Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 28;64(Pt 7):o1344. doi: 10.1107/S1600536808018801

2,5-Dihydroxy­benzaldehyde 4-methyl­thio­semicarbazone

Kong Wai Tan a, Chew Hee Ng b, Mohd Jamil Maah c,*, Seik Weng Ng c
PMCID: PMC2961871  PMID: 21202966

Abstract

The planar mol­ecules of the title compound, C9H11N3O2S, are linked into a supra­molecualr chain via O—H⋯S hydrogen bonds. These chains are connected into a two-dimensional array via N—H⋯O hydrogen bonds; an intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For the medicinal activity of 2,5-dihydroxy­benzaldehyde thio­semicarbazone, see: Libermann et al. (1953); Taniyama & Tanaka (1965); Xue et al. (2007). For the structure of 2-hydroxy­benzaldehyde 4-methyl­thio­semicarbazone, see: Vrdoljak et al. (2005). For the structure of 3,4-dihydroxy­benzaldehyde 4-ethyl­thio­semicarbazone, see: Kayed et al. (2008).graphic file with name e-64-o1344-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S

  • M r = 225.27

  • Triclinic, Inline graphic

  • a = 5.9932 (4) Å

  • b = 8.5207 (6) Å

  • c = 10.3272 (6) Å

  • α = 78.552 (4)°

  • β = 74.181 (4)°

  • γ = 81.743 (4)°

  • V = 495.06 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 (2) K

  • 0.24 × 0.16 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.929, T max = 0.994

  • 4189 measured reflections

  • 2258 independent reflections

  • 1580 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.123

  • S = 1.03

  • 2258 reflections

  • 153 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018801/tk2278sup1.cif

e-64-o1344-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018801/tk2278Isup2.hkl

e-64-o1344-Isup2.hkl (111KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N3 0.84 (3) 1.97 (2) 2.698 (3) 144 (3)
O2—H2o⋯S1i 0.84 (3) 2.46 (2) 3.182 (2) 144 (3)
N2—H2n⋯O1ii 0.84 (3) 2.47 (3) 3.111 (3) 134 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Malaya (P0265/2007 A) for supporting this study. KWT thanks the Ministry of Higher Education for a SLAI scholarship.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) possesses useful medicinal properties (Libermann et al., 1953; Taniyama & Tanaka, 1965; Xue et al., 2007). The molecules are linked into supramolecular chains by O-H···S hydrogen bonds involving the O2-hydroxy group, Table 1. The hydrogen-bonded chains are consolidated into a layer motif via N-NH···O hydrogen bond, involving the O1-hydroxy group. An intramolecular N-H···O hydrogen bond, also involving the O1-hydroxy group is also noted. In contrast, 2-hydroxybenzaldehyde 4-methylthiosemicarbazone, which features an intramolecular O–H···N hydrogen bond, adopts a chain structure (Vrdoljak et al., 2005) as it lacks a second hydroxy substituent for layer formation.

Experimental

4-Methylthiosemicarbazide (0.11 g, 1 mmol) and 2,5-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (10 ml) for 1 h. Slow evaporation of the solvent yielded yellow crystals of (I).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of O–H, N–H = 0.85±0.01 Å.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of (I) at the 70% probability level showing atom labeling. Hydrogen atoms are drawn as spheres of arbitrary radii.

Crystal data

C9H11N3O2S Z = 2
Mr = 225.27 F000 = 236
Triclinic, P1 Dx = 1.511 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 5.9932 (4) Å Cell parameters from 558 reflections
b = 8.5207 (6) Å θ = 2.9–23.0º
c = 10.3272 (6) Å µ = 0.31 mm1
α = 78.552 (4)º T = 100 (2) K
β = 74.181 (4)º Plate, yellow
γ = 81.743 (4)º 0.24 × 0.16 × 0.02 mm
V = 495.06 (6) Å3

Data collection

Bruker SMART APEX diffractometer 2258 independent reflections
Radiation source: fine-focus sealed tube 1580 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.050
T = 100(2) K θmax = 27.5º
ω scans θmin = 2.5º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.929, Tmax = 0.994 k = −11→8
4189 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2258 reflections Δρmax = 0.32 e Å3
153 parameters Δρmin = −0.47 e Å3
4 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.44298 (12) 0.47335 (9) 0.72966 (7) 0.0189 (2)
O1 1.3132 (3) 0.8655 (2) 0.47568 (18) 0.0188 (4)
O2 1.2446 (3) 1.1893 (2) −0.03406 (18) 0.0200 (5)
N1 0.8637 (4) 0.5405 (3) 0.7312 (2) 0.0147 (5)
N2 0.7415 (4) 0.6387 (3) 0.5359 (2) 0.0159 (5)
N3 0.9289 (4) 0.7298 (3) 0.4833 (2) 0.0145 (5)
C1 0.8391 (5) 0.4576 (3) 0.8709 (2) 0.0188 (6)
H1A 0.9802 0.4633 0.8996 0.028*
H1B 0.8160 0.3447 0.8763 0.028*
H1C 0.7044 0.5088 0.9310 0.028*
C2 0.7001 (4) 0.5552 (3) 0.6642 (2) 0.0134 (6)
C3 0.9368 (4) 0.8121 (3) 0.3637 (2) 0.0136 (6)
H3 0.8213 0.8018 0.3194 0.016*
C4 1.1147 (4) 0.9200 (3) 0.2937 (2) 0.0133 (6)
C5 1.2915 (4) 0.9450 (3) 0.3503 (2) 0.0140 (6)
C6 1.4505 (5) 1.0551 (3) 0.2796 (2) 0.0157 (6)
H6 1.5673 1.0745 0.3193 0.019*
C7 1.4389 (5) 1.1372 (3) 0.1504 (3) 0.0153 (6)
H7 1.5496 1.2111 0.1016 0.018*
C8 1.2669 (4) 1.1117 (3) 0.0929 (2) 0.0149 (6)
C9 1.1055 (4) 1.0049 (3) 0.1638 (2) 0.0146 (6)
H9 0.9866 0.9887 0.1243 0.018*
H1o 1.206 (4) 0.805 (3) 0.511 (3) 0.048 (12)*
H2o 1.352 (5) 1.245 (4) −0.082 (3) 0.059 (13)*
H1n 0.988 (3) 0.581 (4) 0.689 (3) 0.032 (9)*
H2n 0.640 (4) 0.656 (4) 0.491 (3) 0.042 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0149 (4) 0.0241 (4) 0.0175 (3) −0.0083 (3) −0.0051 (3) 0.0033 (3)
O1 0.0222 (11) 0.0221 (12) 0.0140 (9) −0.0081 (9) −0.0089 (8) 0.0025 (8)
O2 0.0244 (11) 0.0202 (12) 0.0149 (9) −0.0088 (9) −0.0059 (8) 0.0047 (8)
N1 0.0114 (12) 0.0181 (13) 0.0148 (11) −0.0035 (10) −0.0038 (9) −0.0007 (9)
N2 0.0153 (12) 0.0168 (13) 0.0158 (11) −0.0060 (10) −0.0056 (9) 0.0024 (9)
N3 0.0121 (11) 0.0136 (12) 0.0175 (11) −0.0050 (9) −0.0013 (9) −0.0023 (9)
C1 0.0198 (15) 0.0231 (16) 0.0128 (12) −0.0048 (12) −0.0051 (11) 0.0015 (11)
C2 0.0137 (13) 0.0106 (14) 0.0155 (12) −0.0011 (11) −0.0032 (10) −0.0022 (11)
C3 0.0136 (13) 0.0138 (14) 0.0147 (12) −0.0019 (11) −0.0053 (10) −0.0025 (11)
C4 0.0134 (13) 0.0118 (14) 0.0153 (12) −0.0008 (10) −0.0034 (10) −0.0038 (11)
C5 0.0137 (13) 0.0154 (15) 0.0133 (12) 0.0001 (11) −0.0041 (10) −0.0034 (11)
C6 0.0139 (13) 0.0162 (15) 0.0193 (13) −0.0029 (11) −0.0070 (10) −0.0039 (11)
C7 0.0163 (14) 0.0102 (14) 0.0178 (13) −0.0021 (11) −0.0024 (10) −0.0006 (11)
C8 0.0160 (14) 0.0144 (15) 0.0143 (12) 0.0006 (11) −0.0050 (10) −0.0023 (11)
C9 0.0158 (14) 0.0156 (15) 0.0140 (12) −0.0021 (11) −0.0059 (10) −0.0031 (11)

Geometric parameters (Å, °)

S1—C2 1.695 (3) C1—H1B 0.9800
O1—C5 1.367 (3) C1—H1C 0.9800
O1—H1o 0.84 (3) C3—C4 1.450 (4)
O2—C8 1.379 (3) C3—H3 0.9500
O2—H2o 0.84 (3) C4—C5 1.401 (4)
N1—C2 1.325 (3) C4—C9 1.403 (3)
N1—C1 1.453 (3) C5—C6 1.388 (4)
N1—H1n 0.84 (3) C6—C7 1.393 (3)
N2—C2 1.349 (3) C6—H6 0.9500
N2—N3 1.382 (3) C7—C8 1.383 (4)
N2—H2n 0.84 (3) C7—H7 0.9500
N3—C3 1.286 (3) C8—C9 1.379 (4)
C1—H1A 0.9800 C9—H9 0.9500
C5—O1—H1O 110 (2) C4—C3—H3 118.6
C8—O2—H2O 117 (3) C5—C4—C9 118.9 (2)
C2—N1—C1 123.8 (2) C5—C4—C3 123.2 (2)
C2—N1—H1N 117 (2) C9—C4—C3 117.9 (2)
C1—N1—H1N 119 (2) O1—C5—C6 117.7 (2)
C2—N2—N3 121.3 (2) O1—C5—C4 122.3 (2)
C2—N2—H2N 122 (2) C6—C5—C4 120.0 (2)
N3—N2—H2N 116 (2) C5—C6—C7 120.1 (3)
C3—N3—N2 114.5 (2) C5—C6—H6 120.0
N1—C1—H1A 109.5 C7—C6—H6 120.0
N1—C1—H1B 109.5 C8—C7—C6 120.3 (2)
H1A—C1—H1B 109.5 C8—C7—H7 119.9
N1—C1—H1C 109.5 C6—C7—H7 119.9
H1A—C1—H1C 109.5 O2—C8—C9 116.7 (2)
H1B—C1—H1C 109.5 O2—C8—C7 123.3 (2)
N1—C2—N2 118.2 (2) C9—C8—C7 119.9 (2)
N1—C2—S1 123.80 (19) C8—C9—C4 120.8 (2)
N2—C2—S1 118.0 (2) C8—C9—H9 119.6
N3—C3—C4 122.7 (2) C4—C9—H9 119.6
N3—C3—H3 118.6
C2—N2—N3—C3 −175.1 (2) C3—C4—C5—C6 −177.4 (2)
C1—N1—C2—N2 178.3 (2) O1—C5—C6—C7 178.8 (2)
C1—N1—C2—S1 −2.5 (4) C4—C5—C6—C7 −2.0 (4)
N3—N2—C2—N1 −11.0 (4) C5—C6—C7—C8 1.1 (4)
N3—N2—C2—S1 169.69 (19) C6—C7—C8—O2 179.7 (2)
N2—N3—C3—C4 177.5 (2) C6—C7—C8—C9 0.2 (4)
N3—C3—C4—C5 −0.6 (4) O2—C8—C9—C4 179.8 (2)
N3—C3—C4—C9 −179.5 (2) C7—C8—C9—C4 −0.7 (4)
C9—C4—C5—O1 −179.3 (2) C5—C4—C9—C8 −0.2 (4)
C3—C4—C5—O1 1.8 (4) C3—C4—C9—C8 178.8 (2)
C9—C4—C5—C6 1.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···N3 0.84 (3) 1.97 (2) 2.698 (3) 144 (3)
O2—H2o···S1i 0.84 (3) 2.46 (2) 3.182 (2) 144 (3)
N2—H2n···O1ii 0.84 (3) 2.47 (3) 3.111 (3) 134 (3)

Symmetry codes: (i) x+1, y+1, z−1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2278).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825. [DOI] [PMC free article] [PubMed]
  4. Libermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957–962.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Taniyama, H. & Tanaka, Y. (1965). Yakugaku Kenkyu, 36, 319–328.
  8. Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726.
  9. Westrip, S. P. (2008). publCIF In preparation.
  10. Xue, C.-B., Zhang, L., Luo, W.-C., Xie, X.-Y., Jiang, L. & Xiao, T. (2007). Bioorg. Med. Chem.15, 2006–2015. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018801/tk2278sup1.cif

e-64-o1344-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018801/tk2278Isup2.hkl

e-64-o1344-Isup2.hkl (111KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES