—C21A 1.508 (13) C18B—H18F 0.9600
C20A—H20A 0.9700 C19B—H19D 0.9600
C20A—H20B 0.9700 C19B—H19E 0.9600
C20A—H20C 0.9598 C19B—H19F 0.9600
C20A—H20D 0.9599
O1A—Pd1A—O2A 79.66 (11) O5B—C20A—H20D 99.0
O1A—Pd1A—N2A 172.05 (12) C21A—C20A—H20D 103.0
O2A—Pd1A—N2A 92.53 (12) H20A—C20A—H20D 58.9
O1A—Pd1A—N1A 92.95 (11) H20B—C20A—H20D 56.5
O2A—Pd1A—N1A 172.15 (11) H20C—C20A—H20D 105.0
N2A—Pd1A—N1A 94.92 (12) C20A—C21A—H21A 109.5
C8A—O1A—Pd1A 127.1 (2) C20A—C21A—H21B 109.5
C9A—O2A—Pd1A 127.0 (2) H21A—C21A—H21B 109.5
C2A—N1A—C1A 114.1 (3) C20A—C21A—H21C 109.5
C2A—N1A—Pd1A 122.1 (3) H21A—C21A—H21C 109.5
C1A—N1A—Pd1A 123.7 (2) H21B—C21A—H21C 109.5
C15A—N2A—C16A 116.3 (3) C20A—O5A—H20C 45.2
C15A—N2A—Pd1A 122.9 (3) C20A—O5A—H5AB 109.5
C16A—N2A—Pd1A 120.8 (2) H20C—O5A—H5AB 99.3
N1A—C1A—C17A 115.8 (3) C20A—O5B—H5BA 109.5
N1A—C1A—H1A 108.3 O2B—Pd1B—N1B 172.48 (15)
C17A—C1A—H1A 108.3 O2B—Pd1B—O1B 80.54 (16)
N1A—C1A—H1B 108.3 N1B—Pd1B—O1B 92.14 (13)
C17A—C1A—H1B 108.3 O2B—Pd1B—N2B 92.43 (17)
H1A—C1A—H1B 107.4 N1B—Pd1B—N2B 94.95 (15)
N1A—C2A—C3A 129.5 (4) O1B—Pd1B—N2B 172.66 (15)
N1A—C2A—H2A 115.2 C8B—O1B—Pd1B 127.0 (3)
C3A—C2A—H2A 115.2 C9B—O2B—Pd1B 125.6 (4)
C8A—C3A—C4A 119.9 (4) C2B—N1B—C1B 115.4 (4)
C8A—C3A—C2A 124.1 (3) C2B—N1B—Pd1B 124.1 (3)
C4A—C3A—C2A 116.0 (4) C1B—N1B—Pd1B 120.4 (3)
C5A—C4A—C3A 121.0 (4) C15B—N2B—C16B 112.7 (5)
C5A—C4A—H4A 119.5 C15B—N2B—Pd1B 122.6 (4)
C3A—C4A—H4A 119.5 C16B—N2B—Pd1B 124.6 (3)
C4A—C5A—C6A 118.9 (4) N1B—C1B—C17B 112.9 (4)
C4A—C5A—H5A 120.6 N1B—C1B—H1C 109.0
C6A—C5A—H5A 120.6 C17B—C1B—H1C 109.0
C7A—C6A—C5A 121.6 (4) N1B—C1B—H1D 109.0
C7A—C6A—H6A 119.2 C17B—C1B—H1D 109.0
C5A—C6A—H6A 119.2 H1C—C1B—H1D 107.8
C6A—C7A—C8A 120.8 (4) N1B—C2B—C3B 128.7 (4)
C6A—C7A—H7A 119.6 N1B—C2B—H2B 115.6
C8A—C7A—H7A 119.6 C3B—C2B—H2B 115.6
O1A—C8A—C3A 124.1 (3) C8B—C3B—C4B 120.1 (4)
O1A—C8A—C7A 118.1 (4) C8B—C3B—C2B 123.1 (4)
C3A—C8A—C7A 117.8 (3) C4B—C3B—C2B 116.7 (5)
O2A—C9A—C14A 124.4 (3) C5B—C4B—C3B 120.8 (6)
O2A—C9A—C10A 118.0 (4) C5B—C4B—H4B 119.6
C14A—C9A—C10A 117.5 (4) C3B—C4B—H4B 119.6
C11A—C10A—C9A 121.1 (4) C4B—C5B—C6B 118.5 (6)
C11A—C10A—H10A 119.5 C4B—C5B—H5B 120.8
C9A—C10A—H10A 119.5 C6B—C5B—H5B 120.8
C10A—C11A—C12A 121.1 (4) C7B—C6B—C5B 122.7 (5)
C10A—C11A—H11A 119.4 C7B—C6B—H6B 118.7
C12A—C11A—H11A 119.4 C5B—C6B—H6B 118.7
C13A—C12A—C11A 119.8 (4) C6B—C7B—C8B 119.7 (6)
C13A—C12A—H12A 120.1 C6B—C7B—H7B 120.2
C11A—C12A—H12A 120.1 C8B—C7B—H7B 120.2
C12A—C13A—C14A 121.0 (4) O1B—C8B—C3B 124.9 (4)
C12A—C13A—H13A 119.5 O1B—C8B—C7B 116.9 (5)
C14A—C13A—H13A 119.5 C3B—C8B—C7B 118.2 (5)
C9A—C14A—C13A 119.5 (4) O2B—C9B—C14B 124.4 (5)
C9A—C14A—C15A 123.8 (3) O2B—C9B—C10B 118.2 (7)
C13A—C14A—C15A 116.6 (4) C14B—C9B—C10B 117.4 (6)
N2A—C15A—C14A 128.9 (3) C11B—C10B—C9B 119.9 (9)
N2A—C15A—H15A 115.5 C11B—C10B—H10B 120.0
C14A—C15A—H15A 115.5 C9B—C10B—H10B 120.0
N2A—C16A—C17A 114.3 (3) C12B—C11B—C10B 122.4 (10)
N2A—C16A—H16A 108.7 C12B—C11B—H11B 118.8
C17A—C16A—H16A 108.7 C10B—C11B—H11B 118.8
N2A—C16A—H16B 108.7 C11B—C12B—C13B 119.2 (9)
C17A—C16A—H16B 108.7 C11B—C12B—H12B 120.4
H16A—C16A—H16B 107.6 C13B—C12B—H12B 120.4
C16A—C17A—C1A 108.3 (3) C12B—C13B—C14B 121.8 (10)
C16A—C17A—C18A 107.0 (3) C12B—C13B—H13B 119.1
C1A—C17A—C18A 107.1 (3) C14B—C13B—H13B 119.1
C16A—C17A—C19A 112.6 (4) C9B—C14B—C13B 119.3 (7)
C1A—C17A—C19A 112.0 (4) C9B—C14B—C15B 123.4 (5)
C18A—C17A—C19A 109.5 (4) C13B—C14B—C15B 117.2 (7)
C17A—C18A—H18A 109.5 N2B—C15B—C14B 128.6 (6)
C17A—C18A—H18B 109.5 N2B—C15B—H15B 115.7
H18A—C18A—H18B 109.5 C14B—C15B—H15B 115.7
C17A—C18A—H18C 109.5 N2B—C16B—C17B 116.6 (4)
H18A—C18A—H18C 109.5 N2B—C16B—H16C 108.1
H18B—C18A—H18C 109.5 C17B—C16B—H16C 108.1
C17A—C19A—H19A 109.5 N2B—C16B—H16D 108.1
C17A—C19A—H19B 109.5 C17B—C16B—H16D 108.1
H19A—C19A—H19B 109.5 H16C—C16B—H16D 107.3
C17A—C19A—H19C 109.5 C19B—C17B—C16B 112.4 (4)
H19A—C19A—H19C 109.5 C19B—C17B—C1B 112.6 (4)
H19B—C19A—H19C 109.5 C16B—C17B—C1B 108.7 (4)
O5A—C20A—O5B 57.8 (12) C19B—C17B—C18B 108.8 (4)
O5A—C20A—C21A 106.5 (11) C16B—C17B—C18B 108.0 (4)
O5B—C20A—C21A 140.6 (15) C1B—C17B—C18B 106.0 (4)
O5A—C20A—H20A 110.4 C17B—C18B—H18D 109.5
O5B—C20A—H20A 56.1 C17B—C18B—H18E 109.5
C21A—C20A—H20A 110.4 H18D—C18B—H18E 109.5
O5A—C20A—H20B 110.4 C17B—C18B—H18F 109.5
O5B—C20A—H20B 109.0 H18D—C18B—H18F 109.5
C21A—C20A—H20B 110.4 H18E—C18B—H18F 109.5
H20A—C20A—H20B 108.6 C17B—C19B—H19D 109.5
O5A—C20A—H20C 67.7 C17B—C19B—H19E 109.5
O5B—C20A—H20C 103.3 H19D—C19B—H19E 109.5
C21A—C20A—H20C 102.0 C17B—C19B—H19F 109.5
H20A—C20A—H20C 146.1 H19D—C19B—H19F 109.5
H20B—C20A—H20C 48.5 H19E—C19B—H19F 109.5
O5A—C20A—H20D 150.5
O2A—Pd1A—O1A—C8A 178.3 (4) O2B—Pd1B—O1B—C8B −176.0 (4)
N1A—Pd1A—O1A—C8A 1.0 (3) N1B—Pd1B—O1B—C8B 2.3 (3)
N2A—Pd1A—O2A—C9A 5.3 (3) O1B—Pd1B—O2B—C9B 163.4 (4)
O1A—Pd1A—O2A—C9A −176.2 (3) N2B—Pd1B—O2B—C9B −18.7 (4)
O1A—Pd1A—N1A—C2A 2.5 (3) O1B—Pd1B—N1B—C2B −0.9 (3)
N2A—Pd1A—N1A—C2A −178.6 (3) N2B—Pd1B—N1B—C2B −179.0 (3)
O1A—Pd1A—N1A—C1A −175.8 (3) O1B—Pd1B—N1B—C1B −175.4 (3)
N2A—Pd1A—N1A—C1A 3.1 (3) N2B—Pd1B—N1B—C1B 6.5 (3)
O2A—Pd1A—N2A—C15A −4.4 (3) O2B—Pd1B—N2B—C15B 10.8 (4)
N1A—Pd1A—N2A—C15A 173.1 (3) N1B—Pd1B—N2B—C15B −167.8 (4)
O2A—Pd1A—N2A—C16A 171.8 (3) O2B—Pd1B—N2B—C16B −171.4 (4)
N1A—Pd1A—N2A—C16A −10.7 (3) N1B—Pd1B—N2B—C16B 10.1 (4)
C2A—N1A—C1A—C17A 150.9 (4) C2B—N1B—C1B—C17B 136.8 (4)
Pd1A—N1A—C1A—C17A −30.7 (5) Pd1B—N1B—C1B—C17B −48.2 (5)
C1A—N1A—C2A—C3A 175.3 (4) C1B—N1B—C2B—C3B 175.0 (4)
Pd1A—N1A—C2A—C3A −3.2 (6) Pd1B—N1B—C2B—C3B 0.3 (6)
N1A—C2A—C3A—C8A −0.3 (7) N1B—C2B—C3B—C8B −0.4 (7)
N1A—C2A—C3A—C4A −178.5 (4) N1B—C2B—C3B—C4B −178.1 (4)
C8A—C3A—C4A—C5A −0.5 (7) C8B—C3B—C4B—C5B 0.1 (7)
C2A—C3A—C4A—C5A 177.8 (5) C2B—C3B—C4B—C5B 177.8 (5)
C3A—C4A—C5A—C6A −1.7 (9) C3B—C4B—C5B—C6B 1.0 (9)
C4A—C5A—C6A—C7A 2.1 (10) C4B—C5B—C6B—C7B −1.5 (10)
C5A—C6A—C7A—C8A −0.1 (9) C5B—C6B—C7B—C8B 0.9 (9)
Pd1A—O1A—C8A—C3A −4.3 (6) Pd1B—O1B—C8B—C3B −3.0 (6)
Pd1A—O1A—C8A—C7A 175.8 (3) Pd1B—O1B—C8B—C7B 177.1 (3)
C4A—C3A—C8A—O1A −177.4 (4) C4B—C3B—C8B—O1B 179.5 (4)
C2A—C3A—C8A—O1A 4.4 (6) C2B—C3B—C8B—O1B 1.8 (7)
C4A—C3A—C8A—C7A 2.5 (6) C4B—C3B—C8B—C7B −0.6 (6)
C2A—C3A—C8A—C7A −175.7 (4) C2B—C3B—C8B—C7B −178.3 (4)
C6A—C7A—C8A—O1A 177.7 (5) C6B—C7B—C8B—O1B −179.9 (5)
C6A—C7A—C8A—C3A −2.2 (7) C6B—C7B—C8B—C3B 0.2 (7)
Pd1A—O2A—C9A—C14A −1.8 (6) Pd1B—O2B—C9B—C14B 16.8 (7)
Pd1A—O2A—C9A—C10A 178.3 (3) Pd1B—O2B—C9B—C10B −164.2 (4)
O2A—C9A—C10A—C11A −179.4 (4) O2B—C9B—C10B—C11B 179.4 (6)
C14A—C9A—C10A—C11A 0.6 (6) C14B—C9B—C10B—C11B −1.5 (8)
C9A—C10A—C11A—C12A 0.6 (7) C9B—C10B—C11B—C12B 0.3 (13)
C10A—C11A—C12A—C13A −0.5 (8) C10B—C11B—C12B—C13B 1.5 (16)
C11A—C12A—C13A—C14A −0.9 (7) C11B—C12B—C13B—C14B −2.1 (14)
O2A—C9A—C14A—C13A 178.1 (4) O2B—C9B—C14B—C13B 180.0 (5)
C10A—C9A—C14A—C13A −1.9 (6) C10B—C9B—C14B—C13B 0.9 (7)
O2A—C9A—C14A—C15A −4.6 (6) O2B—C9B—C14B—C15B −1.4 (8)
C10A—C9A—C14A—C15A 175.3 (4) C10B—C9B—C14B—C15B 179.6 (5)
C12A—C13A—C14A—C9A 2.1 (6) C12B—C13B—C14B—C9B 0.8 (10)
C12A—C13A—C14A—C15A −175.4 (4) C12B—C13B—C14B—C15B −177.9 (7)
C16A—N2A—C15A—C14A −176.2 (4) C16B—N2B—C15B—C14B −178.9 (5)
Pd1A—N2A—C15A—C14A 0.1 (5) Pd1B—N2B—C15B—C14B −0.8 (7)
C9A—C14A—C15A—N2A 5.6 (6) C9B—C14B—C15B—N2B −7.3 (8)
C13A—C14A—C15A—N2A −177.1 (4) C13B—C14B—C15B—N2B 171.3 (5)
C15A—N2A—C16A—C17A −136.7 (3) C15B—N2B—C16B—C17B −166.5 (4)
Pd1A—N2A—C16A—C17A 46.8 (4) Pd1B—N2B—C16B—C17B 15.5 (7)
N2A—C16A—C17A—C1A −75.5 (4) N2B—C16B—C17B—C19B 66.4 (6)
N2A—C16A—C17A—C18A 169.3 (4) N2B—C16B—C17B—C1B −59.0 (6)
N2A—C16A—C17A—C19A 48.9 (5) N2B—C16B—C17B—C18B −173.5 (4)
N1A—C1A—C17A—C16A 65.9 (4) N1B—C1B—C17B—C19B −47.4 (6)
N1A—C1A—C17A—C18A −179.0 (4) N1B—C1B—C17B—C16B 77.9 (5)
N1A—C1A—C17A—C19A −58.9 (5) N1B—C1B—C17B—C18B −166.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5A—H5AB···O1Ai 0.82 2.33 3.020 (13) 142

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2126).

References

  1. Abu-Surrah, A. S., Thewalt, U. & Rieger, B. (1999). J. Organomet. Chem 587, 58–66.
  2. Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266. [DOI] [PMC free article] [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  4. Ayala, V., Corma, A., Iglesias, M., Rincon, J. A. & Sanchez, F. (2004). J. Catal. 224, 170–177.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Caselli, A., Gallo, E., Ragaini, F., Oppezzo, A. & Cenini, S. (2005). J. Organomet. Chem 690, 2142–2148.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  8. Lai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron 61, 9484–9489.
  9. Pou, D., Platero-Prats, A. E., Peŕez, S., Lo´pez, C., Solans, X., Font-Bardía, M., van Leeuwen, P. W. N. M., van Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem 692, 5017–5025.
  10. Ramírez, P., Contreras, R., Valderrama, M., Carmona, D., Lahoz, F. J. & Balana, A. I. (2008). J. Organomet. Chem 693, 349–356.
  11. Roy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., Nethaji, M. & Kar, S. K. (2008). Polyhedron 27, 593–601.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017078/ez2126sup1.cif

e-64-0m909-sup1.cif (34.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017078/ez2126Isup2.hkl

e-64-0m909-Isup2.hkl (538KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES