Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 25;64(Pt 7):m958–m959. doi: 10.1107/S1600536808018473

Hexa-μ2-bromido-μ4-oxo-tetra­kis[(nicotine)copper(II)]

Zhengjing Jiang a,b, Guodong Tang a,b, Lude Lu b,*
PMCID: PMC2961882  PMID: 21202807

Abstract

In the title compound, hexa-μ2-bromido-μ4-oxo-tetra­kis{[3-(1-methyl-2-pyrrolidin­yl)pyridine-κN]copper(II)}, [Cu4Br6O(C10H14N2)4], the four Cu atoms are tetra­hedrally arranged around the O atom at the cluster center. The Cu and coordinated N atoms lie along directions which correspond to four of the eight threefold axial directions of a regular octa­hedron. Each Cu atom lies at the center of a trigonal bipyramid, with the O atom and the pyridine N atom of a nicotine ligand in the axial positions and three Br atoms in the equatorial positions. Average bond distances are: Cu—N = 1.979 (8), Cu—O = 1.931 (6), Cu—Br = 2.514 (14) and Cu⋯Cu = 3.154 (6) ÅÅ. The configuration of the nicotine ligands is that of the trans diastereomer. In addition, the crystal structure contains five intra­molecular C—H⋯Br hydrogen bonds, which determine (or support) the orientation of the nicotine mol­ecules relative to their three equatorial Br atoms. One of the nicotine mol­ecules has two C—H⋯Br contacts, while the other three nicotine mol­ecules show only one C—H⋯Br bond each. Two other inter­molecular C—H⋯Br hydrogen bonds connect the complex mol­ecules, forming ribbons which extend in the b- and c-axis directions.

Related literature

For related literature, see: Udupa & Krebs (1980); Meyer et al. (2006); Haendler (1990).graphic file with name e-64-0m958-scheme1.jpg

Experimental

Crystal data

  • [Cu4Br6O(C10H14N2)4]

  • M r = 1398.55

  • Monoclinic, Inline graphic

  • a = 12.9505 (5) Å

  • b = 13.2850 (3) Å

  • c = 14.2555 (2) Å

  • β = 92.221 (2)°

  • V = 2450.78 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.64 mm−1

  • T = 123 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.29, T max = 0.40

  • 22605 measured reflections

  • 9345 independent reflections

  • 8124 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.122

  • S = 1.08

  • 9345 reflections

  • 536 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983), 4309 Friedel pairs

  • Flack parameter: 0.058 (15)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018473/si2090sup1.cif

e-64-0m958-sup1.cif (32.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018473/si2090Isup2.hkl

e-64-0m958-Isup2.hkl (457KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br3 0.95 2.60 3.292 (9) 130
C15—H15A⋯Br4 0.95 2.71 3.362 (10) 126
C21—H21A⋯Br2 0.95 2.77 3.372 (10) 122
C25—H25A⋯Br6 0.95 2.75 3.332 (9) 120
C30—H30C⋯Br6i 0.98 2.92 3.844 (10) 158
C35—H35A⋯Br5 0.95 2.68 3.259 (10) 120
C39—H39B⋯Br5ii 0.99 2.88 3.764 (11) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 50572039) and the Natural Science Foundation of Jiangsu Province (BK2006199).

supplementary crystallographic information

Comment

Numerous clusters of nicotine [3-(1-methyl-2- pyrrolidinyl)pyridine] were reported to form molecular complexes with metals. But the crystal structures of the clusters containing both nicotine ligands and bromine atoms have not been reported so far. In order to explore the chemistry of nicotine clusters extensively, we synthesized the title cluster.

As illustrated in Fig. 1, the title compound has an O atom at the center of a tetrahedron of Cu atoms. The same O atom also lies at the center of a slightly distorted octahedron of Br atoms. This octahedron is in turn surrounded tetrahedrally by the four pyridine N atoms of the nicotine ligands, in parallel orientation with the Cu tetrahedron. The Cu atoms are bridged by the six Br atoms. The net effect is to place each Cu atom at the center of a slightly distorted trigonal bipyramid; the four bipyramids have six edges in common. The central O atom and the pyridine N atoms are in the axial positions, while the bridging Br atoms are in the equatorial positions. In addition, the absolut configurations of C6, C16, C26, and C36 can be given as S* (the * denotes unknown absolute configuration, but for the chosen coordinates the form appears to be S). The structure also contains five intramolecular and two intermolecular C—H···Br hydrogen bonds (Table 1). The intramolecular hydrogen bonds determine (or support) the orientation of the nicotine molecules relative to their equatorial three Br atoms. One of the nicotine molecules has two C—H···Br contacts: C21—H21A···Br2 and C25—H25A···Br6, the other three nicotine molecules show only one H bond. Two other intermolecular hydrogen bonds, C30—H30C···Br6 and C39—H39B···Br5, connect the complexes to form ribbons which extend in the b and c direction.

Examples of closely related compounds containing nicotine ligands include a mercury(II) chain polymer (Udupa & Krebs, 1980), a helical silver(I) coordination polymer (Meyer et al., 2006) and a chloride-nicotine copper(II) complex (Haendler, 1990).

Experimental

CuBr (1 mmol) was added to a solution of 4-cyanopyridine(1 mmol) in dmf (5 ml). The resulting mixture was stirred for about 10 min after which an orange precipitate formed. Nicotine (1 ml) was then added dropwise to the reaction mixture and stirring was continued, during which time the precipitate was dissolved, giving an orange solution.This solution then changed its colour to dark green with 30 min further stirring. The resulting solution was filtered and the dark green filtrate was transfered into a test tube and carefully laid on the surface of the filtrate with i-PrOH (10 ml). Dark-brown block crystals were obtained after 30 days. Yield: 0.158 g, 68% (based on CuBr used). Analysis: Found: C 34.52, H 3.90, N 7.90%; Calculated for C40H56Br6Cu4N8O: C 34.35, H 4.04, N 8.01%.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The Flack parameter used in the refinement is 0.058 (15) with 4309 Friedel pairs.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.

Crystal data

[Cu4Br6O(C10H14N2)4] F000 = 1372
Mr = 1398.55 Dx = 1.895 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 8714 reflections
a = 12.9505 (5) Å θ = 2.1–26.4º
b = 13.2850 (3) Å µ = 6.64 mm1
c = 14.2555 (2) Å T = 123 (2) K
β = 92.221 (2)º Block, dark brown
V = 2450.78 (11) Å3 0.20 × 0.16 × 0.14 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer 9345 independent reflections
Radiation source: sealed tube 8124 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.044
T = 123(2) K θmax = 26.0º
φ and ω scans θmin = 1.4º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −15→15
Tmin = 0.29, Tmax = 0.40 k = −16→16
22605 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052   w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.64 e Å3
9345 reflections Δρmin = −0.82 e Å3
536 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 4309 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.058 (15)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.28823 (7) 0.58585 (6) 0.76809 (6) 0.02612 (19)
Br2 0.01897 (6) 0.79441 (7) 0.75355 (6) 0.0291 (2)
Br3 0.25573 (7) 0.84149 (7) 0.95621 (6) 0.0305 (2)
Br4 0.22450 (7) 0.78513 (7) 0.52996 (6) 0.02774 (19)
Br5 0.48949 (6) 0.84084 (7) 0.72986 (6) 0.03022 (19)
Br6 0.23762 (7) 1.04233 (7) 0.72339 (7) 0.0336 (2)
C1 0.1183 (7) 0.6417 (7) 1.0069 (5) 0.0247 (18)
H1A 0.1583 0.6947 1.0344 0.030*
C2 0.0695 (7) 0.5719 (8) 1.0658 (7) 0.033 (2)
C3 −0.0037 (10) 0.5038 (8) 1.0229 (8) 0.051 (3)
H3A −0.0480 0.4654 1.0606 0.061*
C4 −0.0096 (8) 0.4941 (9) 0.9250 (8) 0.048 (3)
H4A −0.0492 0.4417 0.8960 0.057*
C5 0.0429 (7) 0.5616 (7) 0.8717 (7) 0.030 (2)
H5A 0.0341 0.5590 0.8053 0.036*
C6 0.0778 (8) 0.5910 (8) 1.1674 (7) 0.041 (2)
H6A 0.0488 0.5315 1.2004 0.049*
C7 0.1780 (8) 0.6407 (9) 1.2997 (7) 0.041 (2)
H7A 0.1709 0.5840 1.3441 0.049*
H7B 0.2391 0.6815 1.3191 0.049*
C8 0.0844 (7) 0.7018 (7) 1.2933 (6) 0.031 (2)
H8A 0.1032 0.7739 1.2986 0.038*
H8B 0.0400 0.6850 1.3461 0.038*
C9 0.0258 (9) 0.6846 (9) 1.2030 (8) 0.046 (3)
H9A 0.0332 0.7419 1.1594 0.055*
H9B −0.0485 0.6728 1.2130 0.055*
C10 0.2290 (8) 0.5007 (8) 1.2051 (7) 0.038 (2)
H10A 0.1901 0.4598 1.2487 0.057*
H10B 0.3015 0.5043 1.2272 0.057*
H10C 0.2247 0.4701 1.1425 0.057*
C11 0.5028 (7) 0.5877 (8) 0.6410 (6) 0.035 (2)
H11A 0.5097 0.5943 0.7073 0.042*
C12 0.5629 (8) 0.5209 (7) 0.5960 (7) 0.036 (2)
C13 0.5644 (7) 0.5044 (8) 0.4954 (7) 0.034 (2)
H13A 0.6071 0.4565 0.4662 0.041*
C14 0.4928 (8) 0.5699 (9) 0.4459 (7) 0.047 (3)
H14A 0.4852 0.5675 0.3794 0.056*
C15 0.4327 (8) 0.6395 (9) 0.4991 (7) 0.043 (3)
H15A 0.3895 0.6853 0.4647 0.052*
C16 0.6298 (7) 0.4506 (8) 0.6531 (7) 0.036 (2)
H16A 0.6740 0.4120 0.6097 0.044*
C17 0.7272 (11) 0.4266 (9) 0.7973 (8) 0.053 (3)
H17A 0.7511 0.4612 0.8557 0.063*
H17B 0.7824 0.3811 0.7766 0.063*
C18 0.6280 (9) 0.3701 (8) 0.8109 (7) 0.046 (3)
H18A 0.5875 0.4030 0.8598 0.056*
H18B 0.6428 0.2999 0.8305 0.056*
C19 0.5671 (9) 0.3718 (8) 0.7151 (8) 0.048 (3)
H19A 0.4951 0.3946 0.7227 0.058*
H19B 0.5660 0.3042 0.6858 0.058*
C20 0.7870 (8) 0.5561 (10) 0.6860 (9) 0.053 (3)
H20A 0.8067 0.5264 0.6264 0.080*
H20B 0.8451 0.5513 0.7319 0.080*
H20C 0.7687 0.6270 0.6762 0.080*
C21 −0.0384 (8) 0.9135 (10) 0.5492 (8) 0.048 (3)
H21A −0.0547 0.8500 0.5757 0.057*
C22 −0.1084 (9) 0.9577 (10) 0.4939 (7) 0.045 (3)
C23 −0.0812 (7) 1.0480 (8) 0.4511 (7) 0.035 (2)
H23A −0.1274 1.0782 0.4060 0.042*
C24 0.0026 (8) 1.0890 (9) 0.4715 (7) 0.045 (3)
H24A 0.0172 1.1521 0.4435 0.054*
C25 0.0777 (7) 1.0463 (8) 0.5346 (6) 0.033 (2)
H25A 0.1406 1.0796 0.5515 0.039*
C26 −0.2124 (9) 0.9171 (8) 0.4718 (7) 0.048 (3)
H26A −0.2532 0.9636 0.4294 0.058*
C27 −0.2737 (10) 0.8910 (10) 0.5626 (9) 0.057 (3)
H27A −0.3146 0.9489 0.5844 0.068*
H27B −0.2275 0.8662 0.6145 0.068*
C28 −0.3466 (7) 0.8022 (8) 0.5179 (7) 0.036 (2)
H28A −0.3459 0.7439 0.5612 0.043*
H28B −0.4186 0.8268 0.5107 0.043*
C29 −0.3103 (8) 0.7697 (9) 0.4250 (8) 0.043 (2)
H29A −0.3540 0.7985 0.3732 0.051*
H29B −0.3104 0.6954 0.4194 0.051*
C30 −0.1700 (9) 0.8187 (8) 0.3300 (8) 0.047 (3)
H30A −0.0999 0.8460 0.3263 0.070*
H30B −0.2188 0.8630 0.2957 0.070*
H30C −0.1726 0.7513 0.3020 0.070*
C31 0.3732 (8) 1.0704 (7) 0.9282 (8) 0.039 (2)
H31A 0.3001 1.0659 0.9290 0.047*
C32 0.4159 (9) 1.1595 (8) 0.9843 (8) 0.044 (3)
C33 0.5149 (8) 1.1545 (8) 0.9841 (8) 0.045 (3)
H33 0.5517 1.1955 1.0286 0.054*
C34 0.5729 (7) 1.0972 (10) 0.9273 (7) 0.045 (3)
H34A 0.6423 1.1153 0.9164 0.054*
C35 0.5316 (9) 1.0155 (9) 0.8872 (9) 0.052 (3)
H35A 0.5729 0.9644 0.8610 0.063*
C36 0.3478 (8) 1.2254 (9) 1.0366 (7) 0.041 (2)
H36A 0.3857 1.2900 1.0485 0.049*
C37 0.1705 (8) 1.2749 (8) 1.0538 (6) 0.038 (2)
H37A 0.1051 1.2396 1.0367 0.045*
H37B 0.1579 1.3483 1.0553 0.045*
C38 0.2208 (9) 1.2342 (9) 1.1539 (7) 0.046 (3)
H38A 0.2344 1.2908 1.1978 0.055*
H38B 0.1740 1.1856 1.1834 0.055*
C39 0.3163 (9) 1.1860 (9) 1.1298 (9) 0.051 (3)
H39A 0.3065 1.1121 1.1263 0.061*
H39B 0.3709 1.2005 1.1784 0.061*
C40 0.2600 (8) 1.3053 (9) 0.9133 (7) 0.042 (2)
H40A 0.3136 1.2742 0.8763 0.062*
H40B 0.2805 1.3741 0.9301 0.062*
H40C 0.1947 1.3068 0.8762 0.062*
Cu1 0.18408 (8) 0.72680 (8) 0.82869 (7) 0.0265 (2)
Cu2 0.34250 (8) 0.73347 (8) 0.66603 (7) 0.0249 (2)
Cu3 0.15501 (8) 0.88478 (8) 0.66313 (7) 0.0257 (2)
Cu4 0.33722 (8) 0.90983 (8) 0.81346 (7) 0.0276 (2)
N1 0.1092 (6) 0.6345 (6) 0.9127 (5) 0.0299 (16)
N2 0.1845 (8) 0.6041 (8) 1.2003 (7) 0.052 (2)
N3 0.4330 (6) 0.6449 (7) 0.5918 (5) 0.0346 (19)
N4 0.6961 (7) 0.5007 (7) 0.7219 (6) 0.039 (2)
N5 0.0533 (6) 0.9531 (7) 0.5697 (5) 0.0324 (18)
N6 −0.1965 (6) 0.8129 (7) 0.4240 (6) 0.038 (2)
N7 0.4085 (7) 1.0081 (6) 0.8855 (6) 0.038 (2)
N8 0.2476 (7) 1.2506 (8) 0.9930 (6) 0.046 (2)
O1 0.2551 (5) 0.8122 (5) 0.7435 (4) 0.0287 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0274 (4) 0.0272 (4) 0.0235 (4) 0.0058 (3) −0.0023 (3) −0.0028 (3)
Br2 0.0265 (4) 0.0342 (5) 0.0260 (4) 0.0033 (4) −0.0049 (3) −0.0022 (4)
Br3 0.0380 (5) 0.0280 (4) 0.0250 (4) 0.0050 (4) −0.0059 (3) −0.0036 (4)
Br4 0.0294 (4) 0.0312 (4) 0.0222 (4) 0.0008 (4) −0.0041 (3) 0.0007 (4)
Br5 0.0246 (4) 0.0349 (5) 0.0309 (4) −0.0007 (4) −0.0019 (3) −0.0025 (4)
Br6 0.0358 (5) 0.0292 (5) 0.0346 (5) 0.0034 (4) −0.0126 (4) −0.0033 (4)
C1 0.034 (5) 0.028 (4) 0.012 (3) −0.002 (4) −0.008 (3) −0.008 (3)
C2 0.024 (4) 0.039 (6) 0.036 (5) −0.003 (4) 0.005 (4) −0.012 (4)
C3 0.077 (8) 0.030 (5) 0.047 (6) 0.012 (6) 0.011 (6) −0.022 (5)
C4 0.035 (6) 0.051 (7) 0.058 (7) −0.016 (5) 0.008 (5) −0.011 (6)
C5 0.024 (4) 0.032 (5) 0.036 (5) −0.008 (4) 0.018 (4) −0.018 (4)
C6 0.052 (6) 0.041 (6) 0.031 (5) −0.018 (5) 0.013 (4) 0.008 (4)
C7 0.047 (6) 0.045 (6) 0.030 (5) 0.010 (5) −0.005 (4) 0.000 (4)
C8 0.035 (5) 0.030 (5) 0.030 (4) −0.013 (4) 0.004 (4) 0.004 (4)
C9 0.042 (6) 0.054 (7) 0.040 (5) −0.012 (5) −0.006 (5) −0.005 (5)
C10 0.031 (5) 0.045 (6) 0.038 (5) 0.021 (4) −0.007 (4) −0.001 (4)
C11 0.027 (4) 0.061 (7) 0.016 (4) 0.005 (5) −0.006 (3) −0.009 (4)
C12 0.036 (5) 0.032 (5) 0.040 (5) 0.012 (4) −0.013 (4) −0.004 (4)
C13 0.022 (4) 0.037 (5) 0.044 (6) 0.002 (4) 0.005 (4) −0.012 (4)
C14 0.048 (6) 0.056 (7) 0.036 (5) 0.020 (5) 0.008 (5) −0.013 (5)
C15 0.033 (5) 0.060 (7) 0.036 (5) 0.014 (5) 0.005 (4) −0.011 (5)
C16 0.033 (5) 0.035 (5) 0.039 (5) 0.019 (4) −0.010 (4) −0.013 (4)
C17 0.082 (9) 0.038 (6) 0.036 (5) 0.006 (6) −0.008 (6) 0.024 (5)
C18 0.068 (7) 0.036 (6) 0.034 (5) −0.029 (5) −0.004 (5) 0.007 (4)
C19 0.044 (6) 0.037 (6) 0.062 (7) −0.001 (5) −0.010 (5) 0.008 (5)
C20 0.036 (6) 0.065 (8) 0.060 (7) 0.014 (6) 0.017 (5) 0.043 (6)
C21 0.041 (6) 0.056 (7) 0.046 (6) −0.006 (5) 0.000 (5) 0.025 (5)
C22 0.044 (6) 0.058 (7) 0.033 (5) 0.014 (5) −0.005 (5) 0.000 (5)
C23 0.032 (5) 0.039 (5) 0.034 (5) 0.013 (4) −0.012 (4) −0.020 (4)
C24 0.034 (5) 0.056 (7) 0.044 (6) 0.017 (5) −0.006 (5) 0.021 (5)
C25 0.028 (5) 0.038 (5) 0.032 (4) 0.022 (4) −0.006 (4) −0.003 (4)
C26 0.064 (8) 0.041 (6) 0.038 (5) 0.019 (6) −0.023 (5) 0.005 (5)
C27 0.053 (7) 0.059 (8) 0.059 (7) 0.001 (6) 0.013 (6) −0.014 (6)
C28 0.032 (5) 0.044 (6) 0.032 (5) −0.007 (4) 0.006 (4) −0.012 (4)
C29 0.037 (5) 0.042 (6) 0.049 (6) −0.008 (5) −0.002 (4) −0.013 (5)
C30 0.058 (7) 0.032 (6) 0.049 (6) −0.006 (5) −0.010 (5) −0.002 (4)
C31 0.035 (5) 0.022 (5) 0.062 (7) −0.003 (4) 0.008 (5) −0.002 (5)
C32 0.051 (7) 0.030 (5) 0.048 (6) 0.015 (5) −0.022 (5) −0.009 (5)
C33 0.042 (6) 0.043 (6) 0.047 (6) 0.018 (5) −0.023 (5) −0.002 (5)
C34 0.012 (4) 0.089 (9) 0.036 (5) −0.003 (5) 0.001 (4) −0.015 (6)
C35 0.036 (6) 0.054 (7) 0.066 (8) −0.014 (5) −0.004 (5) −0.033 (6)
C36 0.038 (5) 0.046 (6) 0.037 (5) −0.003 (5) −0.006 (4) −0.012 (5)
C37 0.036 (5) 0.045 (6) 0.033 (5) 0.012 (5) 0.017 (4) 0.008 (4)
C38 0.057 (7) 0.053 (7) 0.027 (5) −0.010 (6) −0.009 (4) 0.011 (5)
C39 0.043 (6) 0.045 (6) 0.064 (7) −0.017 (5) −0.003 (5) 0.009 (6)
C40 0.041 (5) 0.053 (7) 0.033 (5) 0.014 (5) 0.018 (4) −0.008 (4)
Cu1 0.0317 (5) 0.0242 (5) 0.0233 (5) 0.0076 (5) −0.0020 (4) −0.0027 (4)
Cu2 0.0231 (5) 0.0273 (5) 0.0242 (5) 0.0048 (4) −0.0024 (4) −0.0038 (4)
Cu3 0.0272 (5) 0.0249 (5) 0.0243 (5) 0.0030 (4) −0.0068 (4) −0.0012 (4)
Cu4 0.0290 (6) 0.0259 (6) 0.0273 (5) −0.0001 (4) −0.0066 (4) −0.0060 (4)
N1 0.028 (4) 0.029 (4) 0.032 (4) 0.000 (3) −0.001 (3) 0.000 (3)
N2 0.060 (6) 0.049 (6) 0.047 (5) 0.016 (5) 0.008 (5) −0.007 (4)
N3 0.031 (4) 0.043 (5) 0.031 (4) 0.009 (4) 0.023 (3) 0.016 (3)
N4 0.041 (5) 0.044 (5) 0.030 (4) −0.004 (4) −0.012 (4) 0.017 (4)
N5 0.030 (4) 0.047 (5) 0.020 (3) 0.002 (4) 0.002 (3) 0.005 (3)
N6 0.031 (4) 0.048 (5) 0.037 (4) 0.012 (4) 0.004 (3) 0.011 (4)
N7 0.047 (5) 0.021 (4) 0.045 (5) −0.001 (4) −0.016 (4) −0.008 (4)
N8 0.042 (5) 0.059 (6) 0.036 (4) 0.022 (4) 0.001 (4) −0.021 (4)
O1 0.032 (3) 0.028 (3) 0.026 (3) 0.000 (2) −0.005 (2) −0.005 (2)

Geometric parameters (Å, °)

Br1—Cu1 2.4824 (13) C20—H20B 0.9800
Br1—Cu2 2.5565 (14) C20—H20C 0.9800
Br2—Cu1 2.5197 (13) C21—C22 1.316 (15)
Br2—Cu3 2.5264 (14) C21—N5 1.321 (14)
Br3—Cu4 2.4991 (15) C21—H21A 0.9500
Br3—Cu1 2.5212 (13) C22—C23 1.397 (17)
Br4—Cu3 2.5097 (13) C22—C26 1.474 (17)
Br4—Cu2 2.5178 (12) C23—C24 1.239 (15)
Br5—Cu4 2.5162 (14) C23—H23A 0.9500
Br5—Cu2 2.5203 (14) C24—C25 1.419 (12)
Br6—Cu3 2.4883 (14) C24—H24A 0.9500
Br6—Cu4 2.5066 (14) C25—N5 1.377 (14)
C1—N1 1.348 (10) C25—H25A 0.9500
C1—C2 1.416 (13) C26—N6 1.561 (14)
C1—H1A 0.9500 C26—C27 1.583 (17)
C2—C3 1.430 (15) C26—H26A 1.0000
C2—C6 1.471 (13) C27—C28 1.625 (16)
C3—C4 1.401 (16) C27—H27A 0.9900
C3—H3A 0.9500 C27—H27B 0.9900
C4—C5 1.371 (15) C28—C29 1.488 (14)
C4—H4A 0.9500 C28—H28A 0.9900
C5—N1 1.406 (11) C28—H28B 0.9900
C5—H5A 0.9500 C29—N6 1.582 (13)
C6—N2 1.453 (14) C29—H29A 0.9900
C6—C9 1.510 (16) C29—H29B 0.9900
C6—H6A 1.0000 C30—N6 1.399 (14)
C7—C8 1.459 (14) C30—H30A 0.9800
C7—N2 1.503 (13) C30—H30B 0.9800
C7—H7A 0.9900 C30—H30C 0.9800
C7—H7B 0.9900 C31—N7 1.133 (13)
C8—C9 1.486 (13) C31—C32 1.520 (14)
C8—H8A 0.9900 C31—H31A 0.9500
C8—H8B 0.9900 C32—C33 1.285 (16)
C9—H9A 0.9900 C32—C36 1.467 (15)
C9—H9B 0.9900 C33—C34 1.358 (15)
C10—N2 1.490 (14) C33—H33 0.9500
C10—H10A 0.9800 C34—C35 1.329 (16)
C10—H10B 0.9800 C34—H34A 0.9500
C10—H10C 0.9800 C35—N7 1.596 (14)
C11—N3 1.355 (12) C35—H35A 0.9500
C11—C12 1.358 (14) C36—N8 1.456 (13)
C11—H11A 0.9500 C36—C39 1.499 (15)
C12—C13 1.451 (14) C36—H36A 1.0000
C12—C16 1.494 (12) C37—N8 1.384 (12)
C13—C14 1.437 (15) C37—C38 1.637 (13)
C13—H13A 0.9500 C37—H37A 0.9900
C14—C15 1.443 (14) C37—H37B 0.9900
C14—H14A 0.9500 C38—C39 1.446 (17)
C15—N3 1.324 (12) C38—H38A 0.9900
C15—H15A 0.9500 C38—H38B 0.9900
C16—N4 1.441 (12) C39—H39A 0.9900
C16—C19 1.611 (16) C39—H39B 0.9900
C16—H16A 1.0000 C40—N8 1.364 (14)
C17—N4 1.501 (11) C40—H40A 0.9800
C17—C18 1.507 (17) C40—H40B 0.9800
C17—H17A 0.9900 C40—H40C 0.9800
C17—H17B 0.9900 Cu1—O1 1.923 (7)
C18—C19 1.550 (14) Cu1—N1 1.992 (8)
C18—H18A 0.9900 Cu2—O1 1.921 (6)
C18—H18B 0.9900 Cu2—N3 1.993 (8)
C19—H19A 0.9900 Cu3—O1 1.951 (6)
C19—H19B 0.9900 Cu3—N5 2.049 (7)
C20—N4 1.495 (13) Cu4—N7 1.882 (8)
C20—H20A 0.9800 Cu4—O1 1.930 (6)
Cu1—Br1—Cu2 77.55 (4) H28A—C28—H28B 108.0
Cu1—Br2—Cu3 77.83 (4) C28—C29—N6 103.2 (7)
Cu4—Br3—Cu1 77.74 (4) C28—C29—H29A 111.1
Cu3—Br4—Cu2 77.63 (4) N6—C29—H29A 111.1
Cu4—Br5—Cu2 77.43 (4) C28—C29—H29B 111.1
Cu3—Br6—Cu4 77.99 (4) N6—C29—H29B 111.1
N1—C1—C2 121.4 (8) H29A—C29—H29B 109.1
N1—C1—H1A 119.3 N6—C30—H30A 109.5
C2—C1—H1A 119.3 N6—C30—H30B 109.5
C1—C2—C3 117.7 (9) H30A—C30—H30B 109.5
C1—C2—C6 117.0 (8) N6—C30—H30C 109.5
C3—C2—C6 123.5 (9) H30A—C30—H30C 109.5
C4—C3—C2 119.6 (11) H30B—C30—H30C 109.5
C4—C3—H3A 120.2 N7—C31—C32 134.8 (10)
C2—C3—H3A 120.2 N7—C31—H31A 112.6
C5—C4—C3 118.9 (10) C32—C31—H31A 112.6
C5—C4—H4A 120.6 C33—C32—C36 130.6 (10)
C3—C4—H4A 120.6 C33—C32—C31 107.5 (10)
C4—C5—N1 121.9 (9) C36—C32—C31 121.3 (10)
C4—C5—H5A 119.1 C32—C33—C34 127.2 (11)
N1—C5—H5A 119.1 C32—C33—H33 116.4
N2—C6—C2 111.8 (9) C34—C33—H33 116.4
N2—C6—C9 103.0 (8) C35—C34—C33 119.5 (10)
C2—C6—C9 117.1 (9) C35—C34—H34A 120.3
N2—C6—H6A 108.2 C33—C34—H34A 120.3
C2—C6—H6A 108.2 C34—C35—N7 116.2 (10)
C9—C6—H6A 108.2 C34—C35—H35A 121.9
C8—C7—N2 101.4 (8) N7—C35—H35A 121.9
C8—C7—H7A 111.5 N8—C36—C32 117.6 (8)
N2—C7—H7A 111.5 N8—C36—C39 100.9 (9)
C8—C7—H7B 111.5 C32—C36—C39 115.6 (10)
N2—C7—H7B 111.5 N8—C36—H36A 107.4
H7A—C7—H7B 109.3 C32—C36—H36A 107.4
C7—C8—C9 111.3 (9) C39—C36—H36A 107.4
C7—C8—H8A 109.4 N8—C37—C38 101.3 (8)
C9—C8—H8A 109.4 N8—C37—H37A 111.5
C7—C8—H8B 109.4 C38—C37—H37A 111.5
C9—C8—H8B 109.4 N8—C37—H37B 111.5
H8A—C8—H8B 108.0 C38—C37—H37B 111.5
C8—C9—C6 101.5 (9) H37A—C37—H37B 109.3
C8—C9—H9A 111.5 C39—C38—C37 104.7 (8)
C6—C9—H9A 111.5 C39—C38—H38A 110.8
C8—C9—H9B 111.5 C37—C38—H38A 110.8
C6—C9—H9B 111.5 C39—C38—H38B 110.8
H9A—C9—H9B 109.3 C37—C38—H38B 110.8
N2—C10—H10A 109.5 H38A—C38—H38B 108.9
N2—C10—H10B 109.5 C38—C39—C36 108.7 (10)
H10A—C10—H10B 109.5 C38—C39—H39A 110.0
N2—C10—H10C 109.5 C36—C39—H39A 110.0
H10A—C10—H10C 109.5 C38—C39—H39B 110.0
H10B—C10—H10C 109.5 C36—C39—H39B 110.0
N3—C11—C12 120.3 (8) H39A—C39—H39B 108.3
N3—C11—H11A 119.9 N8—C40—H40A 109.5
C12—C11—H11A 119.9 N8—C40—H40B 109.5
C11—C12—C13 126.6 (8) H40A—C40—H40B 109.5
C11—C12—C16 118.8 (9) N8—C40—H40C 109.5
C13—C12—C16 114.5 (9) H40A—C40—H40C 109.5
C14—C13—C12 111.1 (8) H40B—C40—H40C 109.5
C14—C13—H13A 124.4 O1—Cu1—N1 177.7 (3)
C12—C13—H13A 124.4 O1—Cu1—Br1 86.9 (2)
C13—C14—C15 118.7 (9) N1—Cu1—Br1 91.6 (2)
C13—C14—H14A 120.6 O1—Cu1—Br2 86.56 (19)
C15—C14—H14A 120.6 N1—Cu1—Br2 92.9 (2)
N3—C15—C14 125.4 (10) Br1—Cu1—Br2 125.77 (5)
N3—C15—H15A 117.3 O1—Cu1—Br3 85.83 (18)
C14—C15—H15A 117.3 N1—Cu1—Br3 96.5 (2)
N4—C16—C12 113.6 (8) Br1—Cu1—Br3 121.13 (5)
N4—C16—C19 103.1 (8) Br2—Cu1—Br3 111.94 (5)
C12—C16—C19 114.3 (8) O1—Cu2—N3 176.4 (3)
N4—C16—H16A 108.5 O1—Cu2—Br4 86.60 (18)
C12—C16—H16A 108.5 N3—Cu2—Br4 96.0 (2)
C19—C16—H16A 108.5 O1—Cu2—Br5 86.45 (19)
N4—C17—C18 102.2 (9) N3—Cu2—Br5 94.3 (3)
N4—C17—H17A 111.3 Br4—Cu2—Br5 123.46 (6)
C18—C17—H17A 111.3 O1—Cu2—Br1 84.8 (2)
N4—C17—H17B 111.3 N3—Cu2—Br1 91.7 (2)
C18—C17—H17B 111.3 Br4—Cu2—Br1 118.39 (5)
H17A—C17—H17B 109.2 Br5—Cu2—Br1 116.69 (5)
C17—C18—C19 106.7 (8) O1—Cu3—N5 175.1 (3)
C17—C18—H18A 110.4 O1—Cu3—Br6 86.91 (19)
C19—C18—H18A 110.4 N5—Cu3—Br6 96.3 (2)
C17—C18—H18B 110.4 O1—Cu3—Br4 86.20 (19)
C19—C18—H18B 110.4 N5—Cu3—Br4 89.0 (2)
H18A—C18—H18B 108.6 Br6—Cu3—Br4 122.88 (5)
C18—C19—C16 104.1 (8) O1—Cu3—Br2 85.78 (19)
C18—C19—H19A 110.9 N5—Cu3—Br2 95.7 (2)
C16—C19—H19A 110.9 Br6—Cu3—Br2 121.51 (5)
C18—C19—H19B 110.9 Br4—Cu3—Br2 114.38 (5)
C16—C19—H19B 110.9 N7—Cu4—O1 175.9 (4)
H19A—C19—H19B 109.0 N7—Cu4—Br3 91.2 (3)
N4—C20—H20A 109.5 O1—Cu4—Br3 86.29 (19)
N4—C20—H20B 109.5 N7—Cu4—Br6 91.4 (2)
H20A—C20—H20B 109.5 O1—Cu4—Br6 86.83 (19)
N4—C20—H20C 109.5 Br3—Cu4—Br6 116.56 (5)
H20A—C20—H20C 109.5 N7—Cu4—Br5 97.7 (3)
H20B—C20—H20C 109.5 O1—Cu4—Br5 86.36 (19)
C22—C21—N5 123.1 (11) Br3—Cu4—Br5 128.08 (5)
C22—C21—H21A 118.5 Br6—Cu4—Br5 114.23 (5)
N5—C21—H21A 118.5 C1—N1—C5 119.4 (8)
C21—C22—C23 117.8 (11) C1—N1—Cu1 122.0 (6)
C21—C22—C26 124.5 (12) C5—N1—Cu1 118.6 (6)
C23—C22—C26 117.7 (9) C6—N2—C10 105.4 (9)
C24—C23—C22 120.6 (10) C6—N2—C7 104.8 (9)
C24—C23—H23A 119.7 C10—N2—C7 106.9 (8)
C22—C23—H23A 119.7 C15—N3—C11 117.5 (8)
C23—C24—C25 123.0 (11) C15—N3—Cu2 125.7 (7)
C23—C24—H24A 118.5 C11—N3—Cu2 116.8 (6)
C25—C24—H24A 118.5 C16—N4—C20 116.8 (9)
N5—C25—C24 115.4 (9) C16—N4—C17 108.7 (8)
N5—C25—H25A 122.3 C20—N4—C17 112.0 (8)
C24—C25—H25A 122.3 C21—N5—C25 119.7 (8)
C22—C26—N6 106.4 (9) C21—N5—Cu3 121.1 (7)
C22—C26—C27 112.9 (9) C25—N5—Cu3 118.9 (6)
N6—C26—C27 103.9 (9) C30—N6—C26 114.2 (8)
C22—C26—H26A 111.1 C30—N6—C29 106.9 (8)
N6—C26—H26A 111.1 C26—N6—C29 100.3 (8)
C27—C26—H26A 111.1 C31—N7—C35 111.7 (8)
C26—C27—C28 98.1 (9) C31—N7—Cu4 126.9 (8)
C26—C27—H27A 112.1 C35—N7—Cu4 121.3 (6)
C28—C27—H27A 112.1 C40—N8—C37 120.6 (9)
C26—C27—H27B 112.1 C40—N8—C36 110.2 (9)
C28—C27—H27B 112.1 C37—N8—C36 116.1 (8)
H27A—C27—H27B 109.8 Cu2—O1—Cu1 110.4 (3)
C29—C28—C27 111.1 (9) Cu2—O1—Cu4 109.7 (3)
C29—C28—H28A 109.4 Cu1—O1—Cu4 109.7 (3)
C27—C28—H28A 109.4 Cu2—O1—Cu3 109.0 (3)
C29—C28—H28B 109.4 Cu1—O1—Cu3 109.8 (3)
C27—C28—H28B 109.4 Cu4—O1—Cu3 108.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Br3 0.95 2.60 3.292 (9) 130
C15—H15A···Br4 0.95 2.71 3.362 (10) 126
C21—H21A···Br2 0.95 2.77 3.372 (10) 122
C25—H25A···Br6 0.95 2.75 3.332 (9) 120
C30—H30C···Br6i 0.98 2.92 3.844 (10) 158
C35—H35A···Br5 0.95 2.68 3.259 (10) 120
C39—H39B···Br5ii 0.99 2.88 3.764 (11) 150

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2090).

References

  1. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Haendler, H. M. (1990). Acta Cryst. C46, 2054–2057.
  5. Meyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem.632, 34–35.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Udupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161–164.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018473/si2090sup1.cif

e-64-0m958-sup1.cif (32.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018473/si2090Isup2.hkl

e-64-0m958-Isup2.hkl (457KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES