Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 25;64(Pt 7):o1333. doi: 10.1107/S1600536808017443

2-Bromo-4-chloro-6-(4-fluoro­phenyl­imino­meth­yl)phenol

G Puthilibai a,*, S Vasudhevan b, G Rajagopal c
PMCID: PMC2961884  PMID: 21202957

Abstract

The two mol­ecules of the title compound, C13H8BrClFNO, in the asymmetric unit are inter­connected by π–π inter­actions between the salicylaldehyde and aniline units, the shortest inter­planar distance being 3.317 (3) Å. These pairs and their translation equivalents are further linked by C—H⋯F hydrogen bonds, forming a one-dimensional infinite chain. In addition, there is an intra­molecular O—H⋯N hydrogen bond connecting the OH group and the imine N atom.

Related literature

For related literature, see: Collinson & Fenton (1996); Garnovski & Vasil Chenko (2002); Kannan & Ramesh (2006); Karvembu et al. (2003); Kumar & Ramesh (2004); Nakajima et al. (1998); Prabhakaran et al. (2004); Ramesh & Maheswaran (2003); Sivagamasundari & Ramesh (2007).graphic file with name e-64-o1333-scheme1.jpg

Experimental

Crystal data

  • C13H8BrClFNO

  • M r = 328.56

  • Triclinic, Inline graphic

  • a = 8.2274 (3) Å

  • b = 8.6566 (3) Å

  • c = 10.8880 (4) Å

  • α = 69.545 (2)°

  • β = 70.820 (2)°

  • γ = 62.341 (2)°

  • V = 630.48 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.47 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker APEX2 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.451, T max = 0.573 (expected range = 0.393–0.500)

  • 16111 measured reflections

  • 3975 independent reflections

  • 2533 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.138

  • S = 0.99

  • 3975 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017443/im2067sup1.cif

e-64-o1333-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017443/im2067Isup2.hkl

e-64-o1333-Isup2.hkl (190.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯F1i 0.93 2.45 3.349 (4) 162
O1—H1⋯N1 0.82 1.86 2.577 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai, for the X-ray data collection.

supplementary crystallographic information

Comment

Monobasic bidentate Schiff base ligands exemplified by the title compound exhibiting both N and O donor sites play an important role in the synthesis of metal complexes and represent an important class of chelating ligands (Sivagamasundari et al., 2007; Prabhakaran et al., 2004). Among the prodigious number and variety of Schiff bases, salicylaldimines have been studied widely because of their synthetic proclivity and structural diversity (Collinson et al., 1996; Garnovski et al., 2002). In recent years, there has been considerable interest in the chemistry of transition metal complexes of Schiff bases. This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning metal centered electronic properties, enhancing solubility and stability of either homogeneous or heterogeneous catalysts and producing antibacterial agents (Karvembu et al., 2003; Nakajima et al., 1998; Kumar et al., 2004; Ramesh et al., 2003; Kannan et al., 2006). With the above view, in our ongoing research, we have chosen the title compound as a specific and representative ligand to synthesize ruthenium complexes. The title compound and its complexes will be screened against the bacterei E. coli, S.aureous, P.mirabilis and P.vulgaris.

The title compound, C9H8BrClFNO, crystallizes in the triclinic space group P1 with one molecule in the asymmetric unit. Figure 1 shows the ORTEP representation of the molecule with thermal ellipsoids at the 50% probability level. The packing of the molecules in the unit cell showing the inter molecular interactions is depicted in Figure 2. The molecule and its inversion analogue are linked to each other by Π-Π interactions between the salicylaldehyde moiety and the aniline moiety with the shortest interplanar distance of 3.317 (3) Å (1 - x, 1 - y, 1 - z). The molecules are further connected by C11—H11···F1 hydrogen bonds (2.452 Å, 161.89°, 1 + x, -1 + y, 1 + z) forming an one- dimensional infinite chain. The packing is further stabilized by Van der Waals interactions. In addition, an intramolecular hydrogen bonding O1—H1···N1 (2.577 (3) Å, 145.9°) linking the OH group of the former salicyleldehyde and the imine N atom. The dihedral angle between the salicylaldehyde and aniline moieties is 8.8 (2)°.

Experimental

The monobasic bidentate Schiff base ligand, 2-bromo-4-chloro-6-[(4' -fluorophenylimino)-methyl]-phenol, was synthesized by the condensation of 3-bromo-5-chloro-2-hydroxybenzaldehyde (0.1 mmol) with 4-fluoroaniline (0.1 mmol) in a 1:1 molar ratio in MeOH (25 cm3). The solution was heated under reflux for 3 h with continuous stirring and then concentrated to 5 cm3. On cooling the pale orange crystalline product precipitated, was filtered off, washed with ice cold EtOH and dried. The product was recrystallized from EtOH. The purity of the compound was checked by TLC.

Refinement

All the H atoms were located from the difference Fourier map. However, the aromatic H atoms were geometrically constrained at idealized positions (C—H = 0.93 Å) and were refined using a riding model with Uiso equal to 1.2 times Ueq of the parent carbon atom. The hydroxyl hydrogen was refined isotropically with restraint: O—H = 0.820 (1) Å.

Figures

Fig. 1.

Fig. 1.

The ORTEP representation of the molecule with thermal ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of molecules in the unit cell. Intermolecular interactions are shown with dashed lines.

Crystal data

C13H8BrClFNO Z = 2
Mr = 328.56 F000 = 324
Triclinic, P1 Dx = 1.731 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.2274 (3) Å Cell parameters from 5635 reflections
b = 8.6566 (3) Å θ = 2.7–31.1º
c = 10.8880 (4) Å µ = 3.47 mm1
α = 69.545 (2)º T = 293 (2) K
β = 70.820 (2)º Rectangle, pale orange
γ = 62.341 (2)º 0.30 × 0.20 × 0.20 mm
V = 630.48 (4) Å3

Data collection

Bruker APEX2 CCD diffractometer 3975 independent reflections
Radiation source: fine-focus sealed tube 2533 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
T = 293(2) K θmax = 30.9º
ω and φ scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 1999) h = −11→11
Tmin = 0.451, Tmax = 0.573 k = −12→12
16111 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.138   w = 1/[σ2(Fo2) + (0.0708P)2 + 0.3467P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
3975 reflections Δρmax = 0.72 e Å3
164 parameters Δρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3576 (4) 0.9290 (4) 0.1434 (3) 0.0520 (7)
C2 0.3513 (4) 1.0070 (4) 0.2347 (3) 0.0572 (7)
H2 0.2789 1.1284 0.2308 0.069*
C3 0.4551 (4) 0.9013 (4) 0.3333 (3) 0.0501 (6)
H3 0.4523 0.9521 0.3968 0.060*
C4 0.5627 (3) 0.7212 (3) 0.3389 (2) 0.0384 (5)
C5 0.5679 (4) 0.6469 (4) 0.2429 (3) 0.0486 (6)
H5 0.6412 0.5261 0.2448 0.058*
C6 0.4637 (4) 0.7527 (4) 0.1440 (3) 0.0535 (7)
H6 0.4662 0.7040 0.0792 0.064*
C7 0.7801 (4) 0.4644 (3) 0.4552 (3) 0.0405 (5)
H7 0.8117 0.4086 0.3866 0.049*
C8 0.8715 (3) 0.3665 (3) 0.5699 (2) 0.0366 (5)
C9 0.8321 (3) 0.4496 (3) 0.6718 (3) 0.0378 (5)
C10 0.9237 (4) 0.3494 (3) 0.7792 (3) 0.0417 (5)
C11 1.0468 (4) 0.1735 (3) 0.7878 (3) 0.0433 (6)
H11 1.1053 0.1086 0.8607 0.052*
C12 1.0820 (4) 0.0950 (3) 0.6861 (3) 0.0434 (6)
C13 0.9977 (4) 0.1888 (3) 0.5779 (3) 0.0427 (5)
H13 1.0248 0.1338 0.5098 0.051*
N1 0.6581 (3) 0.6243 (3) 0.4471 (2) 0.0402 (5)
O1 0.7120 (3) 0.6194 (2) 0.6688 (2) 0.0525 (5)
H1 0.6570 0.6571 0.6070 0.087 (13)*
F1 0.2529 (3) 1.0312 (3) 0.04826 (19) 0.0759 (6)
Cl1 1.23745 (13) −0.12851 (9) 0.69813 (9) 0.0681 (2)
Br1 0.87756 (6) 0.45988 (5) 0.91496 (4) 0.07867 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0463 (14) 0.0613 (17) 0.0414 (14) −0.0219 (13) −0.0227 (12) 0.0098 (13)
C2 0.0576 (17) 0.0432 (14) 0.0585 (18) −0.0087 (13) −0.0269 (14) 0.0004 (13)
C3 0.0554 (16) 0.0432 (14) 0.0507 (15) −0.0129 (12) −0.0241 (12) −0.0063 (12)
C4 0.0385 (12) 0.0400 (12) 0.0367 (12) −0.0169 (10) −0.0153 (10) 0.0002 (10)
C5 0.0505 (15) 0.0456 (14) 0.0504 (15) −0.0129 (12) −0.0236 (12) −0.0079 (12)
C6 0.0586 (17) 0.0672 (19) 0.0400 (14) −0.0264 (15) −0.0212 (12) −0.0057 (13)
C7 0.0443 (13) 0.0398 (12) 0.0407 (12) −0.0146 (10) −0.0174 (10) −0.0078 (10)
C8 0.0373 (11) 0.0352 (11) 0.0377 (12) −0.0126 (9) −0.0156 (9) −0.0040 (9)
C9 0.0362 (11) 0.0339 (11) 0.0425 (13) −0.0089 (9) −0.0154 (10) −0.0080 (10)
C10 0.0437 (13) 0.0425 (13) 0.0413 (13) −0.0127 (10) −0.0174 (10) −0.0102 (10)
C11 0.0449 (13) 0.0397 (12) 0.0425 (13) −0.0128 (10) −0.0222 (11) 0.0005 (11)
C12 0.0429 (13) 0.0310 (11) 0.0522 (15) −0.0083 (10) −0.0200 (11) −0.0044 (10)
C13 0.0471 (13) 0.0347 (12) 0.0462 (14) −0.0100 (10) −0.0177 (11) −0.0102 (10)
N1 0.0409 (11) 0.0395 (11) 0.0407 (11) −0.0139 (9) −0.0183 (9) −0.0034 (9)
O1 0.0568 (11) 0.0372 (9) 0.0584 (12) 0.0023 (8) −0.0302 (9) −0.0173 (8)
F1 0.0744 (12) 0.0842 (14) 0.0574 (11) −0.0237 (11) −0.0444 (10) 0.0151 (10)
Cl1 0.0768 (5) 0.0338 (3) 0.0812 (6) 0.0009 (3) −0.0358 (4) −0.0126 (3)
Br1 0.0981 (3) 0.0702 (3) 0.0663 (3) −0.00208 (19) −0.0451 (2) −0.03146 (18)

Geometric parameters (Å, °)

C1—F1 1.355 (3) C7—H7 0.9300
C1—C6 1.361 (5) C8—C13 1.391 (3)
C1—C2 1.360 (5) C8—C9 1.399 (3)
C2—C3 1.382 (4) C9—O1 1.334 (3)
C2—H2 0.9300 C9—C10 1.396 (3)
C3—C4 1.381 (4) C10—C11 1.373 (4)
C3—H3 0.9300 C10—Br1 1.878 (3)
C4—C5 1.387 (4) C11—C12 1.379 (4)
C4—N1 1.418 (3) C11—H11 0.9300
C5—C6 1.386 (4) C12—C13 1.370 (3)
C5—H5 0.9300 C12—Cl1 1.741 (3)
C6—H6 0.9300 C13—H13 0.9300
C7—N1 1.270 (3) O1—H1 0.8200
C7—C8 1.460 (3)
F1—C1—C6 118.6 (3) C13—C8—C9 120.0 (2)
F1—C1—C2 118.5 (3) C13—C8—C7 119.4 (2)
C6—C1—C2 122.8 (2) C9—C8—C7 120.5 (2)
C1—C2—C3 118.3 (3) O1—C9—C10 119.7 (2)
C1—C2—H2 120.9 O1—C9—C8 122.2 (2)
C3—C2—H2 120.9 C10—C9—C8 118.1 (2)
C4—C3—C2 120.9 (3) C11—C10—C9 122.0 (2)
C4—C3—H3 119.6 C11—C10—Br1 119.22 (18)
C2—C3—H3 119.6 C9—C10—Br1 118.82 (19)
C3—C4—C5 119.2 (2) C10—C11—C12 118.6 (2)
C3—C4—N1 116.1 (2) C10—C11—H11 120.7
C5—C4—N1 124.7 (2) C12—C11—H11 120.7
C6—C5—C4 120.0 (3) C13—C12—C11 121.5 (2)
C6—C5—H5 120.0 C13—C12—Cl1 120.1 (2)
C4—C5—H5 120.0 C11—C12—Cl1 118.38 (19)
C1—C6—C5 118.8 (3) C12—C13—C8 119.8 (2)
C1—C6—H6 120.6 C12—C13—H13 120.1
C5—C6—H6 120.6 C8—C13—H13 120.1
N1—C7—C8 121.3 (2) C7—N1—C4 122.7 (2)
N1—C7—H7 119.3 C9—O1—H1 109.5
C8—C7—H7 119.3
F1—C1—C2—C3 178.5 (3) O1—C9—C10—C11 179.2 (3)
C6—C1—C2—C3 −1.0 (5) C8—C9—C10—C11 −1.1 (4)
C1—C2—C3—C4 0.1 (5) O1—C9—C10—Br1 −1.2 (3)
C2—C3—C4—C5 0.8 (4) C8—C9—C10—Br1 178.50 (19)
C2—C3—C4—N1 −177.8 (3) C9—C10—C11—C12 0.8 (4)
C3—C4—C5—C6 −0.9 (4) Br1—C10—C11—C12 −178.8 (2)
N1—C4—C5—C6 177.6 (2) C10—C11—C12—C13 0.3 (4)
F1—C1—C6—C5 −178.6 (3) C10—C11—C12—Cl1 −179.7 (2)
C2—C1—C6—C5 1.0 (5) C11—C12—C13—C8 −0.9 (4)
C4—C5—C6—C1 0.0 (4) Cl1—C12—C13—C8 179.0 (2)
N1—C7—C8—C13 177.0 (3) C9—C8—C13—C12 0.6 (4)
N1—C7—C8—C9 −2.6 (4) C7—C8—C13—C12 −179.0 (2)
C13—C8—C9—O1 −179.9 (2) C8—C7—N1—C4 −178.1 (2)
C7—C8—C9—O1 −0.3 (4) C3—C4—N1—C7 −170.8 (3)
C13—C8—C9—C10 0.4 (4) C5—C4—N1—C7 10.7 (4)
C7—C8—C9—C10 180.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11···F1i 0.93 2.45 3.349 (4) 162
O1—H1···N1 0.82 1.86 2.577 (3) 146

Symmetry codes: (i) x+1, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2067).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343–350.
  2. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem.148, 19–40.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Garnovski, A. D. & Vasil Chenko, I. S. (2002). Russ. Chem. Rev.71, 943–968.
  7. Kannan, S. & Ramesh, R. (2006). Polyhedron, 25, 3095–3103.
  8. Karvembu, R., Hemalatha, S., Prabhakaran, R. & Natarajan, K. (2003). Inorg. Chem. Commun.6, 486–490.
  9. Kumar, K. N. & Ramesh, R. (2004). Spectrochim. Acta Part A, 60, 2913–2918. [DOI] [PubMed]
  10. Nakajima, K., Ando, Y., Mano, H. & Kojima, M. (1998). Inorg. Chim. Acta, 274, 184–191.
  11. Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem.98, 2131–2140. [DOI] [PubMed]
  12. Ramesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem.96, 457–462. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sivagamasundari, M. & Ramesh, R. (2007). Spectrochim. Acta Part A, 67, 256–262. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017443/im2067sup1.cif

e-64-o1333-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017443/im2067Isup2.hkl

e-64-o1333-Isup2.hkl (190.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES