Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):m912–m913. doi: 10.1107/S1600536808017340

An octa­nuclear zinc(II) complex with 6,6′-dihydr­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenol

Naser Eltaher Eltayeb a,, Siang Guan Teoh a, Suchada Chantrapromma b,§, Hoong-Kun Fun c,*, Rohana Adnan a
PMCID: PMC2961853  PMID: 21202773

Abstract

The asymmetric unit of the title compound, tetra­aqua­tetrakis­{μ3-6,6′-di­oxido-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}octa­zinc(II) dimethyl sulfoxide tetra­solvate dihydrate, [Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2O, contains one quarter of a ZnII octa­nuclear complex with Inline graphic symmetry, one dimethyl sulfoxide mol­ecule and one half of a water mol­ecule which lies on a twofold rotation axis. The ZnII atoms of the octa­nuclear complex have two different five-coordinate environments, viz. ZnN2O3 and ZnO5. All eight ZnII centers adopt a distorted square-pyramidal coordination; four ZnII ions have the N2O2 tetra­dentate Schiff base ligand bound in a basal plane and the coordinated water mol­ecule occupying the apical site, while the remaing four ZnII ions are bound by five O atoms from three Schiff base ligands. In the crystal structure, ZnII complex mol­ecules, coordinated and uncoord­inated water mol­ecules and dimethyl sulfoxide mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional framework.

Related literature

For related literatures on Schiff base ZnII coordination complexes, see: Basak et al. 2007; Collinson & Fenton (1996); Pal et al. (2005); Tarafder et al. (2002). For related structures, see: Eltayeb et al. (2007a ,b ,c ). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0m912-scheme1.jpg

Experimental

Crystal data

  • [Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2O

  • M r = 2321.03

  • Tetragonal, Inline graphic

  • a = 18.1324 (3) Å

  • c = 13.3813 (3) Å

  • V = 4399.56 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 100.0 (1) K

  • 0.57 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.352, T max = 0.796

  • 26700 measured reflections

  • 5851 independent reflections

  • 3700 reflections with I > 2σ(I)

  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.138

  • S = 1.02

  • 5851 reflections

  • 314 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.34 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017340/ci2611sup1.cif

e-64-0m912-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017340/ci2611Isup2.hkl

e-64-0m912-Isup2.hkl (286.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.84 (4) 1.72 (4) 2.535 (4) 164 (5)
O2W—H1W2⋯O5 0.85 (8) 2.28 (9) 3.032 (4) 147 (4)
O1W—H2W1⋯O5 0.83 (4) 1.95 (4) 2.772 (5) 174 (4)
C3—H3A⋯O3ii 0.93 2.57 3.271 (5) 132
C21—H21C⋯O4iii 0.96 2.52 3.454 (7) 165
C21—H21BCg1iv 0.96 2.81 3.475 (6) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 is the centroid of the C1–C6 ring.

Acknowledgments

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

There has been considerable interest in the synthesis of metal Schiff base complexes due to their coordination chemistry and applications (Basak et al., 2007; Eltayeb et al., 2007a,b,c; Pal et al., 2005; Tarafder et al., 2002). Zinc complexes with Schiff bases are important in biological systems and coordination chemistry (Collinson & Fenton, 1996; Tarafder et al., 2002). Previously, we have reported crystal structures of ZnII complexes with Schiff base ligands (Eltayeb et al., 2007a,b,c). As a continuation of our research on Schiff base complexes, we report here the crystal structure of the title octanuclear ZnII complex.

The asymmetric unit of the title compound (Fig. 1) contains one quarter of the Zn8(C80H56N8O20) complex, one dimethyl sulfoxide (C2H6OS) and one-half of a water molecule with its O atom lying on a twofold rotation axis. The other three quarters of the octanuclear complex molecule are generated by the fourfold axis. The ZnII atoms of the octanuclear complex has two different five-coordination environments viz. ZnN2O3 and ZnO5 (Fig. 2). All eight ZnII centers adopt a distorted square-pyramidal coordination in which four ZnII ions (outer) (Zn1 and its three symmetry equivalents Zn1A, Zn1B and Zn1C) coordinate with the N2O2 tetradentate Schiff base ligand bounded in a basal plane and the coordinated water molecule occupying the apical site. The other four ZnII ions (inner) (Zn2 and its three symmetry equivalents Zn2A, Zn2B and Zn2C) are coordinated with five O atoms from three Schiff base ligands (see Fig. 2). The ZnII ions in each unit are connected by one µ-O (Zn1—O2—Zn2) atom (Fig. 1). The Zn—µ-O bond lengths are Zn1—O2 = 2.032 (3) and Zn2—O2 = 2.191 (3) Å. In the octanuclear cluster, the µ-O1 atoms are also in bridging positions, between the ZnII ions (inner cavity) (Zn2—O1—Zn2B) with the Zn—µ-O distances of Zn2—O1 = 2.000 (3) Å and Zn2B—O1 = 1.981 (3) Å. The connections of the four inner ZnII ions by bridging µ-O1 and its equivalents result in the formation of an eight membered ring (Zn2—O1—Zn2B—O1B—Zn2C—O1C—Zn2A—O1A), with the Zn···Zn contacts being 3.4878 (5) Å. The Schiff base ligand in the present complex is in an umbrella conformation with the dihedral angle between the two outer rings (C1—C6 and C15—C20) being 48.1 (2) °. In the octanuclear complex (Fig. 2), the four Schiff bases have their concave sides alternating up and down. The coordination geometry of the five-coordinate atoms Zn1 and Zn2 (and their equivalents) can be viewed as that of a slightly distorted square antiprism. Bond lengths and angles observed in the structure are in normal ranges (Allen et al., 1987) and comparable with the related structures (Eltayeb et al., 2007a,b,c).

In the crystal packing (Fig. 3), the ZnII complex molecules, coordinated and free water molecules and dimethyl sulfoxide molecules are linked via O—H···O and C—H···O hydrogen bonds and C—H···π interactions involving the C1—C6 (centroid Cg1) ring (Table 1) forming a three-dimensional framework.

Experimental

The title compound was synthesized by adding 2,3-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for 30 min. Zinc chloride (0.544 g, 4 mmol) in ethanol (10 ml) was then added, followed by triethylamine (1.0 ml, 7.2 mmol). The mixture was stirred at room temperature for 3 h. The yellow precipitate obtained was washed with about 5 ml e thanol, dried, and then washed with copious amounts of diethylether. Orange single crystals of the title compound suitable for X-ray diffraction were formed after recrystallization in the dimethyl sulfoxide/ethanol (3:5 v/v) at room temperature after several days.

Refinement

Water H atoms were found in the difference map and their positions were refined with a restrained geometry, with O—H = 0.84 (2) Å and H···H = 1.37 (2) Å. The remaining H atoms are placed in calculated positions with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for CH and aromatic and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.36 Å from H22C and the deepest hole is located at 0.47 Å from S1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular structure of the octanuclear complex, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms of the ZnII complex, DMSO and solvated water molecules have been omitted for clarity. Symmetry codes: (A) 1/2 - y, x, 1/2 - z; (B) y, 1/2 - x, 1/2 - z; (C) 1/2 - x, 1/2 - y, z.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed along the c axis, showing sheets parallel to the ab plane. Hydrogen bonds are shown as dashed lines.

Crystal data

[Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2O Z = 2
Mr = 2321.03 F000 = 2360
Tetragonal, P42/n Dx = 1.752 Mg m3
Hall symbol: -P 4bc Mo Kα radiation λ = 0.71073 Å
a = 18.1324 (3) Å Cell parameters from 5851 reflections
b = 18.1324 (3) Å θ = 2.9–29.0º
c = 13.3813 (3) Å µ = 2.32 mm1
α = 90º T = 100.0 (1) K
β = 90º Needle, orange
γ = 90º 0.57 × 0.13 × 0.10 mm
V = 4399.56 (14) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5851 independent reflections
Radiation source: fine-focus sealed tube 3700 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.085
Detector resolution: 8.33 pixels mm-1 θmax = 29.0º
T = 100.0(1) K θmin = 2.9º
ω scans h = −24→11
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −24→24
Tmin = 0.352, Tmax = 0.796 l = −18→18
26700 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138   w = 1/[σ2(Fo2) + (0.0592P)2 + 6.834P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5851 reflections Δρmax = 0.67 e Å3
314 parameters Δρmin = −1.34 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.22916 (3) 0.46426 (3) 0.07015 (4) 0.01886 (13)
Zn2 0.34013 (2) 0.35177 (2) 0.24587 (4) 0.01728 (13)
O1 0.35359 (15) 0.25401 (15) 0.1791 (2) 0.0188 (6)
O2 0.28402 (15) 0.36961 (15) 0.1029 (2) 0.0192 (6)
O3 0.14565 (15) 0.43546 (15) 0.1585 (2) 0.0189 (6)
O4 0.05238 (16) 0.38411 (16) 0.2903 (3) 0.0277 (7)
N1 0.26712 (19) 0.45884 (18) −0.0754 (3) 0.0210 (7)
N2 0.1627 (2) 0.54198 (19) −0.0038 (3) 0.0233 (8)
C1 0.3139 (2) 0.3234 (2) 0.0380 (3) 0.0177 (8)
C2 0.3494 (2) 0.2598 (2) 0.0780 (3) 0.0182 (8)
C3 0.3795 (2) 0.2079 (2) 0.0141 (3) 0.0222 (9)
H3A 0.4019 0.1661 0.0407 0.027*
C4 0.3768 (3) 0.2170 (2) −0.0899 (4) 0.0282 (10)
H4A 0.3952 0.1805 −0.1320 0.034*
C5 0.3471 (2) 0.2795 (2) −0.1285 (3) 0.0248 (9)
H5A 0.3470 0.2861 −0.1974 0.030*
C6 0.3166 (2) 0.3342 (2) −0.0672 (3) 0.0216 (9)
C7 0.2939 (2) 0.4005 (2) −0.1172 (3) 0.0231 (9)
H7A 0.2990 0.4016 −0.1863 0.028*
C8 0.2508 (2) 0.5228 (2) −0.1328 (3) 0.0234 (9)
C9 0.2866 (3) 0.5429 (3) −0.2203 (4) 0.0296 (10)
H9A 0.3238 0.5133 −0.2462 0.035*
C10 0.2663 (3) 0.6077 (3) −0.2689 (4) 0.0349 (12)
H10A 0.2893 0.6207 −0.3285 0.042*
C11 0.2123 (3) 0.6529 (3) −0.2295 (4) 0.0326 (11)
H11A 0.1990 0.6959 −0.2626 0.039*
C12 0.1781 (3) 0.6342 (2) −0.1410 (4) 0.0278 (10)
H12A 0.1428 0.6655 −0.1138 0.033*
C13 0.1960 (2) 0.5688 (2) −0.0920 (3) 0.0218 (9)
C14 0.0969 (2) 0.5594 (2) 0.0204 (4) 0.0250 (9)
H14A 0.0727 0.5940 −0.0191 0.030*
C15 0.0574 (2) 0.5294 (2) 0.1044 (3) 0.0223 (9)
C16 −0.0143 (2) 0.5597 (2) 0.1196 (4) 0.0261 (10)
H16A −0.0298 0.5988 0.0797 0.031*
C17 −0.0604 (2) 0.5332 (2) 0.1905 (4) 0.0269 (10)
H17A −0.1065 0.5546 0.1998 0.032*
C18 −0.0388 (2) 0.4735 (2) 0.2496 (4) 0.0250 (9)
H18A −0.0707 0.4551 0.2978 0.030*
C19 0.0295 (2) 0.4420 (2) 0.2369 (3) 0.0209 (9)
C20 0.0805 (2) 0.4700 (2) 0.1638 (3) 0.0199 (9)
S1 0.42019 (7) 0.60730 (7) −0.06159 (11) 0.0376 (3)
O5 0.3672 (2) 0.6353 (2) 0.0183 (3) 0.0436 (9)
C21 0.5096 (3) 0.6047 (3) −0.0076 (5) 0.0449 (14)
H21A 0.5122 0.5650 0.0397 0.067*
H21B 0.5192 0.6506 0.0258 0.067*
H21C 0.5457 0.5972 −0.0591 0.067*
C22 0.4357 (4) 0.6846 (3) −0.1418 (5) 0.0504 (16)
H22A 0.3913 0.6957 −0.1778 0.076*
H22B 0.4744 0.6731 −0.1881 0.076*
H22C 0.4498 0.7266 −0.1023 0.076*
O1W 0.29110 (16) 0.53937 (16) 0.1423 (3) 0.0251 (7)
H1W1 0.321 (2) 0.5050 (19) 0.154 (4) 0.038*
H2W1 0.311 (2) 0.570 (2) 0.105 (3) 0.038*
O2W 0.2500 0.7500 0.0625 (6) 0.104 (3)
H1W2 0.278 (5) 0.724 (5) 0.026 (2) 0.156*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0204 (2) 0.0191 (2) 0.0171 (3) 0.00136 (18) 0.0007 (2) 0.0010 (2)
Zn2 0.0177 (2) 0.0191 (2) 0.0150 (2) −0.00013 (18) 0.0004 (2) −0.0005 (2)
O1 0.0245 (14) 0.0182 (13) 0.0139 (15) 0.0013 (11) −0.0015 (13) 0.0006 (12)
O2 0.0229 (14) 0.0219 (14) 0.0128 (14) 0.0035 (11) 0.0021 (12) −0.0020 (12)
O3 0.0182 (13) 0.0181 (13) 0.0205 (16) 0.0015 (10) −0.0001 (12) 0.0022 (12)
O4 0.0263 (15) 0.0267 (15) 0.0302 (19) 0.0052 (12) 0.0069 (15) 0.0101 (15)
N1 0.0245 (17) 0.0203 (16) 0.0181 (19) 0.0016 (14) 0.0011 (16) 0.0018 (15)
N2 0.0261 (18) 0.0229 (17) 0.021 (2) 0.0033 (14) 0.0014 (17) 0.0014 (16)
C1 0.0195 (19) 0.0168 (18) 0.017 (2) −0.0004 (15) −0.0013 (17) −0.0030 (17)
C2 0.0204 (18) 0.0192 (18) 0.015 (2) 0.0001 (15) 0.0052 (17) −0.0002 (18)
C3 0.025 (2) 0.021 (2) 0.020 (2) 0.0031 (16) 0.0047 (19) 0.0000 (19)
C4 0.041 (3) 0.025 (2) 0.019 (2) 0.0074 (19) 0.003 (2) −0.0046 (19)
C5 0.035 (2) 0.026 (2) 0.013 (2) 0.0031 (18) 0.0017 (19) −0.0014 (19)
C6 0.023 (2) 0.023 (2) 0.019 (2) 0.0008 (16) −0.0007 (19) −0.0020 (19)
C7 0.024 (2) 0.030 (2) 0.015 (2) 0.0005 (17) −0.0027 (19) 0.0018 (19)
C8 0.027 (2) 0.022 (2) 0.021 (2) 0.0005 (17) −0.004 (2) 0.0010 (19)
C9 0.036 (3) 0.029 (2) 0.023 (2) 0.0043 (19) 0.002 (2) 0.004 (2)
C10 0.045 (3) 0.030 (2) 0.030 (3) −0.002 (2) 0.007 (2) 0.011 (2)
C11 0.040 (3) 0.028 (2) 0.029 (3) 0.002 (2) −0.002 (2) 0.009 (2)
C12 0.029 (2) 0.025 (2) 0.030 (3) 0.0036 (17) 0.001 (2) 0.002 (2)
C13 0.022 (2) 0.024 (2) 0.019 (2) 0.0000 (16) −0.0007 (18) 0.0058 (18)
C14 0.029 (2) 0.024 (2) 0.022 (2) 0.0078 (17) −0.001 (2) 0.0065 (19)
C15 0.026 (2) 0.0188 (19) 0.022 (2) 0.0027 (16) −0.0011 (19) −0.0004 (18)
C16 0.030 (2) 0.023 (2) 0.026 (3) 0.0071 (17) −0.003 (2) 0.001 (2)
C17 0.027 (2) 0.027 (2) 0.026 (3) 0.0071 (18) 0.000 (2) −0.001 (2)
C18 0.025 (2) 0.027 (2) 0.023 (2) −0.0004 (17) 0.006 (2) 0.000 (2)
C19 0.0211 (19) 0.0185 (18) 0.023 (2) −0.0011 (15) −0.0010 (18) −0.0030 (18)
C20 0.0210 (19) 0.0192 (19) 0.020 (2) 0.0004 (15) −0.0038 (18) −0.0025 (18)
S1 0.0380 (7) 0.0359 (7) 0.0389 (8) −0.0037 (5) 0.0043 (6) −0.0010 (6)
O5 0.044 (2) 0.045 (2) 0.042 (2) −0.0087 (17) 0.0120 (19) −0.0001 (19)
C21 0.038 (3) 0.057 (4) 0.039 (3) −0.005 (2) 0.004 (3) 0.001 (3)
C22 0.062 (4) 0.042 (3) 0.048 (4) 0.007 (3) 0.021 (3) 0.005 (3)
O1W 0.0260 (16) 0.0203 (15) 0.0290 (19) −0.0008 (12) −0.0009 (14) −0.0011 (14)
O2W 0.134 (8) 0.130 (8) 0.047 (5) 0.075 (6) 0.000 0.000

Geometric parameters (Å, °)

Zn1—O3 1.990 (3) C8—C9 1.387 (7)
Zn1—O1W 2.012 (3) C8—C13 1.407 (6)
Zn1—O2 2.032 (3) C9—C10 1.393 (6)
Zn1—N1 2.069 (4) C9—H9A 0.93
Zn1—N2 2.101 (4) C10—C11 1.381 (7)
Zn1—H1W1 2.13 (5) C10—H10A 0.93
Zn2—O4i 1.973 (3) C11—C12 1.379 (7)
Zn2—O1ii 1.981 (3) C11—H11A 0.93
Zn2—O1 2.000 (3) C12—C13 1.393 (6)
Zn2—O3i 2.152 (3) C12—H12A 0.93
Zn2—O2 2.191 (3) C14—C15 1.439 (6)
O1—C2 1.359 (5) C14—H14A 0.93
O1—Zn2i 1.981 (3) C15—C20 1.403 (6)
O2—C1 1.323 (5) C15—C16 1.426 (6)
O3—C20 1.339 (5) C16—C17 1.353 (7)
O3—Zn2ii 2.152 (3) C16—H16A 0.93
O4—C19 1.336 (5) C17—C18 1.396 (6)
O4—Zn2ii 1.973 (3) C17—H17A 0.93
N1—C7 1.291 (5) C18—C19 1.374 (6)
N1—C8 1.423 (5) C18—H18A 0.93
N2—C14 1.277 (5) C19—C20 1.439 (6)
N2—C13 1.412 (6) S1—O5 1.525 (4)
C1—C6 1.421 (6) S1—C21 1.775 (6)
C1—C2 1.425 (5) S1—C22 1.787 (6)
C2—C3 1.384 (6) C21—H21A 0.96
C3—C4 1.402 (6) C21—H21B 0.96
C3—H3A 0.93 C21—H21C 0.96
C4—C5 1.356 (6) C22—H22A 0.96
C4—H4A 0.93 C22—H22B 0.96
C5—C6 1.402 (6) C22—H22C 0.96
C5—H5A 0.93 O1W—H1W1 0.837 (19)
C6—C7 1.436 (6) O1W—H2W1 0.833 (19)
C7—H7A 0.93 O2W—H1W2 0.846 (14)
O3—Zn1—O1W 108.50 (13) N1—C7—H7A 116.9
O3—Zn1—O2 91.31 (11) C6—C7—H7A 116.9
O1W—Zn1—O2 101.24 (12) C9—C8—C13 120.2 (4)
O3—Zn1—N1 143.11 (13) C9—C8—N1 124.8 (4)
O1W—Zn1—N1 107.36 (14) C13—C8—N1 114.9 (4)
O2—Zn1—N1 90.00 (12) C8—C9—C10 119.5 (4)
O3—Zn1—N2 91.11 (13) C8—C9—H9A 120.3
O1W—Zn1—N2 95.28 (13) C10—C9—H9A 120.3
O2—Zn1—N2 161.59 (13) C11—C10—C9 120.6 (5)
N1—Zn1—N2 77.25 (14) C11—C10—H10A 119.7
O3—Zn1—H1W1 111.9 (13) C9—C10—H10A 119.7
O1W—Zn1—H1W1 23.1 (7) C12—C11—C10 120.1 (4)
O2—Zn1—H1W1 78.4 (6) C12—C11—H11A 120.0
N1—Zn1—H1W1 104.5 (13) C10—C11—H11A 120.0
N2—Zn1—H1W1 117.4 (6) C11—C12—C13 120.6 (4)
O4i—Zn2—O1ii 117.28 (13) C11—C12—H12A 119.7
O4i—Zn2—O1 128.45 (13) C13—C12—H12A 119.7
O1ii—Zn2—O1 110.27 (16) C12—C13—C8 119.1 (4)
O4i—Zn2—O3i 78.59 (12) C12—C13—N2 126.0 (4)
O1ii—Zn2—O3i 112.98 (12) C8—C13—N2 114.9 (4)
O1—Zn2—O3i 100.78 (11) N2—C14—C15 124.8 (4)
O4i—Zn2—O2 80.99 (12) N2—C14—H14A 117.6
O1ii—Zn2—O2 92.30 (11) C15—C14—H14A 117.6
O1—Zn2—O2 78.31 (11) C20—C15—C16 119.2 (4)
O3i—Zn2—O2 152.81 (11) C20—C15—C14 125.7 (4)
C2—O1—Zn2i 124.8 (2) C16—C15—C14 114.8 (4)
C2—O1—Zn2 111.7 (2) C17—C16—C15 121.7 (4)
Zn2i—O1—Zn2 122.36 (15) C17—C16—H16A 119.1
C1—O2—Zn1 126.4 (3) C15—C16—H16A 119.1
C1—O2—Zn2 106.8 (2) C16—C17—C18 120.0 (4)
Zn1—O2—Zn2 122.72 (14) C16—C17—H17A 120.0
C20—O3—Zn1 125.4 (3) C18—C17—H17A 120.0
C20—O3—Zn2ii 111.3 (2) C19—C18—C17 120.4 (4)
Zn1—O3—Zn2ii 123.20 (13) C19—C18—H18A 119.8
C19—O4—Zn2ii 117.4 (3) C17—C18—H18A 119.8
C7—N1—C8 120.9 (4) O4—C19—C18 122.7 (4)
C7—N1—Zn1 124.9 (3) O4—C19—C20 116.2 (4)
C8—N1—Zn1 113.6 (3) C18—C19—C20 121.1 (4)
C14—N2—C13 121.7 (4) O3—C20—C15 126.4 (4)
C14—N2—Zn1 125.6 (3) O3—C20—C19 115.9 (4)
C13—N2—Zn1 112.3 (3) C15—C20—C19 117.7 (4)
O2—C1—C6 125.2 (4) O5—S1—C21 107.4 (3)
O2—C1—C2 116.8 (4) O5—S1—C22 105.0 (2)
C6—C1—C2 117.9 (4) C21—S1—C22 96.9 (3)
O1—C2—C3 122.7 (4) S1—C21—H21A 109.5
O1—C2—C1 117.5 (3) S1—C21—H21B 109.5
C3—C2—C1 119.8 (4) H21A—C21—H21B 109.5
C2—C3—C4 121.3 (4) S1—C21—H21C 109.5
C2—C3—H3A 119.4 H21A—C21—H21C 109.5
C4—C3—H3A 119.4 H21B—C21—H21C 109.5
C5—C4—C3 119.3 (4) S1—C22—H22A 109.5
C5—C4—H4A 120.3 S1—C22—H22B 109.5
C3—C4—H4A 120.3 H22A—C22—H22B 109.5
C4—C5—C6 121.7 (4) S1—C22—H22C 109.5
C4—C5—H5A 119.2 H22A—C22—H22C 109.5
C6—C5—H5A 119.2 H22B—C22—H22C 109.5
C5—C6—C1 119.7 (4) Zn1—O1W—H1W1 87 (4)
C5—C6—C7 115.7 (4) Zn1—O1W—H2W1 114 (4)
C1—C6—C7 124.5 (4) H1W1—O1W—H2W1 109 (3)
N1—C7—C6 126.3 (4)
O4i—Zn2—O1—C2 −44.4 (3) C6—C1—C2—C3 −5.4 (6)
O1ii—Zn2—O1—C2 112.0 (3) O1—C2—C3—C4 −177.4 (4)
O3i—Zn2—O1—C2 −128.4 (2) C1—C2—C3—C4 0.9 (6)
O2—Zn2—O1—C2 23.9 (2) C2—C3—C4—C5 3.0 (7)
O4i—Zn2—O1—Zn2i 147.45 (15) C3—C4—C5—C6 −2.3 (7)
O1ii—Zn2—O1—Zn2i −56.06 (14) C4—C5—C6—C1 −2.4 (7)
O3i—Zn2—O1—Zn2i 63.54 (17) C4—C5—C6—C7 174.0 (4)
O2—Zn2—O1—Zn2i −144.18 (17) O2—C1—C6—C5 −177.2 (4)
O3—Zn1—O2—C1 130.5 (3) C2—C1—C6—C5 6.2 (6)
O1W—Zn1—O2—C1 −120.3 (3) O2—C1—C6—C7 6.7 (7)
N1—Zn1—O2—C1 −12.6 (3) C2—C1—C6—C7 −169.9 (4)
N2—Zn1—O2—C1 33.0 (6) C8—N1—C7—C6 176.2 (4)
O3—Zn1—O2—Zn2 −75.11 (16) Zn1—N1—C7—C6 −13.8 (6)
O1W—Zn1—O2—Zn2 34.05 (18) C5—C6—C7—N1 −177.3 (4)
N1—Zn1—O2—Zn2 141.76 (17) C1—C6—C7—N1 −1.1 (7)
N2—Zn1—O2—Zn2 −172.6 (3) C7—N1—C8—C9 −28.3 (7)
O4i—Zn2—O2—C1 107.0 (3) Zn1—N1—C8—C9 160.6 (4)
O1ii—Zn2—O2—C1 −135.8 (2) C7—N1—C8—C13 154.6 (4)
O1—Zn2—O2—C1 −25.5 (2) Zn1—N1—C8—C13 −16.5 (5)
O3i—Zn2—O2—C1 65.3 (3) C13—C8—C9—C10 −1.9 (7)
O4i—Zn2—O2—Zn1 −51.73 (17) N1—C8—C9—C10 −179.0 (4)
O1ii—Zn2—O2—Zn1 65.53 (16) C8—C9—C10—C11 1.6 (8)
O1—Zn2—O2—Zn1 175.75 (18) C9—C10—C11—C12 0.2 (8)
O3i—Zn2—O2—Zn1 −93.4 (3) C10—C11—C12—C13 −1.8 (7)
O1W—Zn1—O3—C20 87.5 (3) C11—C12—C13—C8 1.5 (7)
O2—Zn1—O3—C20 −170.2 (3) C11—C12—C13—N2 −177.0 (4)
N1—Zn1—O3—C20 −78.4 (4) C9—C8—C13—C12 0.4 (7)
N2—Zn1—O3—C20 −8.4 (3) N1—C8—C13—C12 177.7 (4)
O1W—Zn1—O3—Zn2ii −95.24 (18) C9—C8—C13—N2 179.0 (4)
O2—Zn1—O3—Zn2ii 7.07 (17) N1—C8—C13—N2 −3.7 (6)
N1—Zn1—O3—Zn2ii 98.8 (2) C14—N2—C13—C12 26.1 (7)
N2—Zn1—O3—Zn2ii 168.82 (18) Zn1—N2—C13—C12 −159.8 (4)
O3—Zn1—N1—C7 −74.8 (4) C14—N2—C13—C8 −152.4 (4)
O1W—Zn1—N1—C7 119.1 (3) Zn1—N2—C13—C8 21.7 (5)
O2—Zn1—N1—C7 17.3 (4) C13—N2—C14—C15 174.5 (4)
N2—Zn1—N1—C7 −149.3 (4) Zn1—N2—C14—C15 1.3 (7)
O3—Zn1—N1—C8 95.8 (3) N2—C14—C15—C20 −9.3 (8)
O1W—Zn1—N1—C8 −70.2 (3) N2—C14—C15—C16 177.2 (4)
O2—Zn1—N1—C8 −172.0 (3) C20—C15—C16—C17 0.7 (7)
N2—Zn1—N1—C8 21.4 (3) C14—C15—C16—C17 174.7 (4)
O3—Zn1—N2—C14 5.9 (4) C15—C16—C17—C18 −1.4 (7)
O1W—Zn1—N2—C14 −102.8 (4) C16—C17—C18—C19 0.6 (7)
O2—Zn1—N2—C14 103.4 (5) Zn2ii—O4—C19—C18 174.6 (3)
N1—Zn1—N2—C14 150.6 (4) Zn2ii—O4—C19—C20 −5.1 (5)
O3—Zn1—N2—C13 −167.9 (3) C17—C18—C19—O4 −178.9 (4)
O1W—Zn1—N2—C13 83.4 (3) C17—C18—C19—C20 0.9 (7)
O2—Zn1—N2—C13 −70.4 (5) Zn1—O3—C20—C15 4.3 (6)
N1—Zn1—N2—C13 −23.2 (3) Zn2ii—O3—C20—C15 −173.3 (3)
Zn1—O2—C1—C6 3.8 (6) Zn1—O3—C20—C19 −176.8 (3)
Zn2—O2—C1—C6 −153.8 (3) Zn2ii—O3—C20—C19 5.7 (4)
Zn1—O2—C1—C2 −179.5 (3) C16—C15—C20—O3 179.7 (4)
Zn2—O2—C1—C2 22.8 (4) C14—C15—C20—O3 6.4 (7)
Zn2i—O1—C2—C3 −33.8 (5) C16—C15—C20—C19 0.7 (6)
Zn2—O1—C2—C3 158.5 (3) C14—C15—C20—C19 −172.5 (4)
Zn2i—O1—C2—C1 147.9 (3) O4—C19—C20—O3 −0.8 (6)
Zn2—O1—C2—C1 −19.8 (4) C18—C19—C20—O3 179.4 (4)
O2—C1—C2—O1 −4.0 (5) O4—C19—C20—C15 178.2 (4)
C6—C1—C2—O1 173.0 (3) C18—C19—C20—C15 −1.5 (6)
O2—C1—C2—C3 177.7 (4)

Symmetry codes: (i) y, −x+1/2, −z+1/2; (ii) −y+1/2, x, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O4i 0.84 (4) 1.72 (4) 2.535 (4) 164 (5)
O2W—H1W2···O5 0.85 (8) 2.28 (9) 3.032 (4) 147 (4)
O1W—H2W1···O5 0.83 (4) 1.95 (4) 2.772 (5) 174 (4)
C3—H3A···O3iii 0.93 2.57 3.271 (5) 132
C21—H21C···O4iv 0.96 2.52 3.454 (7) 165
C21—H21B···Cg1v 0.96 2.81 3.475 (6) 127

Symmetry codes: (i) y, −x+1/2, −z+1/2; (iii) −x+1/2, −y+1/2, z; (iv) −y+1, x+1/2, z−1/2; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2611).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Basak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G. & Garland Rodriguez, M. T. (2007). Polyhedron, 26, 5104–5112.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev.148, 19–40.
  5. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, m1633–m1634.
  6. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m1672–m1673.
  7. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, m2024–m2025.
  8. Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem.44, 3880–3889. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017340/ci2611sup1.cif

e-64-0m912-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017340/ci2611Isup2.hkl

e-64-0m912-Isup2.hkl (286.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES