Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1210. doi: 10.1107/S160053680801653X

2-(4-Amino­phen­yl)-1,3-benzoxazole

Yuan Qu a, Shi-lei Zhang a, Lei Teng a, Xian-you Xia a, Yong Zhang a,*
PMCID: PMC2961872  PMID: 21202849

Abstract

In the title mol­ecule, C13H10N2O, the dihedral angle between the benzoxazole ring system and the benzene ring is 11.8 (1)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds and π⋯π inter­actions [centroid–centroid distance = 3.6560 (15) Å] to form a two-dimensional network.

Related literature

For related literature, see: Prudhomme et al. (1986); Vinsova et al. (2005).graphic file with name e-64-o1210-scheme1.jpg

Experimental

Crystal data

  • C13H10N2O

  • M r = 210.23

  • Monoclinic, Inline graphic

  • a = 4.1461 (3) Å

  • b = 19.5420 (12) Å

  • c = 12.7705 (8) Å

  • β = 95.243 (1)°

  • V = 1030.38 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.974, T max = 0.987

  • 4628 measured reflections

  • 1902 independent reflections

  • 1315 reflections with I > 2σ(I)

  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.151

  • S = 1.08

  • 1902 reflections

  • 151 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801653X/lh2630sup1.cif

e-64-o1210-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801653X/lh2630Isup2.hkl

e-64-o1210-Isup2.hkl (93.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.868 (10) 2.174 (12) 3.028 (3) 168 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The benzoxazole rings sytem is one of the most common heterocycles in medicinal chemistry. Previous reports revealed that substituted benzoxazoles possess diverse chemotherapeutic activities including antibiotic, antimicrobial, antiviral and antitumor activities (Prudhomme et al., 1986; Vinsova et al., 2005). With this mind, the title compound, (I), was prepared in a series of syntheses to produce new benzoxazole derivatives, and we report the crystal stucture herein.

The molecular structure of (I) is illustrated in Fig. 1. In (I), the benzixazole rings system is not co-planar with the benzene ring, the dihedral angle being 11.8 (1)°. In the crystal structure, molecules are linked by N2—H2B···N1i hydrogen bonds (symmetry code: (i) x -1/2, 3/2 - y, z - 1/2) into a one-dimensional chains along [101] (Fig. 2). Neighbouring chains are further linked into a two-dimensional network by π..π interactions with Cg1···Cg2(-1+x, y, z) = 3.6560 (15) Å where Cg1 and Cg2 are the centroids defined by the ring atoms O1/C1/C6/N1/C7 and C1-C6 respectivley. There are no significant interactions between the adjacent layers.

Experimental

All reagents and solvents were used as obtained without further purification. 4-aminobenzoic acid (13.7 g, 0.1 mol) and 2-aminophenol (10.9 g, 0.1 mmol) were mixed together with polyphosphoric acid (50 g) and heated to 493 K under N2 atmosphere for 4 h. The reaction mixture was cooled to room temperature and poured into 10% K2CO3 solution. The precipitate was filtered under reduced pressure. Brown crystals were obtained by recrystallization from acetone-water.Yield: 88%; Analysis calculated for C13H10N2O: C 74.29, H 4.76, N 13.33%; found: C 74.26, H 4.78, N 13.35%.

Refinement

All the aromatic H atoms were located at the geometrical positions with C—H=0.93 Å(aromatic), and the Uiso values were set 1.2 times of their carrier atoms. H2A and H2B were found in difference Fourier maps and refined with the constraint of NH=0.86 Å (amine) and Uiso(H)=1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal packing showing the formation of the [101] chains linked by by N—H···N hydrogen bonds shown as dashed lines.

Fig. 3.

Fig. 3.

Part of the crystal packing showing the formation of the two-dimensional layers formed by by N—H···N hydrogen bonds shown as dashed lines and π···π interactions. For clarity, H atoms not involved in the motif have been omitted.

Crystal data

C13H10N2O F000 = 440
Mr = 210.23 Dx = 1.355 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1089 reflections
a = 4.1461 (3) Å θ = 2.6–22.6º
b = 19.5420 (12) Å µ = 0.09 mm1
c = 12.7705 (8) Å T = 298 (2) K
β = 95.243 (1)º Block, brown
V = 1030.38 (12) Å3 0.30 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1902 independent reflections
Radiation source: fine-focus sealed tube 1315 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.086
T = 298(2) K θmax = 25.5º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003) h = −4→5
Tmin = 0.974, Tmax = 0.987 k = −23→17
4628 measured reflections l = −14→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151   w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0374P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1902 reflections Δρmax = 0.17 e Å3
151 parameters Δρmin = −0.22 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1291 (4) 0.93054 (9) 0.09030 (12) 0.0548 (5)
N1 1.0571 (5) 0.89549 (10) 0.25399 (15) 0.0508 (6)
C8 0.8394 (6) 0.82440 (13) 0.10509 (18) 0.0471 (6)
C7 1.0044 (6) 0.88277 (13) 0.15444 (18) 0.0472 (6)
C13 0.6743 (6) 0.77900 (13) 0.16499 (19) 0.0522 (7)
H13 0.6617 0.7882 0.2360 0.063*
C11 0.5492 (6) 0.70536 (14) 0.01598 (19) 0.0511 (7)
C1 1.2748 (6) 0.97814 (13) 0.15893 (18) 0.0488 (7)
N2 0.4179 (7) 0.64627 (14) −0.02632 (19) 0.0746 (8)
H2B 0.430 (7) 0.6376 (13) −0.0924 (9) 0.090 (1)*
H2A 0.300 (6) 0.6220 (12) 0.0115 (19) 0.090 (1)*
C6 1.2309 (6) 0.95673 (13) 0.25916 (18) 0.0487 (7)
C12 0.5301 (6) 0.72124 (13) 0.1221 (2) 0.0561 (7)
H12 0.4183 0.6923 0.1638 0.067*
C9 0.8540 (6) 0.80871 (14) −0.00072 (18) 0.0529 (7)
H9 0.9622 0.8382 −0.0428 0.064*
C2 1.4362 (7) 1.03717 (14) 0.1363 (2) 0.0630 (8)
H2 1.4620 1.0504 0.0676 0.076*
C5 1.3567 (7) 0.99539 (15) 0.3444 (2) 0.0615 (8)
H5 1.3315 0.9819 0.4130 0.074*
C10 0.7122 (6) 0.75067 (14) −0.04423 (19) 0.0556 (7)
H10 0.7254 0.7415 −0.1152 0.067*
C3 1.5567 (7) 1.07529 (15) 0.2214 (2) 0.0664 (8)
H3 1.6650 1.1159 0.2103 0.080*
C4 1.5205 (7) 1.05458 (16) 0.3237 (2) 0.0640 (8)
H4 1.6088 1.0812 0.3795 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0637 (12) 0.0592 (12) 0.0423 (10) 0.0044 (9) 0.0097 (8) 0.0024 (9)
N1 0.0542 (13) 0.0567 (15) 0.0422 (12) 0.0052 (11) 0.0075 (9) 0.0029 (10)
C8 0.0499 (15) 0.0475 (16) 0.0443 (14) 0.0116 (12) 0.0062 (11) 0.0034 (12)
C7 0.0491 (15) 0.0520 (17) 0.0419 (14) 0.0135 (13) 0.0115 (11) 0.0073 (12)
C13 0.0545 (16) 0.0579 (19) 0.0453 (15) 0.0110 (14) 0.0119 (12) −0.0013 (13)
C11 0.0529 (16) 0.0502 (17) 0.0502 (15) 0.0121 (13) 0.0053 (12) −0.0028 (13)
C1 0.0528 (16) 0.0470 (16) 0.0469 (15) 0.0099 (13) 0.0059 (11) −0.0013 (12)
N2 0.097 (2) 0.0717 (19) 0.0584 (15) −0.0086 (15) 0.0221 (14) −0.0112 (14)
C6 0.0493 (15) 0.0537 (17) 0.0439 (14) 0.0127 (13) 0.0082 (11) 0.0023 (12)
C12 0.0601 (17) 0.0587 (19) 0.0518 (16) 0.0057 (14) 0.0173 (13) 0.0044 (13)
C9 0.0594 (17) 0.0594 (18) 0.0410 (14) 0.0089 (14) 0.0103 (11) 0.0072 (12)
C2 0.071 (2) 0.063 (2) 0.0568 (17) 0.0044 (16) 0.0167 (14) 0.0039 (15)
C5 0.0651 (18) 0.072 (2) 0.0468 (16) 0.0091 (16) 0.0051 (13) −0.0044 (14)
C10 0.0680 (18) 0.0591 (19) 0.0408 (14) 0.0067 (15) 0.0111 (13) −0.0006 (13)
C3 0.067 (2) 0.063 (2) 0.070 (2) −0.0023 (15) 0.0143 (15) −0.0052 (16)
C4 0.0577 (18) 0.069 (2) 0.0643 (19) 0.0032 (16) 0.0024 (14) −0.0143 (15)

Geometric parameters (Å, °)

O1—C7 1.374 (3) N2—H2B 0.868 (10)
O1—C1 1.379 (3) N2—H2A 0.859 (10)
N1—C7 1.294 (3) C6—C5 1.387 (3)
N1—C6 1.395 (3) C12—H12 0.9300
C8—C13 1.392 (3) C9—C10 1.372 (3)
C8—C9 1.392 (3) C9—H9 0.9300
C8—C7 1.445 (4) C2—C3 1.373 (4)
C13—C12 1.368 (3) C2—H2 0.9300
C13—H13 0.9300 C5—C4 1.379 (4)
C11—N2 1.367 (4) C5—H5 0.9300
C11—C10 1.388 (3) C10—H10 0.9300
C11—C12 1.399 (3) C3—C4 1.389 (4)
C1—C6 1.374 (3) C3—H3 0.9300
C1—C2 1.378 (4) C4—H4 0.9300
C7—O1—C1 104.26 (18) C5—C6—N1 131.3 (2)
C7—N1—C6 104.6 (2) C13—C12—C11 120.6 (2)
C13—C8—C9 117.4 (2) C13—C12—H12 119.7
C13—C8—C7 120.0 (2) C11—C12—H12 119.7
C9—C8—C7 122.4 (2) C10—C9—C8 121.4 (2)
N1—C7—O1 114.6 (2) C10—C9—H9 119.3
N1—C7—C8 127.7 (2) C8—C9—H9 119.3
O1—C7—C8 117.7 (2) C3—C2—C1 115.9 (3)
C12—C13—C8 121.7 (2) C3—C2—H2 122.0
C12—C13—H13 119.2 C1—C2—H2 122.0
C8—C13—H13 119.2 C4—C5—C6 117.5 (2)
N2—C11—C10 121.1 (2) C4—C5—H5 121.2
N2—C11—C12 121.0 (2) C6—C5—H5 121.2
C10—C11—C12 117.9 (2) C9—C10—C11 121.0 (2)
C6—C1—C2 123.9 (2) C9—C10—H10 119.5
C6—C1—O1 107.4 (2) C11—C10—H10 119.5
C2—C1—O1 128.7 (2) C2—C3—C4 121.6 (3)
C11—N2—H2B 119.6 (19) C2—C3—H3 119.2
C11—N2—H2A 118 (2) C4—C3—H3 119.2
H2B—N2—H2A 122 (3) C5—C4—C3 121.5 (3)
C1—C6—C5 119.5 (3) C5—C4—H4 119.3
C1—C6—N1 109.2 (2) C3—C4—H4 119.3
C6—N1—C7—O1 0.1 (3) C7—N1—C6—C5 −179.6 (3)
C6—N1—C7—C8 178.5 (2) C8—C13—C12—C11 1.1 (4)
C1—O1—C7—N1 −0.1 (3) N2—C11—C12—C13 177.1 (3)
C1—O1—C7—C8 −178.7 (2) C10—C11—C12—C13 −1.4 (4)
C13—C8—C7—N1 9.5 (4) C13—C8—C9—C10 −0.2 (4)
C9—C8—C7—N1 −166.4 (2) C7—C8—C9—C10 175.9 (2)
C13—C8—C7—O1 −172.1 (2) C6—C1—C2—C3 0.1 (4)
C9—C8—C7—O1 12.0 (3) O1—C1—C2—C3 179.7 (2)
C9—C8—C13—C12 −0.3 (4) C1—C6—C5—C4 0.4 (4)
C7—C8—C13—C12 −176.4 (2) N1—C6—C5—C4 179.9 (2)
C7—O1—C1—C6 0.1 (2) C8—C9—C10—C11 −0.1 (4)
C7—O1—C1—C2 −179.6 (2) N2—C11—C10—C9 −177.6 (3)
C2—C1—C6—C5 −0.7 (4) C12—C11—C10—C9 0.9 (4)
O1—C1—C6—C5 179.6 (2) C1—C2—C3—C4 0.9 (4)
C2—C1—C6—N1 179.7 (2) C6—C5—C4—C3 0.5 (4)
O1—C1—C6—N1 0.0 (3) C2—C3—C4—C5 −1.2 (4)
C7—N1—C6—C1 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···N1i 0.868 (10) 2.174 (12) 3.028 (3) 168 (3)

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2630).

References

  1. Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Prudhomme, M., Guyot, J. & Jeminet, G. (1986). J. Antibiot.39, 934–937. [DOI] [PubMed]
  3. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Vinsova, J., Horak, V., Buchta, V. & Kaustova, J. (2005). Molecules, 10, 783–793. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801653X/lh2630sup1.cif

e-64-o1210-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801653X/lh2630Isup2.hkl

e-64-o1210-Isup2.hkl (93.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES