Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1265. doi: 10.1107/S1600536808017479

(E)-2-Acetyl­pyrazine 4-nitro­phenyl­hydrazone

Shang Shan a,*, Yu-Liang Tian a, Shan-Heng Wang a, Wen-Long Wang a, Ying-Li Xu a
PMCID: PMC2961878  PMID: 21202899

Abstract

In the title compound, C12H11N5O2, the mol­ecule adopts an E configuration, with the benzene and pyrazine rings located on opposite sides of the N=C double bond. The face-to-face separations of 3.413 (14) and 3.430 (8) Å, respectively between parallel benzene rings and between pyrazine rings indicate the existence of π–π stacking between adjacent mol­ecules. The crystal structure also contains N—H⋯N and C—H⋯O hydrogen bonding.

Related literature

For general background, see: Okabe et al. (1993); Hu et al. (2001); Chen et al. (2007). For a related structure, see: Shan et al. (2008).graphic file with name e-64-o1265-scheme1.jpg

Experimental

Crystal data

  • C12H11N5O2

  • M r = 257.26

  • Monoclinic, Inline graphic

  • a = 8.0101 (6) Å

  • b = 12.5154 (11) Å

  • c = 12.1506 (12) Å

  • β = 98.564 (2)°

  • V = 1204.51 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.40 × 0.38 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 11633 measured reflections

  • 2747 independent reflections

  • 1446 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.149

  • S = 1.08

  • 2747 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017479/sg2248sup1.cif

e-64-o1265-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017479/sg2248Isup2.hkl

e-64-o1265-Isup2.hkl (132.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N5i 0.91 2.30 3.185 (2) 164
C11—H11⋯O1ii 0.93 2.60 3.300 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported by the Natural Science Foundation of Zhejiang Province of China (No. M203027).

supplementary crystallographic information

Comment

Hydrazone and its derivatives have attracted much attention because of their potential application in biology (Okabe et al., 1993; Hu et al., 2001). As part of an ongoing investigation into anti-cancer compounds (Chen et al., 2007), the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts an E-configuration, with the benzene and pyrazine rings located on the opposite positions of the N3=C7 double bond, similar to that found in a related structure, (E)-2-Furyl methyl ketone 2,4-dinitrophenylhydrazone (Shan et al., 2008). The pyrazine plane is twisted with respect to the benzene ring by a smaller dihedral angle of 14.25 (10)°.

The partially overlapped arrangement is observed between parallel benzene rings and between parallel pyrazine rings (Fig. 2), face-to-face separations of 3.413 (14) [for benzene rings] and 3.430 (8) Å [for pyrazine rings] are significantly shorter than van der Waals thickness of the aromatic ring (3.70 Å), and indicate the existence of π-π stacking between the adjacent molecules. Intermolecular N—H···N and weak C—H···O hydrogen bondings are present in the crystal structure (Table 1).

Experimental

4-Nitrophenylhydrazine (0.31 g, 2 mmol) was dissolved in ethanol (10 ml), then H2SO4 solution (98%, 0.5 ml) was added slowly to the ethanol solution with stirring. The solution was heated at about 333 K for several minutes until the solution cleared. An ethanol solution (5 ml) of acetylpyrazine (0.24 g, 2 mmol) was dropped slowly into the above solution with continuous stirring, and the mixture solution was kept at about 333 K for 0.5 h. When the solution had cooled to room temperature, yellow microcrystals appeared. They were separated and washed with cold water three times to get the product 0.40 g. Single crystals of the title compound were obtained by recrystallization from an absolute ethanol solution.

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Imino H atom was located in a difference Fourier map and refined as riding in its as-found relative position, Uiso(H) = 1.2Ueq(N). Aromatic H atoms were placed in calculated positions with C—H = 0.93 and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed line indicates hydrogen bonding.

Fig. 2.

Fig. 2.

A diagram showing π-π stacking [symmetry codes: (i) 2 - x,1 - y,1 - z; (ii) 1 - x,-y,1 - z].

Crystal data

C12H11N5O2 F000 = 536
Mr = 257.26 Dx = 1.419 Mg m3
Monoclinic, P21/n Melting point: 498 K
Hall symbol: -P 2yn Mo Kα radiation λ = 0.71069 Å
a = 8.0101 (6) Å Cell parameters from 4236 reflections
b = 12.5154 (11) Å θ = 3.2–25.0º
c = 12.1506 (12) Å µ = 0.10 mm1
β = 98.564 (2)º T = 295 (2) K
V = 1204.51 (18) Å3 Prism, yellow
Z = 4 0.40 × 0.38 × 0.26 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer 2747 independent reflections
Radiation source: fine-focus sealed tube 1446 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
Detector resolution: 10.00 pixels mm-1 θmax = 27.4º
T = 295(2) K θmin = 3.0º
ω scans h = −10→10
Absorption correction: none k = −16→16
11633 measured reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042   w = 1/[σ2(Fo2) + (0.0615P)2 + 0.2787P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149 (Δ/σ)max = 0.001
S = 1.09 Δρmax = 0.20 e Å3
2747 reflections Δρmin = −0.19 e Å3
174 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.024 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.9003 (3) 0.68785 (16) 0.3418 (2) 0.0684 (6)
N2 0.6332 (2) 0.36085 (12) 0.57394 (13) 0.0448 (4)
H2N 0.6470 0.3652 0.6496 0.054*
N3 0.5365 (2) 0.28334 (12) 0.51838 (13) 0.0425 (4)
N4 0.3197 (2) 0.04376 (14) 0.55830 (14) 0.0518 (5)
N5 0.2175 (2) 0.07812 (15) 0.33069 (14) 0.0571 (5)
O1 0.9806 (3) 0.75846 (16) 0.3955 (2) 0.1041 (8)
O2 0.8729 (3) 0.68826 (16) 0.2397 (2) 0.1012 (8)
C1 0.6976 (2) 0.43994 (15) 0.51344 (16) 0.0412 (5)
C2 0.7855 (3) 0.52394 (16) 0.57162 (17) 0.0490 (5)
H2 0.7989 0.5251 0.6490 0.059*
C3 0.8519 (3) 0.60439 (16) 0.51558 (18) 0.0521 (5)
H3 0.9109 0.6601 0.5544 0.062*
C4 0.8306 (3) 0.60198 (15) 0.40117 (18) 0.0488 (5)
C5 0.7461 (3) 0.51920 (17) 0.34168 (17) 0.0513 (5)
H5 0.7339 0.5187 0.2644 0.062*
C6 0.6803 (3) 0.43744 (17) 0.39758 (16) 0.0482 (5)
H6 0.6246 0.3809 0.3583 0.058*
C7 0.4778 (2) 0.20837 (14) 0.57459 (15) 0.0408 (5)
C8 0.5120 (3) 0.19727 (18) 0.69835 (17) 0.0593 (6)
H8A 0.6317 0.1939 0.7222 0.089*
H8B 0.4602 0.1331 0.7202 0.089*
H8C 0.4663 0.2578 0.7322 0.089*
C9 0.3700 (2) 0.13023 (15) 0.50718 (15) 0.0408 (5)
C10 0.3179 (3) 0.14575 (16) 0.39353 (16) 0.0496 (5)
H10 0.3553 0.2063 0.3602 0.059*
C11 0.1699 (3) −0.00860 (18) 0.38283 (19) 0.0569 (6)
H11 0.1002 −0.0587 0.3424 0.068*
C12 0.2214 (3) −0.02519 (17) 0.49398 (19) 0.0554 (6)
H12 0.1865 −0.0871 0.5263 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0742 (15) 0.0486 (11) 0.0895 (17) 0.0037 (10) 0.0352 (12) 0.0135 (11)
N2 0.0566 (11) 0.0430 (9) 0.0341 (8) −0.0036 (8) 0.0039 (7) −0.0005 (7)
N3 0.0478 (10) 0.0391 (8) 0.0397 (9) 0.0001 (7) 0.0036 (7) −0.0009 (7)
N4 0.0623 (12) 0.0469 (10) 0.0465 (10) −0.0033 (8) 0.0094 (8) 0.0044 (8)
N5 0.0678 (13) 0.0578 (11) 0.0435 (10) −0.0075 (9) 0.0012 (9) −0.0042 (9)
O1 0.1140 (18) 0.0645 (12) 0.137 (2) −0.0350 (12) 0.0270 (15) 0.0119 (13)
O2 0.146 (2) 0.0841 (14) 0.0860 (15) −0.0086 (13) 0.0569 (14) 0.0232 (12)
C1 0.0454 (11) 0.0388 (10) 0.0393 (10) 0.0033 (8) 0.0064 (8) −0.0002 (8)
C2 0.0588 (13) 0.0456 (11) 0.0419 (11) −0.0015 (10) 0.0050 (9) −0.0038 (9)
C3 0.0542 (13) 0.0412 (11) 0.0609 (14) −0.0029 (9) 0.0087 (10) −0.0062 (10)
C4 0.0517 (12) 0.0405 (10) 0.0577 (13) 0.0055 (9) 0.0198 (10) 0.0075 (10)
C5 0.0610 (14) 0.0527 (12) 0.0414 (11) 0.0029 (10) 0.0117 (10) 0.0022 (10)
C6 0.0569 (13) 0.0471 (11) 0.0411 (11) −0.0013 (10) 0.0088 (9) −0.0023 (9)
C7 0.0469 (12) 0.0381 (10) 0.0370 (10) 0.0050 (8) 0.0046 (8) 0.0027 (8)
C8 0.0780 (17) 0.0573 (13) 0.0396 (12) −0.0086 (12) −0.0009 (11) 0.0065 (10)
C9 0.0459 (11) 0.0391 (10) 0.0379 (10) 0.0036 (8) 0.0079 (8) 0.0035 (8)
C10 0.0605 (14) 0.0483 (11) 0.0394 (11) −0.0045 (10) 0.0060 (10) 0.0024 (9)
C11 0.0619 (15) 0.0520 (13) 0.0561 (13) −0.0091 (11) 0.0064 (11) −0.0063 (11)
C12 0.0634 (14) 0.0473 (12) 0.0568 (13) −0.0107 (10) 0.0127 (11) 0.0019 (11)

Geometric parameters (Å, °)

N1—O1 1.223 (3) C3—H3 0.9300
N1—O2 1.226 (3) C4—C5 1.381 (3)
N1—C4 1.452 (3) C5—C6 1.376 (3)
N2—N3 1.357 (2) C5—H5 0.9300
N2—C1 1.378 (2) C6—H6 0.9300
N2—H2N 0.9106 C7—C9 1.470 (3)
N3—C7 1.290 (2) C7—C8 1.494 (3)
N4—C12 1.339 (3) C8—H8A 0.9600
N4—C9 1.339 (2) C8—H8B 0.9600
N5—C10 1.328 (3) C8—H8C 0.9600
N5—C11 1.340 (3) C9—C10 1.395 (3)
C1—C6 1.394 (3) C10—H10 0.9300
C1—C2 1.397 (3) C11—C12 1.368 (3)
C2—C3 1.367 (3) C11—H11 0.9300
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.375 (3)
O1—N1—O2 122.5 (2) C5—C6—C1 119.6 (2)
O1—N1—C4 118.7 (2) C5—C6—H6 120.2
O2—N1—C4 118.8 (2) C1—C6—H6 120.2
N3—N2—C1 118.65 (15) N3—C7—C9 114.78 (16)
N3—N2—H2N 121.3 N3—C7—C8 125.00 (18)
C1—N2—H2N 119.8 C9—C7—C8 120.23 (17)
C7—N3—N2 118.88 (16) C7—C8—H8A 109.5
C12—N4—C9 116.19 (18) C7—C8—H8B 109.5
C10—N5—C11 115.78 (18) H8A—C8—H8B 109.5
N2—C1—C6 122.25 (18) C7—C8—H8C 109.5
N2—C1—C2 118.10 (17) H8A—C8—H8C 109.5
C6—C1—C2 119.64 (19) H8B—C8—H8C 109.5
C3—C2—C1 120.42 (19) N4—C9—C10 120.35 (18)
C3—C2—H2 119.8 N4—C9—C7 118.11 (16)
C1—C2—H2 119.8 C10—C9—C7 121.53 (17)
C2—C3—C4 119.2 (2) N5—C10—C9 123.13 (19)
C2—C3—H3 120.4 N5—C10—H10 118.4
C4—C3—H3 120.4 C9—C10—H10 118.4
C3—C4—C5 121.53 (19) N5—C11—C12 121.6 (2)
C3—C4—N1 119.1 (2) N5—C11—H11 119.2
C5—C4—N1 119.3 (2) C12—C11—H11 119.2
C6—C5—C4 119.56 (19) N4—C12—C11 122.9 (2)
C6—C5—H5 120.2 N4—C12—H12 118.6
C4—C5—H5 120.2 C11—C12—H12 118.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···N5i 0.91 2.30 3.185 (2) 164
C11—H11···O1ii 0.93 2.60 3.300 (3) 133

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2248).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919–o1920.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ.22, 2014–2017.
  6. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  7. Rigaku. (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku. (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017479/sg2248sup1.cif

e-64-o1265-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017479/sg2248Isup2.hkl

e-64-o1265-Isup2.hkl (132.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES