Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1309. doi: 10.1107/S1600536808017376

1-Acetyl-5,6-dimethoxy­indoline at 123 K

Xiang-Wei Cheng a,*
PMCID: PMC2961829  PMID: 21202937

Abstract

In the title compound, C12H15NO3, all C, N and O atoms lie in a mirror plane. An intramolecular C—H⋯O hydrogen bond is present.

Related literature

For the synthesis, see: Kuwano et al. (2006). For general background, see: Fernandez et al. (2006); Amit et al. (1976). For a related structure, see: Moreno et al. (1998).graphic file with name e-64-o1309-scheme1.jpg

Experimental

Crystal data

  • C12H15NO3

  • M r = 221.25

  • Orthorhombic, Inline graphic

  • a = 18.541 (4) Å

  • b = 6.9572 (15) Å

  • c = 8.5582 (17) Å

  • V = 1103.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • 0.29 × 0.26 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.963, T max = 0.976

  • 11013 measured reflections

  • 1054 independent reflections

  • 964 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.148

  • S = 1.40

  • 1054 reflections

  • 97 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017376/wk2084sup1.cif

e-64-o1309-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017376/wk2084Isup2.hkl

e-64-o1309-Isup2.hkl (51.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3 0.95 2.30 2.861 (2) 117

Acknowledgments

The author acknowledges financial support from Zhejiang Police College, China.

supplementary crystallographic information

Comment

The indoline cores have attracted particular attention in recent years due to their presence in a great variety of natural products, biologically active alkaloids and pharmaceuticals (Fernandez et al., 2006). Some nitro derivative compounds of 1-acetyl-indoline can undergo photosolvolysis which points to some possible use in the synthesis of peptides (Amit et al., 1976). Here the crystal structure of the title compound is reported.

The title molecule (Fig.1), displays mirror symmetry , with all C, N atom and O atoms lying in the mirror plane.

Experimental

The title compound was prepared according to the literature method (Kuwano et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of an isopropanol solution at 295 K.

Refinement

H atoms were positioned geometrically (C-H = 0.95-0.99 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Crystal data

C12H15NO3 F000 = 472
Mr = 221.25 Dx = 1.331 Mg m3
Orthorhombic, Pnma Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 1054 reflections
a = 18.541 (4) Å θ = 2.2–25.0º
b = 6.9572 (15) Å µ = 0.10 mm1
c = 8.5582 (17) Å T = 123 (2) K
V = 1103.9 (4) Å3 Block, colourless
Z = 4 0.29 × 0.26 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1054 independent reflections
Radiation source: fine-focus sealed tube 964 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.028
T = 123(2) K θmax = 25.0º
ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2002) h = −20→22
Tmin = 0.963, Tmax = 0.976 k = −8→7
11013 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.148   w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2P] where P = (Fo2 + 2Fc2)/3
S = 1.40 (Δ/σ)max < 0.001
1054 reflections Δρmax = 0.41 e Å3
97 parameters Δρmin = −0.59 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2 0.74869 (9) 0.2500 0.6594 (2) 0.0501 (6)
O1 0.78145 (11) 0.2500 0.9506 (2) 0.0526 (6)
O3 0.95611 (11) 0.2500 0.2934 (2) 0.0602 (7)
N1 1.00964 (12) 0.2500 0.5307 (3) 0.0412 (6)
C3 0.96484 (14) 0.2500 0.7812 (3) 0.0399 (7)
C4 0.94640 (14) 0.2500 0.6247 (3) 0.0366 (6)
C6 0.82118 (14) 0.2500 0.6909 (3) 0.0369 (6)
C11 1.01159 (15) 0.2500 0.3721 (3) 0.0439 (7)
C5 0.87457 (14) 0.2500 0.5772 (3) 0.0375 (6)
H5 0.8626 0.2500 0.4717 0.045*
C1 0.83923 (14) 0.2500 0.8506 (3) 0.0397 (7)
C2 0.91147 (14) 0.2500 0.8952 (3) 0.0424 (7)
H2 0.9239 0.2500 1.0005 0.051*
C12 1.08471 (16) 0.2500 0.2962 (4) 0.0529 (8)
H12A 1.1214 0.2500 0.3754 0.079*
H12B 1.0897 0.3627 0.2324 0.079* 0.50
H12C 1.0897 0.1373 0.2324 0.079* 0.50
C9 1.04564 (15) 0.2500 0.8003 (4) 0.0515 (8)
H9A 1.0616 0.1365 0.8563 0.062* 0.50
H9B 1.0616 0.3635 0.8563 0.062* 0.50
C8 0.72852 (17) 0.2500 0.4986 (3) 0.0595 (9)
H8A 0.6769 0.2500 0.4902 0.089*
H8B 0.7475 0.1373 0.4487 0.089* 0.50
H8C 0.7475 0.3627 0.4487 0.089* 0.50
C10 1.07441 (15) 0.2500 0.6328 (4) 0.0533 (8)
H10A 1.1036 0.3633 0.6137 0.064* 0.50
H10B 1.1036 0.1367 0.6137 0.064* 0.50
C7 0.79744 (19) 0.2500 1.1138 (3) 0.0658 (10)
H7A 0.7533 0.2500 1.1723 0.099*
H7B 0.8249 0.3627 1.1394 0.099* 0.50
H7C 0.8249 0.1373 1.1394 0.099* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0326 (11) 0.0844 (15) 0.0334 (10) 0.000 −0.0007 (7) 0.000
O1 0.0446 (12) 0.0827 (15) 0.0304 (10) 0.000 0.0041 (8) 0.000
O3 0.0465 (13) 0.0931 (18) 0.0410 (12) 0.000 0.0042 (9) 0.000
N1 0.0325 (12) 0.0470 (14) 0.0440 (13) 0.000 0.0020 (9) 0.000
C3 0.0377 (15) 0.0415 (14) 0.0406 (15) 0.000 −0.0061 (11) 0.000
C4 0.0342 (14) 0.0362 (13) 0.0395 (14) 0.000 0.0002 (11) 0.000
C6 0.0317 (13) 0.0443 (14) 0.0348 (13) 0.000 −0.0014 (10) 0.000
C11 0.0416 (16) 0.0437 (15) 0.0463 (14) 0.000 0.0065 (13) 0.000
C5 0.0372 (14) 0.0436 (14) 0.0317 (12) 0.000 −0.0019 (11) 0.000
C1 0.0397 (15) 0.0449 (15) 0.0345 (13) 0.000 0.0013 (11) 0.000
C2 0.0474 (16) 0.0484 (16) 0.0313 (13) 0.000 −0.0074 (11) 0.000
C12 0.0473 (18) 0.0518 (17) 0.0595 (18) 0.000 0.0154 (14) 0.000
C9 0.0392 (17) 0.0622 (19) 0.0532 (18) 0.000 −0.0133 (13) 0.000
C8 0.0360 (16) 0.105 (3) 0.0374 (15) 0.000 −0.0043 (12) 0.000
C10 0.0319 (15) 0.0640 (19) 0.0639 (19) 0.000 −0.0025 (13) 0.000
C7 0.061 (2) 0.105 (3) 0.0311 (14) 0.000 0.0030 (14) 0.000

Geometric parameters (Å, °)

O2—C6 1.371 (3) C1—C2 1.393 (4)
O2—C8 1.426 (3) C2—H2 0.9300
O1—C1 1.371 (3) C12—H12A 0.9600
O1—C7 1.428 (3) C12—H12B 0.9600
O3—C11 1.230 (3) C12—H12C 0.9600
N1—C11 1.358 (4) C9—C10 1.530 (5)
N1—C4 1.422 (3) C9—H9A 0.9700
N1—C10 1.485 (4) C9—H9B 0.9700
C3—C4 1.383 (4) C8—H8A 0.9600
C3—C2 1.389 (4) C8—H8B 0.9600
C3—C9 1.507 (4) C8—H8C 0.9600
C4—C5 1.392 (4) C10—H10A 0.9700
C6—C5 1.388 (4) C10—H10B 0.9700
C6—C1 1.408 (4) C7—H7A 0.9600
C11—C12 1.503 (4) C7—H7B 0.9600
C5—H5 0.9300 C7—H7C 0.9600
C6—O2—C8 116.6 (2) H12A—C12—H12B 109.5
C1—O1—C7 116.6 (2) C11—C12—H12C 109.5
C11—N1—C4 126.0 (2) H12A—C12—H12C 109.5
C11—N1—C10 124.5 (2) H12B—C12—H12C 109.5
C4—N1—C10 109.5 (2) C3—C9—C10 104.2 (2)
C4—C3—C2 120.3 (2) C3—C9—H9A 110.9
C4—C3—C9 110.5 (2) C10—C9—H9A 110.9
C2—C3—C9 129.2 (2) C3—C9—H9B 110.9
C3—C4—C5 121.3 (2) C10—C9—H9B 110.9
C3—C4—N1 110.1 (2) H9A—C9—H9B 108.9
C5—C4—N1 128.6 (2) O2—C8—H8A 109.5
O2—C6—C5 124.2 (2) O2—C8—H8B 109.5
O2—C6—C1 115.1 (2) H8A—C8—H8B 109.5
C5—C6—C1 120.7 (2) O2—C8—H8C 109.5
O3—C11—N1 121.7 (2) H8A—C8—H8C 109.5
O3—C11—C12 121.2 (3) H8B—C8—H8C 109.5
N1—C11—C12 117.1 (3) N1—C10—C9 105.6 (2)
C6—C5—C4 118.5 (2) N1—C10—H10A 110.6
C6—C5—H5 120.7 C9—C10—H10A 110.6
C4—C5—H5 120.7 N1—C10—H10B 110.6
O1—C1—C2 125.5 (2) C9—C10—H10B 110.6
O1—C1—C6 114.8 (2) H10A—C10—H10B 108.7
C2—C1—C6 119.6 (2) O1—C7—H7A 109.5
C3—C2—C1 119.5 (2) O1—C7—H7B 109.5
C3—C2—H2 120.2 H7A—C7—H7B 109.5
C1—C2—H2 120.2 O1—C7—H7C 109.5
C11—C12—H12A 109.5 H7A—C7—H7C 109.5
C11—C12—H12B 109.5 H7B—C7—H7C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O3 0.95 2.30 2.861 (2) 117

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2084).

References

  1. Amit, B., Ben-Efraim, D. A. & Patchornik, A. (1976). J. Am. Chem. Soc.98, 834–835.
  2. Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fernandez, V. G., Fernandez-Torres, P. & Gotor, V. (2006). Tetrahedron Asymmetry, 17, 2558–2564.
  4. Kuwano, R., Kashiwabara, M., Sato, K., Ito, T., Kaneda, K. & Ito, Y. (2006). Tetrahedron Asymmetry, 17, 521–535.
  5. Moreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., Da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem.9, 365–373.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017376/wk2084sup1.cif

e-64-o1309-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017376/wk2084Isup2.hkl

e-64-o1309-Isup2.hkl (51.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES