Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m881–m882. doi: 10.1107/S1600536808016516

Tetra-μ-benzoato-bis­[(6-methyl­quino­line)­copper(II)]

Seung Man Yu a, Chi-Ho Park b, Pan-Gi Kim c, Cheal Kim a,*, Youngmee Kim d,*
PMCID: PMC2961840  PMID: 21202752

Abstract

In the title compound, [Cu2(C7H5O2)4(C10H9N)2], the paddle-wheel-type dinuclear complex is constructed by four bridging benzoate groups and two terminal 6-methyl­quinoline ligands. The asymmetric unit contains one-half of the whole mol­ecule, and there is an inversion center at the mid-point of the Cu⋯Cu bond. The octa­hedral coordination of each Cu atom, with four O atoms in the equatorial plane, is completed by the N atom of the 6-methyl­quinoline mol­ecule [Cu—N = 2.212 (2) Å] and by another Cu atom [Cu⋯Cu = 2.6939 (13) Å]. The Cu atom lies 0.234 Å out of the plane of the four O atoms. The molecular packing is stabilized by one intramolecular C—H⋯O as well as C—H⋯π and π–π interactions.

Related literature

For related literature, see: Batten & Robson (1998); Chun et al. (2005); Cotton & Walton (1993); Janiak (2003); Lee et al. (2008); Mines et al. (2002); Pichon et al. (2007); Yoo et al. (2003).graphic file with name e-64-0m881-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H5O2)4(C10H9N)2]

  • M r = 897.88

  • Triclinic, Inline graphic

  • a = 10.420 (7) Å

  • b = 10.590 (7) Å

  • c = 10.751 (6) Å

  • α = 70.399 (11)°

  • β = 64.234 (10)°

  • γ = 81.107 (10)°

  • V = 1006.5 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 288 (2) K

  • 0.10 × 0.08 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 1997) T min = 0.898, T max = 0.915

  • 5579 measured reflections

  • 3848 independent reflections

  • 3001 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.100

  • S = 1.04

  • 3848 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808016516/bx2146sup1.cif

e-64-0m881-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016516/bx2146Isup2.hkl

e-64-0m881-Isup2.hkl (188.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O11 0.93 2.50 3.047 (4) 118
C2—H2⋯Cg1i 0.93 2.82 3.734 (3) 168

Symmetry code: (i) Inline graphic.

Table 2. π–π interactions (Å, °).

Cg2 is the centroid of ring C22–C27. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgI CgJ CgICgJ Dihedral angle Interplanar distance Offset
Cg2 Cg2i 3.967 (4)   3.39 2.06

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment, the Cooperative Research Program for Agricultural Science and Technology Development (20070301–036-019–02), and the Seoul R&BD Program is gratefully acknowledged.

supplementary crystallographic information

Comment

Coordination polymers comprised of metal ions and bridging ligands represent one of the most active areas of material science and chemical research due to their potential applications as functional materials ranging from catalysis, gas absorption, molecular recognition, optics, and so on (Batten & Robson, 1998; Chun et al., 2005; Mines et al., 2002; Janiak, 2003; Yoo et al., 2003). The continuing interest in this area is also due to their intriguing variety of architectures and topologies through the variation of building blocks and reaction conditions. The dinuclear metal carboxylates, M2(O2CR)4, are one of the important building blocks for the study of structures of coordination polymers (Cotton & Walton, 1993) and copper(II) carboxylates among them are often used as building blocks to form a pillard-grid MOF with large pores (Pichon et al., 2007). We have also used copper(II) benzoate as a building block and reported the structure of copper(II) benzoate with quinoxaline (Lee, et al., 2008). In this work, we have employed 6-methylquinoline to investigate the substituent effect of an organic ligand on the structure of copper-benzoate containing coordination complexes.We report here on the structure of new copper(II) benzoate with 6-methylquinoline.

Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Cu—Cu bond. Symmetric operation (-x + 1,-y + 2,-z + 1) produces a paddle-wheel type dinuclear copper-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal 6-methylquinoline ligands. The octahedral coordination of each Cu atom, with four oxygen atoms in the equatorial plane, is completed by nitrogen atom of 6-methylquinoline molecule (Cu—N 2.212 (2) Å) and by another copper atom (Cu···Cu 2.6939 (13) Å). The copper atom is 0.234 Å out of the plane of the four oxygen atoms.In the crystal structure the molecular packing is stabilized by one intramolecular C—H···O as well as C—H···π and π ···π interactions, Table, 1 and 2.

Experimental

19.0 mg (0.1 mmol) of Cu(NO3)2.2.5H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml me thanol and carefully layered by 4 ml acetone solution of 6-methylquinoline ligand (29.0 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

(type here to add refinement details)

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level.

Crystal data

[Cu2(C7H5O2)4(C10H9N)2] Z = 1
Mr = 897.88 F000 = 462
Triclinic, P1 Dx = 1.481 Mg m3
a = 10.420 (7) Å Mo Kα radiation λ = 0.71073 Å
b = 10.590 (7) Å Cell parameters from 1441 reflections
c = 10.751 (6) Å θ = 2.4–19.8º
α = 70.399 (11)º µ = 1.12 mm1
β = 64.234 (10)º T = 288 (2) K
γ = 81.107 (10)º Block, blue
V = 1006.5 (11) Å3 0.10 × 0.08 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3848 independent reflections
Radiation source: fine-focus sealed tube 3001 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 288(2) K θmax = 26.0º
phi and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS: Bruker, 1997) h = −12→12
Tmin = 0.898, Tmax = 0.915 k = −13→10
5579 measured reflections l = −13→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.100   w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3848 reflections Δρmax = 0.31 e Å3
272 parameters Δρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.52984 (3) 0.89016 (3) 0.59215 (4) 0.03698 (14)
N1 0.6052 (2) 0.7261 (2) 0.7373 (2) 0.0381 (6)
C1 0.6560 (3) 0.7658 (3) 0.8104 (3) 0.0443 (7)
H1 0.6566 0.8574 0.7958 0.053*
C2 0.7091 (3) 0.6802 (3) 0.9084 (3) 0.0468 (8)
H2 0.7434 0.7144 0.9572 0.056*
C3 0.7097 (3) 0.5470 (3) 0.9310 (3) 0.0442 (7)
H3 0.7447 0.4885 0.9959 0.053*
C4 0.6576 (3) 0.4967 (3) 0.8567 (3) 0.0378 (7)
C5 0.6493 (3) 0.3595 (3) 0.8781 (3) 0.0449 (7)
H5 0.6834 0.2980 0.9421 0.054*
C6 0.5935 (3) 0.3131 (3) 0.8091 (3) 0.0442 (7)
C7 0.5463 (3) 0.4077 (3) 0.7091 (3) 0.0476 (8)
H7 0.5104 0.3775 0.6587 0.057*
C8 0.5519 (3) 0.5417 (3) 0.6840 (3) 0.0433 (7)
H8 0.5203 0.6016 0.6169 0.052*
C9 0.6053 (3) 0.5905 (3) 0.7591 (3) 0.0366 (6)
C10 0.5756 (4) 0.1656 (3) 0.8414 (4) 0.0595 (9)
H10A 0.6670 0.1251 0.8005 0.089*
H10B 0.5150 0.1533 0.8001 0.089*
H10C 0.5332 0.1243 0.9444 0.089*
O11 0.6763 (2) 1.01228 (19) 0.5543 (2) 0.0489 (5)
O12 0.3714 (2) 0.8060 (2) 0.5994 (2) 0.0487 (5)
C11 0.6982 (3) 1.1320 (3) 0.4734 (3) 0.0391 (7)
C12 0.8146 (3) 1.2041 (3) 0.4667 (3) 0.0383 (7)
C13 0.8366 (3) 1.3391 (3) 0.3937 (3) 0.0469 (8)
H13 0.7792 1.3862 0.3465 0.056*
C14 0.9423 (3) 1.4042 (3) 0.3903 (3) 0.0530 (8)
H14 0.9554 1.4954 0.3417 0.064*
C15 1.0290 (3) 1.3360 (3) 0.4580 (3) 0.0549 (9)
H15 1.1012 1.3805 0.4549 0.066*
C16 1.0084 (3) 1.2030 (3) 0.5295 (4) 0.0576 (9)
H16 1.0677 1.1561 0.5744 0.069*
C17 0.9012 (3) 1.1371 (3) 0.5361 (3) 0.0516 (8)
H17 0.8867 1.0465 0.5877 0.062*
O21 0.6535 (2) 0.8478 (2) 0.4116 (2) 0.0510 (6)
O22 0.3913 (2) 0.9690 (2) 0.7424 (2) 0.0487 (5)
C21 0.6732 (3) 0.9229 (3) 0.2858 (3) 0.0391 (7)
C22 0.7844 (3) 0.8779 (3) 0.1630 (3) 0.0409 (7)
C23 0.8502 (4) 0.7562 (4) 0.1888 (4) 0.0623 (10)
H23 0.8224 0.6991 0.2831 0.075*
C24 0.9574 (4) 0.7171 (4) 0.0763 (4) 0.0760 (12)
H24 1.0019 0.6341 0.0950 0.091*
C25 0.9985 (4) 0.8004 (4) −0.0633 (4) 0.0680 (10)
H25 1.0712 0.7743 −0.1391 0.082*
C26 0.9323 (4) 0.9216 (4) −0.0900 (4) 0.0617 (10)
H26 0.9594 0.9780 −0.1846 0.074*
C27 0.8256 (3) 0.9609 (3) 0.0223 (3) 0.0502 (8)
H27 0.7809 1.0438 0.0032 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0383 (2) 0.0324 (2) 0.0399 (2) 0.00153 (14) −0.01945 (16) −0.00685 (15)
N1 0.0415 (14) 0.0358 (14) 0.0372 (13) 0.0001 (10) −0.0181 (11) −0.0090 (10)
C1 0.0492 (18) 0.0365 (17) 0.0453 (18) −0.0022 (13) −0.0206 (15) −0.0078 (13)
C2 0.0510 (19) 0.048 (2) 0.0507 (19) −0.0009 (14) −0.0295 (16) −0.0147 (15)
C3 0.0407 (17) 0.0497 (19) 0.0418 (17) 0.0048 (14) −0.0221 (14) −0.0085 (14)
C4 0.0337 (16) 0.0377 (16) 0.0379 (16) 0.0021 (12) −0.0144 (13) −0.0079 (13)
C5 0.0423 (17) 0.0361 (17) 0.0494 (19) 0.0059 (13) −0.0197 (15) −0.0062 (14)
C6 0.0448 (18) 0.0392 (17) 0.0448 (18) 0.0036 (13) −0.0168 (15) −0.0120 (14)
C7 0.0540 (19) 0.0469 (19) 0.0497 (19) 0.0033 (15) −0.0251 (16) −0.0206 (15)
C8 0.0528 (19) 0.0393 (17) 0.0401 (17) −0.0006 (14) −0.0237 (15) −0.0085 (13)
C9 0.0367 (16) 0.0363 (16) 0.0331 (15) −0.0026 (12) −0.0133 (13) −0.0068 (12)
C10 0.073 (2) 0.0393 (19) 0.070 (2) 0.0016 (16) −0.034 (2) −0.0151 (16)
O11 0.0497 (13) 0.0358 (12) 0.0616 (14) −0.0046 (9) −0.0312 (11) −0.0022 (10)
O12 0.0491 (13) 0.0398 (12) 0.0585 (13) −0.0039 (10) −0.0317 (11) −0.0017 (10)
C11 0.0379 (16) 0.0363 (17) 0.0411 (17) 0.0006 (13) −0.0132 (14) −0.0137 (13)
C12 0.0350 (16) 0.0367 (16) 0.0413 (17) 0.0002 (12) −0.0135 (13) −0.0128 (13)
C13 0.0485 (19) 0.0387 (18) 0.0525 (19) −0.0006 (14) −0.0221 (16) −0.0104 (14)
C14 0.058 (2) 0.0367 (18) 0.058 (2) −0.0102 (15) −0.0184 (17) −0.0102 (15)
C15 0.0415 (19) 0.066 (2) 0.058 (2) −0.0121 (16) −0.0134 (16) −0.0248 (18)
C16 0.048 (2) 0.060 (2) 0.069 (2) −0.0029 (16) −0.0319 (18) −0.0124 (18)
C17 0.0471 (19) 0.0436 (19) 0.061 (2) −0.0037 (15) −0.0251 (17) −0.0070 (15)
O21 0.0572 (14) 0.0438 (13) 0.0428 (13) 0.0113 (10) −0.0182 (11) −0.0104 (10)
O22 0.0509 (13) 0.0469 (13) 0.0484 (12) 0.0108 (10) −0.0229 (10) −0.0161 (10)
C21 0.0363 (16) 0.0394 (17) 0.0476 (19) −0.0013 (13) −0.0212 (14) −0.0145 (14)
C22 0.0366 (16) 0.0488 (19) 0.0424 (18) 0.0003 (13) −0.0196 (14) −0.0158 (14)
C23 0.064 (2) 0.067 (2) 0.0436 (19) 0.0204 (18) −0.0191 (18) −0.0152 (17)
C24 0.070 (3) 0.082 (3) 0.068 (3) 0.037 (2) −0.027 (2) −0.032 (2)
C25 0.055 (2) 0.094 (3) 0.055 (2) 0.006 (2) −0.0153 (19) −0.036 (2)
C26 0.061 (2) 0.084 (3) 0.0413 (19) −0.017 (2) −0.0191 (18) −0.0156 (18)
C27 0.053 (2) 0.053 (2) 0.050 (2) −0.0023 (15) −0.0265 (17) −0.0140 (16)

Geometric parameters (Å, °)

Cu1—O12 1.955 (2) C11—O12i 1.254 (3)
Cu1—O21 1.964 (2) C11—C12 1.495 (4)
Cu1—O11 1.971 (2) C12—C13 1.380 (4)
Cu1—O22 1.974 (2) C12—C17 1.381 (4)
Cu1—N1 2.212 (2) C13—C14 1.367 (4)
Cu1—Cu1i 2.6939 (13) C13—H13 0.9300
N1—C1 1.314 (4) C14—C15 1.373 (4)
N1—C9 1.375 (4) C14—H14 0.9300
C1—C2 1.396 (4) C15—C16 1.359 (4)
C1—H1 0.9300 C15—H15 0.9300
C2—C3 1.347 (4) C16—C17 1.370 (4)
C2—H2 0.9300 C16—H16 0.9300
C3—C4 1.404 (4) C17—H17 0.9300
C3—H3 0.9300 O21—C21 1.261 (3)
C4—C5 1.403 (4) O22—C21i 1.250 (3)
C4—C9 1.419 (4) C21—O22i 1.250 (3)
C5—C6 1.355 (4) C21—C22 1.495 (4)
C5—H5 0.9300 C22—C23 1.364 (4)
C6—C7 1.410 (4) C22—C27 1.380 (4)
C6—C10 1.505 (4) C23—C24 1.379 (5)
C7—C8 1.358 (4) C23—H23 0.9300
C7—H7 0.9300 C24—C25 1.372 (5)
C8—C9 1.410 (4) C24—H24 0.9300
C8—H8 0.9300 C25—C26 1.363 (5)
C10—H10A 0.9600 C25—H25 0.9300
C10—H10B 0.9600 C26—C27 1.377 (5)
C10—H10C 0.9600 C26—H26 0.9300
O11—C11 1.262 (3) C27—H27 0.9300
O12—C11i 1.254 (3)
O12—Cu1—O21 89.07 (10) H10A—C10—H10C 109.5
O12—Cu1—O11 166.38 (8) H10B—C10—H10C 109.5
O21—Cu1—O11 89.52 (10) C11—O11—Cu1 127.61 (19)
O12—Cu1—O22 88.79 (10) C11i—O12—Cu1 121.26 (19)
O21—Cu1—O22 166.32 (8) O12i—C11—O11 124.7 (3)
O11—Cu1—O22 89.39 (10) O12i—C11—C12 118.4 (3)
O12—Cu1—N1 101.96 (9) O11—C11—C12 116.9 (3)
O21—Cu1—N1 97.02 (9) C13—C12—C17 118.5 (3)
O11—Cu1—N1 91.66 (9) C13—C12—C11 121.1 (3)
O22—Cu1—N1 96.64 (10) C17—C12—C11 120.4 (3)
O12—Cu1—Cu1i 86.24 (7) C14—C13—C12 120.4 (3)
O21—Cu1—Cu1i 82.33 (7) C14—C13—H13 119.8
O11—Cu1—Cu1i 80.14 (7) C12—C13—H13 119.8
O22—Cu1—Cu1i 84.05 (7) C13—C14—C15 120.6 (3)
N1—Cu1—Cu1i 171.77 (6) C13—C14—H14 119.7
C1—N1—C9 117.2 (2) C15—C14—H14 119.7
C1—N1—Cu1 114.60 (19) C16—C15—C14 119.3 (3)
C9—N1—Cu1 128.17 (19) C16—C15—H15 120.4
N1—C1—C2 124.6 (3) C14—C15—H15 120.4
N1—C1—H1 117.7 C15—C16—C17 120.7 (3)
C2—C1—H1 117.7 C15—C16—H16 119.6
C3—C2—C1 118.8 (3) C17—C16—H16 119.6
C3—C2—H2 120.6 C16—C17—C12 120.5 (3)
C1—C2—H2 120.6 C16—C17—H17 119.8
C2—C3—C4 120.0 (3) C12—C17—H17 119.8
C2—C3—H3 120.0 C21—O21—Cu1 125.3 (2)
C4—C3—H3 120.0 C21i—O22—Cu1 123.10 (19)
C5—C4—C3 123.6 (3) O22i—C21—O21 125.0 (3)
C5—C4—C9 118.7 (3) O22i—C21—C22 118.6 (3)
C3—C4—C9 117.7 (3) O21—C21—C22 116.4 (3)
C6—C5—C4 122.6 (3) C23—C22—C27 119.1 (3)
C6—C5—H5 118.7 C23—C22—C21 120.4 (3)
C4—C5—H5 118.7 C27—C22—C21 120.5 (3)
C5—C6—C7 118.0 (3) C22—C23—C24 120.6 (3)
C5—C6—C10 121.9 (3) C22—C23—H23 119.7
C7—C6—C10 120.1 (3) C24—C23—H23 119.7
C8—C7—C6 121.9 (3) C25—C24—C23 120.1 (4)
C8—C7—H7 119.0 C25—C24—H24 119.9
C6—C7—H7 119.0 C23—C24—H24 119.9
C7—C8—C9 120.3 (3) C26—C25—C24 119.6 (3)
C7—C8—H8 119.8 C26—C25—H25 120.2
C9—C8—H8 119.8 C24—C25—H25 120.2
N1—C9—C8 119.9 (2) C25—C26—C27 120.3 (3)
N1—C9—C4 121.7 (3) C25—C26—H26 119.9
C8—C9—C4 118.4 (3) C27—C26—H26 119.9
C6—C10—H10A 109.5 C26—C27—C22 120.3 (3)
C6—C10—H10B 109.5 C26—C27—H27 119.8
H10A—C10—H10B 109.5 C22—C27—H27 119.8
C6—C10—H10C 109.5
O12—Cu1—N1—C1 −147.0 (2) Cu1i—Cu1—O12—C11i 1.0 (2)
O21—Cu1—N1—C1 122.5 (2) Cu1—O11—C11—O12i −0.8 (4)
O11—Cu1—N1—C1 32.8 (2) Cu1—O11—C11—C12 178.41 (18)
O22—Cu1—N1—C1 −56.8 (2) O12i—C11—C12—C13 6.2 (4)
O12—Cu1—N1—C9 33.2 (2) O11—C11—C12—C13 −173.0 (3)
O21—Cu1—N1—C9 −57.3 (2) O12i—C11—C12—C17 −175.0 (3)
O11—Cu1—N1—C9 −147.0 (2) O11—C11—C12—C17 5.7 (4)
O22—Cu1—N1—C9 123.4 (2) C17—C12—C13—C14 0.2 (5)
C9—N1—C1—C2 −0.3 (4) C11—C12—C13—C14 179.0 (3)
Cu1—N1—C1—C2 179.9 (2) C12—C13—C14—C15 0.7 (5)
N1—C1—C2—C3 0.2 (5) C13—C14—C15—C16 −0.4 (5)
C1—C2—C3—C4 0.0 (5) C14—C15—C16—C17 −0.9 (5)
C2—C3—C4—C5 −177.4 (3) C15—C16—C17—C12 1.8 (5)
C2—C3—C4—C9 −0.1 (4) C13—C12—C17—C16 −1.5 (5)
C3—C4—C5—C6 177.4 (3) C11—C12—C17—C16 179.7 (3)
C9—C4—C5—C6 0.1 (4) O12—Cu1—O21—C21 90.1 (2)
C4—C5—C6—C7 2.0 (5) O11—Cu1—O21—C21 −76.4 (2)
C4—C5—C6—C10 −175.4 (3) O22—Cu1—O21—C21 9.1 (5)
C5—C6—C7—C8 −1.9 (5) N1—Cu1—O21—C21 −168.0 (2)
C10—C6—C7—C8 175.6 (3) Cu1i—Cu1—O21—C21 3.8 (2)
C6—C7—C8—C9 −0.3 (5) O12—Cu1—O22—C21i −85.7 (2)
C1—N1—C9—C8 179.9 (3) O21—Cu1—O22—C21i −4.6 (5)
Cu1—N1—C9—C8 −0.3 (4) O11—Cu1—O22—C21i 80.8 (2)
C1—N1—C9—C4 0.2 (4) N1—Cu1—O22—C21i 172.4 (2)
Cu1—N1—C9—C4 −179.98 (18) Cu1i—Cu1—O22—C21i 0.6 (2)
C7—C8—C9—N1 −177.4 (3) Cu1—O21—C21—O22i −5.7 (4)
C7—C8—C9—C4 2.3 (4) Cu1—O21—C21—C22 173.24 (18)
C5—C4—C9—N1 177.5 (2) O22i—C21—C22—C23 −175.4 (3)
C3—C4—C9—N1 0.0 (4) O21—C21—C22—C23 5.6 (4)
C5—C4—C9—C8 −2.2 (4) O22i—C21—C22—C27 6.9 (4)
C3—C4—C9—C8 −179.7 (3) O21—C21—C22—C27 −172.1 (3)
O12—Cu1—O11—C11 −1.8 (5) C27—C22—C23—C24 0.8 (5)
O21—Cu1—O11—C11 82.3 (3) C21—C22—C23—C24 −177.0 (3)
O22—Cu1—O11—C11 −84.1 (3) C22—C23—C24—C25 −0.3 (6)
N1—Cu1—O11—C11 179.3 (2) C23—C24—C25—C26 −0.3 (6)
Cu1i—Cu1—O11—C11 0.0 (2) C24—C25—C26—C27 0.5 (6)
O21—Cu1—O12—C11i −81.4 (2) C25—C26—C27—C22 −0.1 (5)
O11—Cu1—O12—C11i 2.7 (5) C23—C22—C27—C26 −0.6 (5)
O22—Cu1—O12—C11i 85.1 (2) C21—C22—C27—C26 177.2 (3)
N1—Cu1—O12—C11i −178.4 (2)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O11 0.93 2.50 3.047 (4) 118
C2—H2···Cg1ii 0.93 2.82 3.734 (3) 168

Symmetry codes: (ii) x, y, z+1.

Table 2 π–π interactions ( Å, ° )

Cg2 is the centroid of ring C22–C27. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgI CgJ CgI···CgJ Dihedral angle Interplanar distance Offset
Cg2 Cg2i 3.967 (4) 0 3.39 2.06

Symmetry code: (i) -x+2,-y+2,-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2146).

References

  1. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494. [DOI] [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J.11, 3521–3529. [DOI] [PubMed]
  4. Cotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.
  5. Janiak, C. (2003). Dalton Trans pp. 2781–2804.
  6. Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [DOI] [PMC free article] [PubMed]
  7. Mines, G. A., Tzeng, B.-C., Stevenson, K. J., Li, J. & Hupp, J. T. (2002). Angew. Chem. Int. Ed.41, 154–157. [DOI] [PubMed]
  8. Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449–451.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2003). Dalton Trans. pp. 1454–1456.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808016516/bx2146sup1.cif

e-64-0m881-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016516/bx2146Isup2.hkl

e-64-0m881-Isup2.hkl (188.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES