Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):m919–m920. doi: 10.1107/S1600536808017285

μ-Aqua-κ2 O:O-di-μ-4-methyl­benzoato-κ4 O:O′-bis­[(4-methyl­benzoato-κO)(1,10-phenanthroline-κ2 N,N′)nickel(II)]

Wen-Dong Song a,*, Jian-Bin Yan a, Xiao-Min Hao a
PMCID: PMC2961858  PMID: 21202777

Abstract

In the title dinuclear complex, [Ni2(C8H7O2)4(C12H8N2)2(H2O)], each NiII atom is six-coordinated by three carboxylate O atoms from three 4-methyl­benzoate ligands, two N atoms from two 1,10-phenanthroline ligands, and one μ2-bridging aqua ligand. The dimeric complex is located on a crystallographic twofold axis and each Ni atom displays a distorted octa­hedral coordination geometry. The crystal structure is stabilized via intra­molecular hydrogen bonding of the bridging water mol­ecule and the uncoordinated carboxyl­ate O atoms, and by C—H⋯O and π–π stacking inter­actions [centroid–centroid distances between neighbouring phenanthroline ring systems and between the benzene ring of a 4-methyl­benzoate unit and a phenanthroline ring system are 3.662 (2) and 3.611 (3) Å, respectively].

Related literature

For the coordination chemistry of 4-methylbenzoate complexes see: Song et al. (2007); Li et al. (2003, 2004); Geetha et al. (1999). For related complexes, see: Eremenko et al. (1999); Sung et al. (2000); Novak et al. (2005).graphic file with name e-64-0m919-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C8H7O2)4(C12H8N2)2(H2O)]

  • M r = 1036.39

  • Monoclinic, Inline graphic

  • a = 23.4180 (6) Å

  • b = 15.4595 (4) Å

  • c = 15.6140 (3) Å

  • β = 122.351 (1)°

  • V = 4775.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 (2) K

  • 0.35 × 0.32 × 0.26 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.612, T max = 0.801

  • 23989 measured reflections

  • 5125 independent reflections

  • 3585 reflections with I > 2σ(I)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.117

  • S = 1.08

  • 5125 reflections

  • 326 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017285/zl2119sup1.cif

e-64-0m919-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017285/zl2119Isup2.hkl

e-64-0m919-Isup2.hkl (264.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.49 3.007 (3) 115
C6—H6⋯O2ii 0.93 2.52 3.296 (4) 142
C8—H8⋯O3iii 0.93 2.52 3.379 (4) 153
O1W—H1W⋯O2i 0.830 (10) 1.746 (12) 2.560 (2) 166 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Guang Dong Ocean University for supporting this study.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzoate complexes, it has been found that 4-methylbenzoic acid can function as a multidentate ligand [Song et al. (2007); Li et al. (2003); Li et al. (2004); Geetha et al. (1999)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ni complex obtained by the reaction of 4-methylbenzoic acid, 1,10-phenanthroline and nickel chloride in alkaline aqueous solution.

As illustrated in Figure 1, each NiII atom, lies on a crystallographic two fold axis, and has a distorted octahedral geometry with the six coordinating atoms being three carboxyl O atoms from two µ2-bridging 4-methylbenzoate ligands and one 4-methylbenzoate ligand, two N atoms from two 1,10-phenanthroline ligands, and one µ2-bridging aqua ligand. Therefore, the O1W water molecule bridges both Ni atoms [Ni1···O1W···Ni2i 110.40 (11)°, symmetry code i = -x, y, -z+1/2] and with a Ni···Nii distance of 3.449 (3) Å. This value is similar to that observed for a binuclear pivalate complexes with a bridging water molecule Ni2L4(µ-OH2)(µ-OOCCMe3)2(OOCCMe3)2, (L2=Py2, (3,4-lutidine)2, (N-nitroxyethylnicotinamide)2, Dipy) [Eremenko et al. (1999)], for which ferromagnetic spin exchange was observed. The Ni···O1W distance is 2.100 (14) Å which is a little shorter than that in other similar complexes [Sung et al., 2000; Novak et al., 2005], suggesting their non-negligible interactions.

The interactions of the structural components are governed by O—H···O hydrogen bonds, C—H···O interactions (Table 1) and by two types of π-π stacking interactions between two closeby phenantroline rings and between a phenyl ring of a 4-methylbenzoate unit and a phenantroline unit. The centroid to centroid distances for the further π-π stacking interaction is 3.662 (2) Å [symmetry code = x, -y, z-1/2], that of the latter 3.611 (3) Å [symmetry code = 1/2-x, 1/2-y, 1-z], respectively, thus indicating weak π-π stacking interactions (Fig. 2).

Experimental

A mixture of nickel chloride (1 mmol), 4-methylbenzate (1 mmol), 1,10-phenanthroline (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å, each within a standard deviation of 0.01 Å with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids. Symmetry code i = -x, y, -z+1/2.

Fig. 2.

Fig. 2.

A packing view of the title compound. The purple spheres represent ring centroids involved in π-π stacking interactions (blue dashed lines). The green dashed lines represent C—H···O and O—H···O hydrogen bonds.

Crystal data

[Ni2(C8H7O2)4(C12H8N2)2(H2O)] Z = 4
Mr = 1036.39 F000 = 2152
Monoclinic, C2/c Dx = 1.442 Mg m3
Hall symbol: -C 2yc Mo Kα radiation λ = 0.71073 Å
a = 23.4180 (6) Å θ = 1.3–28.0º
b = 15.4595 (4) Å µ = 0.85 mm1
c = 15.6140 (3) Å T = 296 (2) K
β = 122.3510 (10)º Block, blue
V = 4775.4 (2) Å3 0.35 × 0.32 × 0.26 mm

Data collection

Bruker APEXII area-detector diffractometer 5125 independent reflections
Radiation source: fine-focus sealed tube 3585 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.077
T = 296(2) K θmax = 27.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −29→29
Tmin = 0.612, Tmax = 0.801 k = −19→18
23989 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117   w = 1/[σ2(Fo2) + (0.0505P)2 + 0.0814P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
5125 reflections Δρmax = 0.40 e Å3
326 parameters Δρmin = −0.49 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.045434 (16) 0.85690 (2) 0.38073 (2) 0.03319 (13)
C1 0.09421 (15) 1.00994 (18) 0.5312 (2) 0.0456 (7)
H1 0.0520 1.0348 0.4882 0.055*
C2 0.14290 (18) 1.0573 (2) 0.6149 (2) 0.0573 (8)
H2 0.1330 1.1122 0.6277 0.069*
C3 0.20514 (18) 1.0217 (2) 0.6776 (2) 0.0588 (9)
H3 0.2383 1.0529 0.7330 0.071*
C4 0.21914 (15) 0.9386 (2) 0.6588 (2) 0.0505 (8)
C5 0.28260 (17) 0.8954 (3) 0.7205 (3) 0.0660 (10)
H5 0.3179 0.9244 0.7757 0.079*
C6 0.29252 (16) 0.8141 (3) 0.7008 (2) 0.0653 (10)
H6 0.3343 0.7879 0.7430 0.078*
C7 0.23985 (14) 0.7668 (2) 0.6159 (2) 0.0491 (8)
C8 0.24653 (16) 0.6815 (2) 0.5925 (3) 0.0573 (9)
H8 0.2869 0.6518 0.6331 0.069*
C9 0.19382 (17) 0.6424 (2) 0.5102 (3) 0.0569 (8)
H9 0.1973 0.5850 0.4955 0.068*
C10 0.13391 (15) 0.68918 (19) 0.4475 (2) 0.0480 (7)
H10 0.0986 0.6623 0.3902 0.058*
C11 0.17777 (13) 0.80871 (18) 0.55122 (19) 0.0408 (7)
C12 0.16736 (14) 0.89602 (19) 0.5737 (2) 0.0413 (6)
C13 −0.03124 (13) 0.72317 (18) 0.4141 (2) 0.0382 (6)
C14 −0.04880 (13) 0.68008 (18) 0.4834 (2) 0.0400 (6)
C15 −0.05758 (15) 0.59133 (19) 0.4793 (2) 0.0492 (7)
H15 −0.0538 0.5590 0.4324 0.059*
C16 −0.07204 (18) 0.5503 (2) 0.5444 (3) 0.0593 (9)
H16 −0.0767 0.4904 0.5415 0.071*
C17 −0.07961 (17) 0.5960 (2) 0.6133 (3) 0.0608 (9)
C18 −0.07257 (18) 0.6851 (2) 0.6154 (3) 0.0650 (9)
H18 −0.0786 0.7177 0.6601 0.078*
C19 −0.05673 (16) 0.7264 (2) 0.5519 (2) 0.0526 (8)
H19 −0.0514 0.7862 0.5555 0.063*
C20 −0.0955 (2) 0.5511 (3) 0.6843 (3) 0.0894 (13)
H20A −0.0833 0.5882 0.7409 0.134*
H20B −0.0703 0.4982 0.7082 0.134*
H20C −0.1430 0.5385 0.6489 0.134*
C21 0.07639 (13) 0.96624 (16) 0.2598 (2) 0.0345 (6)
C22 0.11522 (13) 1.04903 (17) 0.2811 (2) 0.0372 (6)
C23 0.17742 (15) 1.0578 (2) 0.3710 (2) 0.0522 (8)
H23 0.1939 1.0137 0.4189 0.063*
C24 0.21486 (18) 1.1324 (2) 0.3892 (3) 0.0652 (10)
H24 0.2571 1.1369 0.4488 0.078*
C25 0.19139 (19) 1.1998 (2) 0.3216 (3) 0.0600 (9)
C26 0.12895 (18) 1.19063 (19) 0.2329 (3) 0.0562 (8)
H26 0.1119 1.2356 0.1861 0.067*
C27 0.09145 (15) 1.11616 (18) 0.2125 (2) 0.0446 (7)
H27 0.0498 1.1112 0.1520 0.054*
C28 0.2333 (2) 1.2813 (2) 0.3433 (3) 0.0947 (15)
H28A 0.2293 1.3171 0.3901 0.142*
H28B 0.2172 1.3124 0.2812 0.142*
H28C 0.2798 1.2658 0.3722 0.142*
N1 0.10564 (11) 0.93089 (14) 0.51042 (16) 0.0379 (5)
N2 0.12593 (11) 0.77022 (14) 0.46695 (16) 0.0385 (5)
O1 −0.00788 (10) 0.79909 (12) 0.43632 (15) 0.0443 (5)
O2 −0.04096 (10) 0.68100 (13) 0.33837 (15) 0.0501 (5)
O3 0.10179 (9) 0.90933 (11) 0.32838 (13) 0.0407 (4)
O4 0.02143 (9) 0.95844 (11) 0.17574 (13) 0.0382 (4)
O1W 0.0000 0.77938 (16) 0.2500 0.0367 (6)
H1W 0.0180 (14) 0.7449 (15) 0.231 (2) 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0289 (2) 0.0333 (2) 0.03124 (19) −0.00013 (14) 0.01199 (15) 0.00146 (14)
C1 0.0499 (18) 0.0420 (17) 0.0396 (15) −0.0063 (13) 0.0203 (15) −0.0012 (13)
C2 0.073 (2) 0.0460 (19) 0.0487 (18) −0.0183 (16) 0.0300 (19) −0.0083 (15)
C3 0.061 (2) 0.064 (2) 0.0419 (17) −0.0304 (17) 0.0205 (17) −0.0091 (15)
C4 0.0402 (17) 0.064 (2) 0.0356 (15) −0.0185 (15) 0.0125 (14) 0.0014 (14)
C5 0.0388 (19) 0.091 (3) 0.0448 (19) −0.0174 (18) 0.0070 (16) 0.0044 (18)
C6 0.0310 (17) 0.101 (3) 0.0457 (19) 0.0010 (18) 0.0081 (15) 0.0197 (19)
C7 0.0334 (16) 0.067 (2) 0.0442 (17) 0.0057 (14) 0.0190 (14) 0.0181 (15)
C8 0.0416 (19) 0.073 (2) 0.058 (2) 0.0215 (16) 0.0272 (17) 0.0271 (18)
C9 0.054 (2) 0.053 (2) 0.064 (2) 0.0190 (16) 0.0329 (19) 0.0184 (16)
C10 0.0445 (18) 0.0455 (18) 0.0514 (18) 0.0048 (14) 0.0239 (15) 0.0067 (14)
C11 0.0308 (15) 0.0531 (18) 0.0350 (15) 0.0006 (12) 0.0152 (13) 0.0114 (12)
C12 0.0330 (16) 0.0520 (17) 0.0339 (14) −0.0060 (13) 0.0146 (13) 0.0058 (12)
C13 0.0265 (14) 0.0417 (16) 0.0413 (15) 0.0033 (11) 0.0148 (13) 0.0053 (12)
C14 0.0306 (15) 0.0458 (17) 0.0402 (15) −0.0008 (12) 0.0166 (13) 0.0048 (12)
C15 0.0525 (19) 0.0475 (19) 0.0493 (18) −0.0021 (14) 0.0282 (16) 0.0022 (14)
C16 0.073 (2) 0.0474 (19) 0.064 (2) −0.0109 (16) 0.041 (2) 0.0020 (16)
C17 0.066 (2) 0.065 (2) 0.055 (2) −0.0126 (17) 0.0349 (19) 0.0052 (16)
C18 0.078 (3) 0.073 (2) 0.062 (2) −0.0128 (19) 0.049 (2) −0.0112 (18)
C19 0.058 (2) 0.0500 (18) 0.0551 (19) −0.0080 (15) 0.0339 (17) −0.0040 (15)
C20 0.113 (4) 0.099 (3) 0.085 (3) −0.023 (3) 0.072 (3) 0.006 (2)
C21 0.0323 (15) 0.0353 (15) 0.0360 (14) −0.0004 (11) 0.0183 (13) −0.0004 (11)
C22 0.0370 (15) 0.0387 (15) 0.0371 (14) −0.0039 (12) 0.0206 (13) −0.0061 (12)
C23 0.0476 (19) 0.0549 (19) 0.0452 (17) −0.0100 (15) 0.0189 (15) −0.0063 (14)
C24 0.057 (2) 0.076 (3) 0.054 (2) −0.0284 (18) 0.0244 (18) −0.0272 (18)
C25 0.080 (3) 0.051 (2) 0.070 (2) −0.0269 (17) 0.053 (2) −0.0229 (17)
C26 0.079 (2) 0.0380 (17) 0.064 (2) −0.0070 (16) 0.047 (2) −0.0035 (15)
C27 0.0492 (18) 0.0381 (15) 0.0465 (16) −0.0061 (13) 0.0256 (15) −0.0052 (13)
C28 0.128 (4) 0.072 (3) 0.118 (3) −0.058 (3) 0.088 (3) −0.047 (2)
N1 0.0359 (13) 0.0400 (13) 0.0321 (11) −0.0037 (10) 0.0144 (10) 0.0031 (10)
N2 0.0322 (13) 0.0413 (13) 0.0379 (12) 0.0017 (10) 0.0160 (11) 0.0087 (10)
O1 0.0481 (12) 0.0377 (11) 0.0510 (11) −0.0047 (9) 0.0292 (10) −0.0003 (9)
O2 0.0545 (13) 0.0541 (13) 0.0440 (11) −0.0156 (10) 0.0280 (11) −0.0065 (10)
O3 0.0312 (10) 0.0435 (11) 0.0417 (11) 0.0000 (8) 0.0156 (9) 0.0100 (9)
O4 0.0334 (10) 0.0377 (10) 0.0333 (10) −0.0050 (8) 0.0110 (9) −0.0003 (8)
O1W 0.0379 (16) 0.0344 (15) 0.0364 (14) 0.000 0.0190 (13) 0.000

Geometric parameters (Å, °)

Ni1—O4i 2.0533 (17) C14—C15 1.384 (4)
Ni1—O3 2.0546 (17) C15—C16 1.386 (4)
Ni1—O1 2.0665 (18) C15—H15 0.9300
Ni1—N1 2.084 (2) C16—C17 1.375 (4)
Ni1—O1W 2.1001 (14) C16—H16 0.9300
Ni1—N2 2.108 (2) C17—C18 1.386 (5)
C1—N1 1.328 (3) C17—C20 1.513 (4)
C1—C2 1.396 (4) C18—C19 1.387 (4)
C1—H1 0.9300 C18—H18 0.9300
C2—C3 1.363 (5) C19—H19 0.9300
C2—H2 0.9300 C20—H20A 0.9600
C3—C4 1.395 (4) C20—H20B 0.9600
C3—H3 0.9300 C20—H20C 0.9600
C4—C12 1.395 (4) C21—O4 1.259 (3)
C4—C5 1.433 (5) C21—O3 1.262 (3)
C5—C6 1.343 (5) C21—C22 1.501 (3)
C5—H5 0.9300 C22—C27 1.377 (4)
C6—C7 1.437 (4) C22—C23 1.386 (4)
C6—H6 0.9300 C23—C24 1.382 (4)
C7—C8 1.399 (4) C23—H23 0.9300
C7—C11 1.408 (4) C24—C25 1.371 (5)
C8—C9 1.357 (5) C24—H24 0.9300
C8—H8 0.9300 C25—C26 1.382 (5)
C9—C10 1.408 (4) C25—C28 1.520 (4)
C9—H9 0.9300 C26—C27 1.378 (4)
C10—N2 1.326 (3) C26—H26 0.9300
C10—H10 0.9300 C27—H27 0.9300
C11—N2 1.360 (3) C28—H28A 0.9600
C11—C12 1.448 (4) C28—H28B 0.9600
C12—N1 1.352 (3) C28—H28C 0.9600
C13—O2 1.260 (3) O4—Ni1i 2.0533 (17)
C13—O1 1.263 (3) O1W—Ni1i 2.1001 (14)
C13—C14 1.504 (4) O1W—H1W 0.830 (10)
C14—C19 1.379 (4)
O4i—Ni1—O3 91.85 (7) C16—C15—H15 119.7
O4i—Ni1—O1 91.01 (7) C17—C16—C15 121.6 (3)
O3—Ni1—O1 177.14 (7) C17—C16—H16 119.2
O4i—Ni1—N1 87.80 (8) C15—C16—H16 119.2
O3—Ni1—N1 85.72 (8) C16—C17—C18 117.7 (3)
O1—Ni1—N1 94.35 (8) C16—C17—C20 121.5 (3)
O4i—Ni1—O1W 98.37 (7) C18—C17—C20 120.8 (3)
O3—Ni1—O1W 86.43 (6) C17—C18—C19 121.0 (3)
O1—Ni1—O1W 93.19 (6) C17—C18—H18 119.5
N1—Ni1—O1W 170.16 (6) C19—C18—H18 119.5
O4i—Ni1—N2 167.39 (8) C14—C19—C18 120.9 (3)
O3—Ni1—N2 87.68 (8) C14—C19—H19 119.6
O1—Ni1—N2 89.52 (8) C18—C19—H19 119.6
N1—Ni1—N2 79.60 (9) C17—C20—H20A 109.5
O1W—Ni1—N2 94.17 (8) C17—C20—H20B 109.5
N1—C1—C2 122.7 (3) H20A—C20—H20B 109.5
N1—C1—H1 118.6 C17—C20—H20C 109.5
C2—C1—H1 118.6 H20A—C20—H20C 109.5
C3—C2—C1 119.0 (3) H20B—C20—H20C 109.5
C3—C2—H2 120.5 O4—C21—O3 124.9 (2)
C1—C2—H2 120.5 O4—C21—C22 118.2 (2)
C2—C3—C4 120.1 (3) O3—C21—C22 116.8 (2)
C2—C3—H3 120.0 C27—C22—C23 118.8 (3)
C4—C3—H3 120.0 C27—C22—C21 121.7 (2)
C3—C4—C12 116.9 (3) C23—C22—C21 119.5 (3)
C3—C4—C5 124.4 (3) C24—C23—C22 119.8 (3)
C12—C4—C5 118.7 (3) C24—C23—H23 120.1
C6—C5—C4 121.8 (3) C22—C23—H23 120.1
C6—C5—H5 119.1 C25—C24—C23 121.8 (3)
C4—C5—H5 119.1 C25—C24—H24 119.1
C5—C6—C7 121.3 (3) C23—C24—H24 119.1
C5—C6—H6 119.4 C24—C25—C26 117.8 (3)
C7—C6—H6 119.4 C24—C25—C28 120.9 (4)
C8—C7—C11 117.6 (3) C26—C25—C28 121.3 (4)
C8—C7—C6 124.0 (3) C27—C26—C25 121.3 (3)
C11—C7—C6 118.4 (3) C27—C26—H26 119.4
C9—C8—C7 119.7 (3) C25—C26—H26 119.4
C9—C8—H8 120.2 C22—C27—C26 120.5 (3)
C7—C8—H8 120.2 C22—C27—H27 119.7
C8—C9—C10 119.5 (3) C26—C27—H27 119.7
C8—C9—H9 120.2 C25—C28—H28A 109.5
C10—C9—H9 120.2 C25—C28—H28B 109.5
N2—C10—C9 122.4 (3) H28A—C28—H28B 109.5
N2—C10—H10 118.8 C25—C28—H28C 109.5
C9—C10—H10 118.8 H28A—C28—H28C 109.5
N2—C11—C7 122.5 (3) H28B—C28—H28C 109.5
N2—C11—C12 117.6 (2) C1—N1—C12 117.7 (2)
C7—C11—C12 119.9 (3) C1—N1—Ni1 128.51 (19)
N1—C12—C4 123.5 (3) C12—N1—Ni1 113.21 (18)
N1—C12—C11 116.6 (2) C10—N2—C11 118.2 (2)
C4—C12—C11 119.9 (3) C10—N2—Ni1 129.91 (19)
O2—C13—O1 124.9 (2) C11—N2—Ni1 111.72 (18)
O2—C13—C14 117.7 (2) C13—O1—Ni1 123.86 (17)
O1—C13—C14 117.4 (2) C21—O3—Ni1 120.08 (16)
C19—C14—C15 118.2 (3) C21—O4—Ni1i 129.80 (16)
C19—C14—C13 122.0 (3) Ni1—O1W—Ni1i 110.41 (11)
C15—C14—C13 119.8 (3) Ni1—O1W—H1W 129 (2)
C14—C15—C16 120.5 (3) Ni1i—O1W—H1W 96 (2)
C14—C15—H15 119.7

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O4i 0.93 2.49 3.007 (3) 115
C6—H6···O2ii 0.93 2.52 3.296 (4) 142
C8—H8···O3iii 0.93 2.52 3.379 (4) 153
O1W—H1W···O2i 0.830 (10) 1.746 (12) 2.560 (2) 166 (3)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2119).

References

  1. Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Eremenko, I. L., Nefedov, V. N., Sidorov, A. A., Golubnichaya, M. A., Danilov, P. V., Ikorskii, V. N., Shvedenkov, Y., u, G., Novotortsev, V. M. & Moiseev, I. I. (1999). Inorg. Chem 38, 3764–3773.
  3. Geetha, K. & Chakravarty, A. R. (1999). J. Chem. Soc. Dalton Trans pp. 1623–1627.
  4. Li, X. & Zou, Y. Q. (2003). Z. Kristallogr. New Cryst. Struct.218, 448–450.
  5. Li, X., Zou, Y. Q. & Song, H. B. (2004). Z. Kristallogr. New Cryst. Struct 219, 278–280.
  6. Novak, M. A., Prado, P. F., de Rangel e Silva, M. V., Skakle, J. M. S., Vaz, M. G. F., Wardell, J. L. & Wardell, S. M. S. V. (2005). Inorg. Chim. Acta, 358, 941–946.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.
  10. Sung, N.-D., Yun, K.-S., Kim, J.-G. & Suh, I.-H. (2000). Acta Cryst. C56, e370–e371.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017285/zl2119sup1.cif

e-64-0m919-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017285/zl2119Isup2.hkl

e-64-0m919-Isup2.hkl (264.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES