Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1274. doi: 10.1107/S1600536808017790

2,2,2-Trimethyl-N-(4-methyl­phenyl­sulfon­yl)acetamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2961849  PMID: 21202906

Abstract

The bond parameters and conformations of the N—H and C=O bonds of the SO2—NH—CO—C group in the title compound, C12H17NO3S, anti to each other, are similar to what has been observed in related structures. The benzene ring and the SO2—NH—CO—C group make a dihedral angle of 71.2 (1)°. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For related literature, see: Gowda et al. (2003, 2007, 2008).graphic file with name e-64-o1274-scheme1.jpg

Experimental

Crystal data

  • C12H17NO3S

  • M r = 255.34

  • Triclinic, Inline graphic

  • a = 6.695 (1) Å

  • b = 8.953 (2) Å

  • c = 12.040 (2) Å

  • α = 80.21 (1)°

  • β = 78.51 (1)°

  • γ = 88.98 (1)°

  • V = 696.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 299 (2) K

  • 0.50 × 0.32 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.894, T max = 0.978

  • 8562 measured reflections

  • 2827 independent reflections

  • 1947 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.142

  • S = 1.02

  • 2827 reflections

  • 182 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017790/rk2096sup1.cif

e-64-o1274-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017790/rk2096Isup2.hkl

e-64-o1274-Isup2.hkl (138.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.79 (3) 2.19 (3) 2.955 (2) 164 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

The present work is a part of a study of the substituent effects on the solid state geometries of N–(aryl)–sulfonamides and substituted amides. The conformations of the N—H and C=O bonds of the SO2—NH—CO—C group in N–(4–methylphenylsulfonyl)–2,2,2–trimethylacetamide, (I), are anti– to each other (Fig. 1), similar to that observed in N–(phenylsulfonyl)–2,2,2–trimethylacetamide, II, (Gowda et al., 2008). The bond parameters in I are similar to those in II, N–(aryl)–2,2,2–trimethylacetamides (Gowda et al., 2007) and 4–methylbenzenesulfonamide (Gowda et al., 2003). The packing diagram of molecules I shows the intermolecular hydrogen bonds N1—H1N···O1i which link the molecules into centrosymmetric dimers (Fig. 2). Symmetry code: (i) -x, -y+2, -z+2.

Experimental

The title compound was prepared by refluxing 4–methylbenzenesulfonamide with excess pivalyl chloride for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its IR– and NMR–spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X–ray diffraction studies at room temperature.

Refinement

The H atom from NH–group was located in difference map and its positional parameters were refined freely with N—H = 0.79 (3)Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The C9, C10 and C11 of the tert–butyl group are disordered and were refined using a split model with site–occupation factors 0.5:0.5. The C—C bond distances in the disordered groups were restrained to be equal.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Only one part of disordered moiety is shown.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines. Symmetry code: (i) -x, -y+2, -z+2.

Crystal data

C12H17NO3S Z = 2
Mr = 255.34 F000 = 272
Triclinic, P1 Dx = 1.217 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.695 (1) Å Cell parameters from 1734 reflections
b = 8.953 (2) Å θ = 2.3–28.0º
c = 12.040 (2) Å µ = 0.23 mm1
α = 80.21 (1)º T = 299 (2) K
β = 78.51 (1)º Plate, colourless
γ = 88.98 (1)º 0.50 × 0.32 × 0.10 mm
V = 696.8 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2827 independent reflections
Radiation source: Fine–focus sealed tube 1947 reflections with I > 2σ(I)
Monochromator: Graphite Rint = 0.023
T = 299(2) K θmax = 26.4º
ω and φ scans θmin = 2.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −8→8
Tmin = 0.894, Tmax = 0.978 k = −11→11
8562 measured reflections l = −14→15

Refinement

Refinement on F2 Secondary atom site location: Difmap
Least-squares matrix: Full Hydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142   w = 1/[σ2(Fo2) + (0.0808P)2 + 0.1297P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.038
2827 reflections Δρmax = 0.33 e Å3
182 parameters Δρmin = −0.34 e Å3
3 restraints Extinction correction: none
Primary atom site location: Direct

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.1874 (3) 0.8846 (2) 0.75440 (18) 0.0516 (5)
C2 0.3230 (3) 0.8778 (3) 0.65199 (19) 0.0594 (6)
H2 0.4609 0.8988 0.6453 0.071*
C3 0.2531 (4) 0.8401 (3) 0.5608 (2) 0.0683 (6)
H3 0.3445 0.8360 0.4923 0.082*
C4 0.0483 (4) 0.8079 (3) 0.5687 (2) 0.0709 (7)
C5 −0.0839 (4) 0.8185 (3) 0.6716 (3) 0.0791 (8)
H5 −0.2221 0.7987 0.6783 0.095*
C6 −0.0172 (3) 0.8569 (3) 0.7630 (2) 0.0678 (6)
H6 −0.1093 0.8643 0.8307 0.081*
C7 0.3855 (4) 1.2106 (3) 0.7911 (2) 0.0639 (6)
C8 0.3541 (4) 1.3752 (3) 0.8054 (2) 0.0701 (7)
C9A 0.1437 (11) 1.4233 (10) 0.7939 (9) 0.100 (3) 0.50
H9A 0.0464 1.3618 0.8524 0.120* 0.50
H9B 0.1219 1.4113 0.7195 0.120* 0.50
H9C 0.1274 1.5278 0.8025 0.120* 0.50
C10A 0.5538 (16) 1.4617 (14) 0.7800 (13) 0.177 (7) 0.50
H10A 0.6243 1.4556 0.7033 0.213* 0.50
H10B 0.6360 1.4187 0.8338 0.213* 0.50
H10C 0.5281 1.5660 0.7867 0.213* 0.50
C11A 0.3989 (18) 1.3949 (12) 0.9168 (9) 0.196 (10) 0.50
H11A 0.5374 1.3672 0.9193 0.235* 0.50
H11B 0.3084 1.3313 0.9777 0.235* 0.50
H11C 0.3802 1.4989 0.9262 0.235* 0.50
C9B 0.1959 (18) 1.4340 (12) 0.7407 (9) 0.261 (14) 0.50
H9D 0.0703 1.3790 0.7733 0.314* 0.50
H9E 0.2375 1.4234 0.6615 0.314* 0.50
H9F 0.1766 1.5393 0.7460 0.314* 0.50
C10B 0.4889 (17) 1.4674 (8) 0.6990 (9) 0.127 (4) 0.50
H10D 0.4484 1.4464 0.6310 0.152* 0.50
H10E 0.6287 1.4400 0.6971 0.152* 0.50
H10F 0.4742 1.5735 0.7022 0.152* 0.50
C11B 0.2711 (16) 1.3977 (11) 0.9308 (7) 0.099 (3) 0.50
H11D 0.3680 1.3606 0.9775 0.119* 0.50
H11E 0.1444 1.3427 0.9599 0.119* 0.50
H11F 0.2494 1.5035 0.9328 0.119* 0.50
C12 −0.0265 (5) 0.7606 (4) 0.4700 (3) 0.1004 (10)
H12A −0.0457 0.6525 0.4840 0.120*
H12B 0.0722 0.7904 0.4002 0.120*
H12C −0.1536 0.8087 0.4627 0.120*
N1 0.2641 (3) 1.1039 (2) 0.87314 (17) 0.0608 (5)
H1N 0.171 (4) 1.125 (3) 0.919 (2) 0.073*
O1 0.1327 (3) 0.85718 (17) 0.97613 (13) 0.0685 (5)
O2 0.4839 (2) 0.87466 (19) 0.86454 (14) 0.0702 (5)
O3 0.5046 (3) 1.1703 (2) 0.71397 (17) 0.0929 (6)
S1 0.27716 (8) 0.91984 (6) 0.87499 (4) 0.0559 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0458 (11) 0.0419 (10) 0.0596 (12) 0.0075 (8) 0.0015 (9) −0.0024 (9)
C2 0.0520 (12) 0.0601 (13) 0.0604 (13) 0.0020 (10) 0.0012 (10) −0.0089 (10)
C3 0.0722 (16) 0.0665 (15) 0.0615 (14) 0.0057 (12) −0.0020 (12) −0.0114 (11)
C4 0.0814 (17) 0.0575 (14) 0.0755 (16) 0.0051 (12) −0.0248 (14) −0.0057 (12)
C5 0.0550 (14) 0.0894 (19) 0.0890 (19) 0.0024 (13) −0.0138 (14) −0.0047 (15)
C6 0.0512 (13) 0.0781 (16) 0.0664 (15) 0.0075 (11) 0.0001 (11) −0.0052 (12)
C7 0.0625 (14) 0.0571 (13) 0.0663 (14) −0.0074 (11) −0.0023 (12) −0.0058 (11)
C8 0.0807 (17) 0.0509 (13) 0.0763 (16) −0.0078 (12) −0.0163 (13) −0.0027 (11)
C9A 0.086 (4) 0.065 (4) 0.154 (8) 0.005 (3) −0.031 (5) −0.022 (4)
C10A 0.134 (8) 0.151 (9) 0.228 (14) −0.094 (7) 0.083 (9) −0.110 (10)
C11A 0.37 (3) 0.084 (6) 0.205 (15) 0.025 (12) −0.223 (19) −0.044 (8)
C9B 0.51 (3) 0.132 (10) 0.268 (18) 0.156 (15) −0.32 (2) −0.113 (11)
C10B 0.138 (8) 0.044 (3) 0.164 (9) −0.010 (4) 0.031 (7) 0.006 (4)
C11B 0.152 (8) 0.055 (4) 0.091 (5) −0.010 (4) −0.010 (5) −0.023 (4)
C12 0.124 (3) 0.088 (2) 0.099 (2) 0.0007 (19) −0.048 (2) −0.0169 (17)
N1 0.0642 (12) 0.0479 (10) 0.0605 (11) 0.0012 (8) 0.0108 (9) −0.0086 (8)
O1 0.0794 (11) 0.0538 (9) 0.0583 (9) 0.0055 (8) 0.0097 (8) 0.0015 (7)
O2 0.0580 (10) 0.0762 (11) 0.0751 (11) 0.0184 (8) −0.0113 (8) −0.0134 (8)
O3 0.0956 (14) 0.0753 (12) 0.0865 (13) −0.0155 (10) 0.0340 (11) −0.0132 (10)
S1 0.0568 (4) 0.0479 (3) 0.0556 (3) 0.0077 (2) 0.0021 (2) −0.0040 (2)

Geometric parameters (Å, °)

C1—C6 1.377 (3) C9A—H9C 0.9600
C1—C2 1.388 (3) C10A—H10A 0.9600
C1—S1 1.755 (2) C10A—H10B 0.9600
C2—C3 1.370 (3) C10A—H10C 0.9600
C2—H2 0.9300 C11A—H11A 0.9600
C3—C4 1.387 (4) C11A—H11B 0.9600
C3—H3 0.9300 C11A—H11C 0.9600
C4—C5 1.388 (4) C9B—H9D 0.9600
C4—C12 1.503 (4) C9B—H9E 0.9600
C5—C6 1.363 (4) C9B—H9F 0.9600
C5—H5 0.9300 C10B—H10D 0.9600
C6—H6 0.9300 C10B—H10E 0.9600
C7—O3 1.199 (3) C10B—H10F 0.9600
C7—N1 1.391 (3) C11B—H11D 0.9600
C7—C8 1.519 (3) C11B—H11E 0.9600
C8—C9B 1.474 (8) C11B—H11F 0.9600
C8—C11A 1.471 (8) C12—H12A 0.9600
C8—C9A 1.492 (7) C12—H12B 0.9600
C8—C10A 1.508 (8) C12—H12C 0.9600
C8—C10B 1.530 (7) N1—S1 1.645 (2)
C8—C11B 1.548 (8) N1—H1N 0.79 (3)
C9A—H9A 0.9600 O1—S1 1.4322 (15)
C9A—H9B 0.9600 O2—S1 1.4226 (16)
C6—C1—C2 119.9 (2) H9C—C9A—H9D 124.4
C6—C1—S1 119.81 (17) C8—C9A—H9F 99.8
C2—C1—S1 120.19 (17) H9A—C9A—H9F 143.6
C3—C2—C1 119.7 (2) H9B—C9A—H9F 79.1
C3—C2—H2 120.1 H9C—C9A—H9F 38.1
C1—C2—H2 120.1 H9D—C9A—H9F 115.2
C2—C3—C4 121.2 (2) C8—C10A—H10A 109.5
C2—C3—H3 119.4 C8—C10A—H10B 109.5
C4—C3—H3 119.4 H10A—C10A—H10B 109.5
C3—C4—C5 117.6 (2) C8—C10A—H10C 109.5
C3—C4—C12 121.0 (3) H10A—C10A—H10C 109.5
C5—C4—C12 121.3 (3) H10B—C10A—H10C 109.5
C6—C5—C4 122.0 (2) C8—C11A—H11A 109.5
C6—C5—H5 119.0 C8—C11A—H11B 109.5
C4—C5—H5 119.0 H11A—C11A—H11B 109.5
C5—C6—C1 119.5 (2) C8—C11A—H11C 109.5
C5—C6—H6 120.3 H11A—C11A—H11C 109.5
C1—C6—H6 120.3 H11B—C11A—H11C 109.5
O3—C7—N1 119.9 (2) C8—C9B—H9D 109.6
O3—C7—C8 123.8 (2) C8—C9B—H9E 110.1
N1—C7—C8 116.3 (2) H9D—C9B—H9E 109.5
C9B—C8—C11A 133.9 (8) C8—C9B—H9F 108.6
C9B—C8—C9A 25.6 (7) H9D—C9B—H9F 109.5
C11A—C8—C9A 112.1 (6) H9E—C9B—H9F 109.5
C9B—C8—C10A 118.0 (9) C8—C10B—H10D 109.5
C11A—C8—C10A 73.2 (8) C8—C10B—H10E 109.5
C9A—C8—C10A 132.1 (7) H10D—C10B—H10E 109.5
C9B—C8—C7 106.9 (4) C8—C10B—H10F 109.5
C11A—C8—C7 109.0 (4) H10D—C10B—H10F 109.5
C9A—C8—C7 110.8 (4) H10E—C10B—H10F 109.5
C10A—C8—C7 111.7 (5) C8—C11B—H11D 109.5
C9B—C8—C10B 80.5 (7) C8—C11B—H11E 109.5
C11A—C8—C10B 115.8 (8) H11D—C11B—H11E 109.5
C9A—C8—C10B 103.5 (6) C8—C11B—H11F 109.5
C10A—C8—C10B 44.0 (6) H11D—C11B—H11F 109.5
C7—C8—C10B 105.3 (4) H11E—C11B—H11F 109.5
C9B—C8—C11B 105.6 (7) C4—C12—H12A 109.5
C11A—C8—C11B 32.2 (6) C4—C12—H12B 109.5
C9A—C8—C11B 81.3 (6) H12A—C12—H12B 109.5
C10A—C8—C11B 100.5 (6) C4—C12—H12C 109.5
C7—C8—C11B 114.1 (4) H12A—C12—H12C 109.5
C10B—C8—C11B 135.7 (5) H12B—C12—H12C 109.5
C8—C9A—H9A 109.5 C7—N1—S1 124.02 (17)
C8—C9A—H9B 109.5 C7—N1—H1N 124.0 (19)
H9A—C9A—H9B 109.5 S1—N1—H1N 111.5 (19)
C8—C9A—H9C 109.5 O2—S1—O1 118.88 (10)
H9A—C9A—H9C 109.5 O2—S1—N1 109.50 (10)
H9B—C9A—H9C 109.5 O1—S1—N1 103.95 (9)
C8—C9A—H9D 125.1 O2—S1—C1 108.79 (10)
H9A—C9A—H9D 64.0 O1—S1—C1 108.34 (10)
H9B—C9A—H9D 45.5 N1—S1—C1 106.71 (10)
C6—C1—C2—C3 −1.5 (3) N1—C7—C8—C10A 139.4 (7)
S1—C1—C2—C3 175.60 (17) O3—C7—C8—C10B 4.5 (6)
C1—C2—C3—C4 −0.2 (4) N1—C7—C8—C10B −174.6 (5)
C2—C3—C4—C5 1.3 (4) O3—C7—C8—C11B −154.7 (5)
C2—C3—C4—C12 −177.6 (2) N1—C7—C8—C11B 26.3 (5)
C3—C4—C5—C6 −0.9 (4) O3—C7—N1—S1 2.2 (4)
C12—C4—C5—C6 178.0 (2) C8—C7—N1—S1 −178.70 (17)
C4—C5—C6—C1 −0.8 (4) C7—N1—S1—O2 49.4 (2)
C2—C1—C6—C5 2.0 (3) C7—N1—S1—O1 177.46 (19)
S1—C1—C6—C5 −175.16 (18) C7—N1—S1—C1 −68.1 (2)
O3—C7—C8—C9B 88.9 (6) C6—C1—S1—O2 152.78 (18)
N1—C7—C8—C9B −90.1 (6) C2—C1—S1—O2 −24.3 (2)
O3—C7—C8—C11A −120.5 (6) C6—C1—S1—O1 22.2 (2)
N1—C7—C8—C11A 60.5 (6) C2—C1—S1—O1 −154.90 (17)
O3—C7—C8—C9A 115.7 (5) C6—C1—S1—N1 −89.16 (19)
N1—C7—C8—C9A −63.3 (5) C2—C1—S1—N1 93.72 (18)
O3—C7—C8—C10A −41.6 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.79 (3) 2.19 (3) 2.955 (2) 164 (3)

Symmetry codes: (i) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2096).

References

  1. Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64 Submitted. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  3. Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  4. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017790/rk2096sup1.cif

e-64-o1274-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017790/rk2096Isup2.hkl

e-64-o1274-Isup2.hkl (138.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES