Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):m905–m906. doi: 10.1107/S1600536808016796

Tetra­chlorido(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)platinum(IV)

Leila Hojjat Kashani a, Vahid Amani a, Mohammad Yousefi a,*, Hamid Reza Khavasi b
PMCID: PMC2961848  PMID: 21202769

Abstract

The asymmetric unit of the title compound, [PtCl4(C12H12N2)], contains one half-mol­ecule; a twofold rotation axis passes through the Pt atom and the mid-point of the C—C bond linking the two rings. The PtIV atom is six-coordinated in an octa­hedral configuration by two N atoms of the 4,4′-dimethyl-2,2′-bipyridine ligand and four terminal Cl atoms. In the crystal structure, there are weak π–π inter­actions between pyridine rings, with a centroid–centroid distance of 4.365 (3) Å.

Related literature

For related literature, see: Hedin (1886); Joergensen (1900); Bajusz et al. (1989); Vorobevdesyatovskii et al. (1991); Gaballa et al. (2003); Casas et al. (2005); Hambley (1986); Hafizovic et al. (2006); Delir Kheirollahi Nezhad et al. (2008); Crowder et al. (2004); Junicke et al. (1997); Khripun et al. (2006); Witkowski et al. (1997); Kuduk-Jaworska et al. (1988, 1990); Bokach et al. (2003); Kukushkin et al. (1998); Garnovskii et al. (2001); Luzyanin, Kukushkin et al. (2002); Gonzalez et al. (2002); Luzyanin, Haukka et al. (2002); Yousefi et al. (2007).graphic file with name e-64-0m905-scheme1.jpg

Experimental

Crystal data

  • [PtCl4(C12H12N2)]

  • M r = 521.12

  • Orthorhombic, Inline graphic

  • a = 6.9497 (7) Å

  • b = 13.3774 (13) Å

  • c = 17.3195 (16) Å

  • V = 1610.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.36 mm−1

  • T = 298 (2) K

  • 0.25 × 0.23 × 0.21 mm

Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005)T min = 0.172, T max = 0.275

  • 5803 measured reflections

  • 2157 independent reflections

  • 1779 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.097

  • S = 1.16

  • 2157 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016796/hk2470sup1.cif

e-64-0m905-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016796/hk2470Isup2.hkl

e-64-0m905-Isup2.hkl (104KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pt1—N1 2.031 (4)
Pt1—Cl2 2.3038 (13)
Pt1—Cl1 2.3146 (16)
N1—Pt1—N1i 80.4 (2)
N1—Pt1—Cl2 175.58 (12)
N1—Pt1—Cl2i 95.40 (13)
Cl2—Pt1—Cl2i 88.85 (8)
N1—Pt1—Cl1i 87.72 (14)
Cl2—Pt1—Cl1i 90.96 (6)
N1—Pt1—Cl1 89.81 (14)
Cl2—Pt1—Cl1 91.34 (6)
Cl1i—Pt1—Cl1 176.78 (8)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Amine platinum(IV) complexes have been known since the end of the last century (Hedin, 1886; Joergensen, 1900). Some of them have cancerostatic properties from which new interest aroused in these complexes (Bajusz et al., 1989; Vorobevdesyatovskii et al., 1991). Due to the kinetic inertness of hexachloro -platinate(IV), cis- and trans-[PtC14L2] complexes (L=N, O, P, S donor ligand) were mainly prepared by oxidation reactions of the corresponding platinum(II) complexes [PtCl2L2] (Hedin, 1886; Joergensen, 1900).

Several PtIV complexes, with formula, [PtCl4(N-N)], such as [PtCl4- (bipyi)], (II), (Gaballa et al., 2003), [PtCl4(Me2bim)], (III), (Casas et al., 2005), [PtCl4(bipy)], (IV), (Hambley, 1986), [PtCl4(dcbipy)].H2O, (V), (Hafizovic et al., 2006), [PtCl4{pz(py)2}], (VI), (Delir Kheirollahi Nezhad et al., 2008) and [PtCl4(dpk)], (VII), (Crowder et al., 2004) [where bipyi is 2,2'-bi-pyrimidinyl, Me2bim is 1,1'-dimethyl- 2,2'-bi-imidazolyl, bipy is 2,2'-bipyridine, dcbipy is 2,2'- bipyridine-5,5'-dicarboxylic acid, pz(py)2 is 2,3-bis(2-pyridyl)pyrazine and dpk is bis(2-pyridyl)ketone] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several PtIV complexes, with formula, [PtCl4L2], such as cis- and trans-[PtCl4(py)2], (VIII), (Junicke et al., 1997), cis- and trans-[PtCl4(PzH)2], (IX), (Khripun et al., 2006), trans-[PtCl4(NH3)2](1-Mu), (X), (Witkowski et al., 1997), trans-[PtCl4(1-Prim)2], (XI), (Kuduk-Jaworska et al., 1988), cis-[PtCl4(1-Etim)2], (XII), (Kuduk-Jaworska et al., 1990), trans-[PtCl4{NH=C(NMe2)OH}2], (XIII), (Bokach et al., 2003), trans-[PtCl4{NH=C(Me)ON=CMe2}2], (XIV), (Kukushkin et al., 1998), cis-[PtCl4{NH=C(Et)N=CPh2}2], (XV), (Garnovskii et al., 2001), trans- [PtCl4{NH=C(Et)ON=C(OH)Ph}2].2DMSO, (XVI), (Luzyanin, Kukushkin et al., 2002), trans-[PtCl4{NH=C(OMe)But}2], (XVII), (Gonzalez et al., 2002), trans-[PtCl4{NH=C(OH)Et}2], (XVIII), (Luzyanin, Haukka et al., 2002) and trans- [PtCl4(pz)2], (XIX), (Yousefi et al., 2007) [where PzH is pyrazole, 1-Mu is 1-methyluracil, 1-Prim is 1-propylimidazole, 1-Etim is 1-ethylimidazoyl and Pz is pyrazine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains one-half molecule. The PtIV atom is six-coordinated in octahedral configuration (Table 1) by two N atoms of 4,4'-dimethyl-2,2'-bipyridine ligand and four terminal Cl atoms. The Pt-Cl and Pt-N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III), (V) and (VI).

In the crystal structure, weak π—π interactions between pyridine rings [symmetry code: 3/2 - x, 1/2 - y, z] may be effective in the stabilization of the structure, with a centroid-centroid distance of 4.365 (3) Å.

Experimental

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2' -bipyridine (0.11 g, 0.58 mmol) in methanol (10 ml) was added to a solution of H2PtCl6.6H2O, (0.30 g, 0.58 mmol) in methanol (10 ml) at room temperature. Crystals suitable for X-ray analysis were obtained by methanol diffusion in a solution of yellow precipitate in DMSO after one week (yield; 0.25 g, 82.8%).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) 1/2 - x, 1/2 - y, z].

Crystal data

[PtCl4(C12H12N2)] F000 = 976
Mr = 521.12 Dx = 2.150 Mg m3
Orthorhombic, Pccn Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 1510 reflections
a = 6.9497 (7) Å θ = 2.8–29.2º
b = 13.3774 (13) Å µ = 9.36 mm1
c = 17.3195 (16) Å T = 298 (2) K
V = 1610.2 (3) Å3 Prism, yellow
Z = 4 0.25 × 0.23 × 0.21 mm

Data collection

Stoe IPDS II diffractometer 2157 independent reflections
Radiation source: fine-focus sealed tube 1779 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.049
Detector resolution: 0.15 mm pixels mm-1 θmax = 29.2º
T = 298(2) K θmin = 2.8º
rotation method scans h = −6→9
Absorption correction: numericalshape of crystal determined optically k = −18→17
Tmin = 0.172, Tmax = 0.275 l = −23→18
5803 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.097   w = 1/[σ2(Fo2) + (0.0451P)2 + 3.1448P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max = 0.007
2157 reflections Δρmax = 0.96 e Å3
87 parameters Δρmin = −0.81 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. (X-SHAPE and X-RED; Stoe & Cie, 2005)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.2500 0.2500 0.451996 (14) 0.02949 (11)
Cl1 0.0431 (2) 0.38548 (12) 0.45575 (10) 0.0500 (4)
Cl2 0.0689 (2) 0.17462 (12) 0.35700 (8) 0.0481 (3)
N1 0.4010 (6) 0.3087 (3) 0.5416 (2) 0.0316 (9)
C1 0.3349 (8) 0.2829 (4) 0.6127 (3) 0.0304 (10)
C2 0.4230 (8) 0.3185 (4) 0.6782 (3) 0.0381 (11)
H2 0.3744 0.3015 0.7265 0.046*
C3 0.5850 (8) 0.3801 (4) 0.6728 (3) 0.0399 (12)
C4 0.6800 (11) 0.4197 (6) 0.7439 (4) 0.0578 (18)
H4A 0.7228 0.3649 0.7753 0.069*
H4B 0.5898 0.4595 0.7725 0.069*
H4C 0.7884 0.4601 0.7296 0.069*
C5 0.6513 (9) 0.4028 (5) 0.5998 (4) 0.0472 (14)
H5 0.7597 0.4429 0.5942 0.057*
C6 0.5593 (9) 0.3668 (5) 0.5349 (3) 0.0424 (13)
H6 0.6065 0.3827 0.4862 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.03027 (15) 0.03300 (16) 0.02522 (16) −0.00577 (10) 0.000 0.000
Cl1 0.0429 (7) 0.0431 (8) 0.0638 (10) 0.0050 (6) 0.0091 (7) 0.0049 (6)
Cl2 0.0523 (8) 0.0592 (8) 0.0327 (6) −0.0138 (7) −0.0124 (6) −0.0019 (6)
N1 0.031 (2) 0.035 (2) 0.0283 (19) −0.0121 (18) −0.0011 (16) −0.0041 (16)
C1 0.031 (2) 0.036 (2) 0.024 (2) −0.011 (2) −0.0050 (19) 0.0000 (18)
C2 0.040 (3) 0.044 (3) 0.031 (2) −0.007 (2) −0.002 (2) 0.004 (2)
C3 0.035 (3) 0.039 (3) 0.046 (3) −0.011 (2) −0.007 (2) −0.001 (2)
C4 0.054 (4) 0.070 (4) 0.049 (4) −0.021 (4) −0.018 (3) −0.005 (3)
C5 0.036 (3) 0.053 (4) 0.053 (3) −0.020 (3) −0.006 (3) −0.003 (3)
C6 0.040 (3) 0.052 (3) 0.035 (2) −0.020 (3) 0.007 (2) −0.001 (2)

Geometric parameters (Å, °)

Pt1—N1 2.031 (4) C2—H2 0.9300
Pt1—N1i 2.031 (4) C3—C5 1.380 (9)
Pt1—Cl2 2.3038 (13) C3—C4 1.494 (8)
Pt1—Cl2i 2.3038 (13) C4—H4A 0.9600
Pt1—Cl1i 2.3146 (16) C4—H4B 0.9600
Pt1—Cl1 2.3146 (16) C4—H4C 0.9600
C1—N1 1.359 (6) C5—C6 1.379 (8)
C1—C2 1.374 (7) C5—H5 0.9300
C1—C1i 1.472 (10) C6—N1 1.352 (7)
C2—C3 1.398 (7) C6—H6 0.9300
N1—Pt1—N1i 80.4 (2) C3—C2—H2 119.7
N1—Pt1—Cl2 175.58 (12) C5—C3—C2 117.4 (5)
N1i—Pt1—Cl2 95.40 (13) C5—C3—C4 122.0 (5)
N1—Pt1—Cl2i 95.40 (13) C2—C3—C4 120.6 (6)
N1i—Pt1—Cl2i 175.58 (12) C3—C4—H4A 109.5
Cl2—Pt1—Cl2i 88.85 (8) C3—C4—H4B 109.5
N1—Pt1—Cl1i 87.72 (14) H4A—C4—H4B 109.5
N1i—Pt1—Cl1i 89.81 (14) C3—C4—H4C 109.5
Cl2—Pt1—Cl1i 90.96 (6) H4A—C4—H4C 109.5
Cl2i—Pt1—Cl1i 91.34 (6) H4B—C4—H4C 109.5
N1—Pt1—Cl1 89.81 (14) C6—C5—C3 121.0 (5)
N1i—Pt1—Cl1 87.72 (14) C6—C5—H5 119.5
Cl2—Pt1—Cl1 91.34 (6) C3—C5—H5 119.5
Cl2i—Pt1—Cl1 90.96 (6) N1—C6—C5 120.6 (5)
Cl1i—Pt1—Cl1 176.78 (8) N1—C6—H6 119.7
N1—C1—C2 120.6 (5) C5—C6—H6 119.7
N1—C1—C1i 115.0 (3) C6—N1—C1 119.9 (4)
C2—C1—C1i 124.4 (3) C6—N1—Pt1 125.3 (3)
C1—C2—C3 120.5 (5) C1—N1—Pt1 114.8 (3)
C1—C2—H2 119.7
N1—C1—C2—C3 −1.5 (9) C1i—C1—N1—C6 −178.3 (6)
C1i—C1—C2—C3 179.4 (7) C2—C1—N1—Pt1 −179.3 (4)
C1—C2—C3—C5 −0.1 (9) C1i—C1—N1—Pt1 −0.1 (8)
C1—C2—C3—C4 179.4 (6) N1i—Pt1—N1—C6 178.1 (6)
C2—C3—C5—C6 0.7 (10) Cl1i—Pt1—N1—C6 87.9 (5)
C4—C3—C5—C6 −178.8 (7) Cl1—Pt1—N1—C6 −94.2 (5)
C3—C5—C6—N1 0.3 (10) N1i—Pt1—N1—C1 0.0 (3)
C5—C6—N1—C1 −2.0 (9) Cl2i—Pt1—N1—C1 178.7 (4)
C5—C6—N1—Pt1 −179.9 (5) Cl1i—Pt1—N1—C1 −90.2 (4)
C2—C1—N1—C6 2.6 (9) Cl1—Pt1—N1—C1 87.8 (4)

Symmetry codes: (i) −x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2470).

References

  1. Bajusz, S., Janaky, T., Csernus, V. J., Bokser, L., Fedeke, M., Srkalovic, G., Redding, T. W. & Schally, A. V. (1989). Proc. Natl Acad. Sci. USA, 86, 6313–6317. [DOI] [PMC free article] [PubMed]
  2. Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem.42, 7560–7568. [DOI] [PubMed]
  3. Casas, J. S., Castineiras, A., Parajo, Y., Sanchez, A., Gonzalez, A. S. & Sordo, J. (2005). Polyhedron, 24, 1196–1202.
  4. Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem.43, 72–78. [DOI] [PubMed]
  5. Delir Kheirollahi Nezhad, P., Azadbakht, F., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m575–m576. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem.629, 703–710.
  9. Garnovskii, D. A., Kukushkin, V. Y., Haukka, M., Wagner, G. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Dalton Trans, pp. 560–566.
  10. Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem.41, 470–478. [DOI] [PubMed]
  11. Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416.
  12. Hambley, T. W. (1986). Acta Cryst. C42, 49–51.
  13. Hedin, S. G. (1886). Acta Univ. Lund.22, 1–6.
  14. Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437–439.
  15. Kuduk-Jaworska, J., Kubiak, M., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1990). Acta Cryst. C46, 2046–2049.
  16. Joergensen, S. M. (1900). Z. Anorg. Chem.25, 353–377.
  17. Junicke, H., Schenzel, K., Heinemann, F. W., Pelz, K., Bogel, H. & Steinborn, D. (1997). Z. Anorg. Allg. Chem.623, 603–607.
  18. Khripun, A. V., Selivanov, S. I., Kukushkin, V. Y. & Haukka, M. (2006). Inorg. Chim. Acta, 359, 320–326.
  19. Kukushkin, V. Y., Pakhomova, T. B., Kukushkin, Y. N., Herrmann, R., Wagner, G. & Pombeiro, A. J. L. (1998). Inorg. Chem.37, 6511–6517. [DOI] [PubMed]
  20. Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans, pp. 1882–1887.
  21. Luzyanin, K. V., Kukushkin, V. Y., Kuznetsov, M. L., Garnovskii, D. A., Haukka, M. & Pombeiro, A. J. L. (2002). Inorg. Chem.41, 2981–2986. [DOI] [PubMed]
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED Stoe & Cie, Darmstadt, Germany.
  24. Vorobevdesyatovskii, N. V., Barinov, A. A., Lukin, Y. N., Sokolov, V. V., Demidov, V. N. & Kuptsov, A. Y. (1991). Zh. Obshch. Khim.61, 709–716.
  25. Witkowski, H., Freisinger, E. & Lippert, B. (1997). Chem. Commun. pp. 1315–1316.
  26. Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2869–m2870.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016796/hk2470sup1.cif

e-64-0m905-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016796/hk2470Isup2.hkl

e-64-0m905-Isup2.hkl (104KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES