Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m870–m871. doi: 10.1107/S1600536808015973

2-(2-Pyrid­yl)pyridinium bis­(pyridine-2,6-dicarboxyl­ato-κ3 O,N,O′)aluminate(III) trihydrate

Janet Soleimannejad a,*, Hossein Aghabozorg b, Yaghoub Mohammadzadeh a, Shabnam Hooshmand a
PMCID: PMC2961889  PMID: 21202744

Abstract

The title compound, (C10H9N2)[Al(C7H3NO4)2]·3H2O or (2,2′-bipyH)[Al(pydc)2]·3H2O (where 2,2′-bipy is 2,2′-bipyridine and pydcH2 is pyridine-2,6-dicarboxylic acid), was synthesized by the reaction of aluminium(III) nitrate nona­hydrate with pyridine-2,6-dicarboxylic acid and 2,2′-bipyridine in a 1:2:4 molar ratio in aqueous solution. This compound is composed of an anionic complex, [Al(pydc)2], a protonated 2,2′-bipyridine mol­ecule as a counter-ion, (2,2′-bipyH)+, and three uncoordinated water mol­ecules. The anion is a six-coordinate complex, with the AlIII atom in a distorted octa­hedral geometry coordinated by two tridentate pyridine-2,6-dicarboxyl­ate groups. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, π–π stacking between two aromatic rings [centroid–centroid distance = 3.827 (10) Å], and C=O⋯π stacking [with distances of 3.2311 (13), 3.4924 (14) and 3.5731 (13) Å], connect the various components to form a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2007, 2008); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006).graphic file with name e-64-0m870-scheme1.jpg

Experimental

Crystal data

  • (C10H9N2)[Al(C7H3NO4)2]·3H2O

  • M r = 568.43

  • Triclinic, Inline graphic

  • a = 9.3744 (13) Å

  • b = 10.9039 (16) Å

  • c = 13.005 (2) Å

  • α = 106.335 (7)°

  • β = 98.889 (7)°

  • γ = 97.521 (7)°

  • V = 1238.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 (2) K

  • 0.32 × 0.32 × 0.15 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.952, T max = 0.977

  • 25116 measured reflections

  • 4350 independent reflections

  • 3975 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.082

  • S = 1.07

  • 4350 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015973/su2057sup1.cif

e-64-0m870-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015973/su2057Isup2.hkl

e-64-0m870-Isup2.hkl (844KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1B⋯O2 0.85 1.98 2.8166 (14) 166
O1S—H1A⋯O3Si 0.85 1.92 2.7472 (18) 165
O2S—H2A⋯O1Sii 0.85 1.92 2.7650 (17) 175
O2S—H2B⋯O6 0.85 1.92 2.7703 (16) 174
O3S—H3B⋯O7 0.85 2.02 2.8647 (16) 170
O3S—H3A⋯O2Siii 0.85 1.94 2.7886 (18) 172
N3—H3C⋯O4iv 0.85 2.04 2.7312 (15) 138
N3—H3C⋯N4 0.85 2.31 2.6497 (19) 104
C12—H12⋯O1Si 0.95 2.46 3.372 (2) 160
C15—H15⋯O4iv 0.95 2.52 2.965 (2) 109
C16—H16⋯O2Siii 0.95 2.33 3.248 (2) 162
C17—H17⋯O1v 0.95 2.25 3.136 (2) 155
C18—H18⋯O8vi 0.95 2.50 3.331 (2) 146
C1—O1⋯Cg1vii 1.22 (1) 3.49 (1) 3.9906 (17) 105 (1)
C7—O4⋯Cg2vi 1.22 (1) 3.23 (1) 3.4319 (17) 89 (1)
C1—O1⋯Cg3vii 1.22 (1) 3.57 (1) 3.8161 (18) 92 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg1, Cg2 and Cg3 are the centroids of the N1/C2–C6, N3/C15–C19 and N4/C20–C24 rings, respectively.

supplementary crystallographic information

Comment

Our research interests are centered on the preparation of water soluble proton transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen), has occured. This work has resulted in the formation of some novel proton transfer compounds such as (pnH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH2)2(btc).2H2O (Aghabozorg, et al., 2007) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi, Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, et al., 2008).

The molecular structure and the crystal packing diagram of the title compound, (2,2'-bipyH)[Al(pydc)2].3H2O, are shown in Figs. 1 and 2, respectively. The title compound is composed of an anionic complex, [Al(pydc)2]-, protonated 2,2'-bipyridine as a counter ion, (2,2'-bipyH)+, and three uncoordinated water molecules. The AlIII atom is six-coordinated by two pyridine-2,6-dicarboxylate, (pydc)2-, groups which act as a tridentate ligand through two O and one N atoms. The O5—Al1—O3 and O8—Al1—O2 angles (90.72 (5)° and 91.91 (5)°, repectively) and O5—Al1—O2—C1 and O5—Al1—O3—C7 torsion angles (-98.48 (10)° and 97.57 (10)°, respectively) show that these two (pydc)2- anions are almost perpendicular to one another. So the anionic complex has a distorted octahedral geometry around the AlIII atom. For balancing the anionic complex, a protonated 2,2'-bipyridinium cation, (2,2'-bipyH)+, is present. The O2—Al1—O3 [159.56 (5)°] and O5—Al1—O8 [159.66 (5)°] bond angles indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the AlIII atom.

In the crystal structure of the title compound, the spaces between two layers of [Al(pydc)2]- anions are filled with (2,2'-bipyH)+ cations and water molecules (Fig. 3). An important feature of the title compound is the presence of π-π and C═O···π staking interactions. The π-π stacking between the aromatic rings of Cg1 (Cg1: N1/C2—C6) and Cg1 [-x, 1 - y, 1 - z], with distances of 3.8271 (10) Å , are observed in Fig. 4. The C═O···π stacking interactions between C1═ O1 and Cg1, C7═O4 and Cg2 [Cg2 centroid of ring N3/C15—C19] and C1═O1 and Cg3 [Cg3 centroid of ring N4/C20—C24] with O···π distances of 3.4924 (14) Å (1 - x, 1 - y, 1 - z), 3.2311 (13) Å (1 - x, 2 - y, 1 - z) and 3.5731 (15) Å (1 - x, 1 - y, 1 - z), respectively, are shown in Fig. 5. Intermolecular O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds, D···A ranging from 2.6497 (19) Å to 3.372 (2) Å (Table 1), appear to be effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure.

Experimental

A solution of Al(NO3)3.9H2O (187 mg, 0.5 mmol) in water (5 ml) was added to an aqueous solution of pyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) and 2,2'-bipyridine (312 mg, 2 mmol) in water (10 ml) in a 1:2:4 molar ratio and refluxed for an hour. Colourless crystals of the title compound were obtained after allowing the mixture to stand for two months at room temperature

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.85 Å and C—H = 0.95 Å with Uiso(H) = 1.2Ueq(parent O or C-atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Uncoordinated water molecules are omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of the title compound with hydrogen bonds shown as dashed lines.

Fig. 3.

Fig. 3.

Layered diagram of the title compound. The space between the two layers of [Al(pydc)2]- fragments is filled with a layer of (2,2'-bipyH)+ cations and water molecules.

Fig. 4.

Fig. 4.

The π-π stacking between the aromatic rings of Cg1 (Cg1: N1/C2—C6) and Cg1i with distances of 3.8271 (10) Å (i = -x, 1 - y, 1 - z).

Fig. 5.

Fig. 5.

The C═O···π stacking interactions between C1═O1 and Cg1, C7═O4 and Cg2 [Cg2 centroid of ring N3/C15—C19] and C1—O1 and Cg3 [Cg3 centroid of ring N4/C20—C24] with O···π distances of 3.4924 (14) Å (1 - x, 1 - y, 1 - z), 3.2311 (13) Å (1 - x, 2 - y, 1 - z) and 3.5731 (15) Å (1 - x, 1 - y, 1 - z), respectively.

Crystal data

(C10H9N2)[Al(C7H3NO4)2]·3H2O Z = 2
Mr = 568.43 F000 = 588
Triclinic, P1 Dx = 1.524 Mg m3
a = 9.3744 (13) Å Mo Kα radiation λ = 0.71073 Å
b = 10.9039 (16) Å Cell parameters from 14815 reflections
c = 13.005 (2) Å θ = 2.2–30.5º
α = 106.335 (7)º µ = 0.15 mm1
β = 98.889 (7)º T = 150 (2) K
γ = 97.521 (7)º Block, colourless
V = 1238.9 (3) Å3 0.32 × 0.32 × 0.15 mm

Data collection

Bruker SMART APEXII diffractometer 4350 independent reflections
Radiation source: fine-focus sealed tube 3975 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.028
Detector resolution: 100 pixels mm-1 θmax = 25.0º
T = 150(2) K θmin = 1.7º
ω scans h = −11→11
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) k = −12→12
Tmin = 0.952, Tmax = 0.977 l = −15→15
25116 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.082   w = 1/[σ2(Fo2) + (0.0387P)2 + 0.5394P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
4350 reflections Δρmax = 0.21 e Å3
361 parameters Δρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Al1 0.21091 (4) 0.51034 (4) 0.27510 (3) 0.01853 (11)
O1S 0.48869 (13) 0.28901 (11) 0.14144 (10) 0.0373 (3)
H1B 0.4435 0.3080 0.1940 0.045*
H1A 0.4252 0.2450 0.0845 0.045*
O1 0.42412 (12) 0.30145 (11) 0.43024 (9) 0.0342 (3)
O2S −0.31795 (13) 0.11693 (11) 0.13006 (10) 0.0375 (3)
H2A −0.3805 0.1670 0.1356 0.045*
H2B −0.2550 0.1602 0.1069 0.045*
O2 0.32880 (11) 0.38761 (10) 0.30284 (8) 0.0236 (2)
O3S 0.67386 (15) 0.84922 (12) 0.06284 (10) 0.0452 (3)
H3B 0.6320 0.8194 0.1066 0.054*
H3A 0.6690 0.9293 0.0864 0.054*
O3 0.09123 (10) 0.64189 (9) 0.30110 (8) 0.0223 (2)
O4 −0.01691 (11) 0.76366 (10) 0.42483 (9) 0.0288 (2)
O5 0.03877 (10) 0.37739 (9) 0.21149 (8) 0.0219 (2)
O6 −0.10199 (11) 0.24420 (10) 0.05363 (9) 0.0308 (3)
O7 0.52641 (12) 0.71867 (11) 0.19033 (10) 0.0353 (3)
O8 0.38105 (11) 0.63460 (10) 0.28478 (8) 0.0247 (2)
N1 0.20788 (12) 0.53539 (11) 0.42795 (9) 0.0176 (2)
N2 0.21186 (12) 0.48075 (11) 0.12106 (9) 0.0196 (2)
N3 0.80638 (13) 0.94087 (11) 0.48351 (10) 0.0218 (3)
H3C 0.8551 0.8850 0.4983 0.026*
N4 0.88910 (14) 0.93496 (12) 0.68605 (11) 0.0281 (3)
C1 0.35290 (15) 0.37505 (14) 0.40033 (12) 0.0225 (3)
C2 0.28187 (14) 0.46620 (13) 0.47934 (12) 0.0198 (3)
C3 0.28675 (16) 0.48476 (14) 0.58962 (12) 0.0242 (3)
H3 0.3400 0.4366 0.6273 0.029*
C4 0.21100 (16) 0.57643 (15) 0.64353 (12) 0.0256 (3)
H4 0.2134 0.5918 0.7195 0.031*
C5 0.13182 (15) 0.64574 (14) 0.58781 (12) 0.0230 (3)
H5 0.0785 0.7070 0.6242 0.028*
C6 0.13321 (14) 0.62270 (13) 0.47794 (11) 0.0186 (3)
C7 0.06099 (14) 0.68351 (13) 0.39694 (12) 0.0200 (3)
C8 0.00324 (15) 0.32954 (13) 0.10632 (11) 0.0214 (3)
C9 0.10685 (15) 0.39025 (13) 0.04805 (11) 0.0204 (3)
C10 0.10349 (17) 0.36498 (15) −0.06256 (12) 0.0256 (3)
H10 0.0298 0.3001 −0.1154 0.031*
C11 0.21247 (17) 0.43838 (15) −0.09363 (12) 0.0283 (3)
H11 0.2128 0.4234 −0.1692 0.034*
C12 0.32087 (17) 0.53326 (15) −0.01609 (13) 0.0270 (3)
H12 0.3945 0.5836 −0.0375 0.032*
C13 0.31778 (15) 0.55176 (13) 0.09321 (12) 0.0218 (3)
C14 0.41978 (16) 0.64420 (14) 0.19568 (12) 0.0242 (3)
C15 0.79042 (16) 0.94582 (14) 0.38086 (12) 0.0263 (3)
H15 0.8373 0.8930 0.3301 0.032*
C16 0.70599 (16) 1.02761 (14) 0.34927 (13) 0.0275 (3)
H16 0.6944 1.0329 0.2769 0.033*
C17 0.63797 (15) 1.10235 (14) 0.42492 (13) 0.0263 (3)
H17 0.5782 1.1587 0.4040 0.032*
C18 0.65647 (15) 1.09555 (14) 0.53085 (13) 0.0242 (3)
H18 0.6096 1.1470 0.5825 0.029*
C19 0.74391 (15) 1.01321 (13) 0.56095 (12) 0.0212 (3)
C20 0.77715 (15) 0.99738 (13) 0.67040 (12) 0.0235 (3)
C21 0.69590 (17) 1.04216 (15) 0.74973 (13) 0.0291 (3)
H21 0.6190 1.0878 0.7361 0.035*
C22 0.72998 (19) 1.01853 (17) 0.84872 (13) 0.0365 (4)
H22 0.6753 1.0461 0.9040 0.044*
C23 0.8444 (2) 0.95436 (17) 0.86625 (14) 0.0374 (4)
H23 0.8698 0.9369 0.9337 0.045*
C24 0.92146 (19) 0.91581 (16) 0.78373 (14) 0.0340 (4)
H24 1.0016 0.8735 0.7971 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Al1 0.0203 (2) 0.0193 (2) 0.0161 (2) 0.00520 (16) 0.00554 (16) 0.00375 (17)
O1S 0.0395 (6) 0.0426 (7) 0.0333 (6) 0.0104 (5) 0.0203 (5) 0.0089 (5)
O1 0.0352 (6) 0.0344 (6) 0.0376 (7) 0.0191 (5) 0.0059 (5) 0.0131 (5)
O2S 0.0413 (7) 0.0376 (7) 0.0444 (7) 0.0122 (5) 0.0182 (5) 0.0221 (6)
O2 0.0253 (5) 0.0244 (5) 0.0221 (5) 0.0103 (4) 0.0078 (4) 0.0043 (4)
O3S 0.0632 (8) 0.0363 (7) 0.0417 (7) 0.0082 (6) 0.0206 (6) 0.0160 (6)
O3 0.0250 (5) 0.0227 (5) 0.0208 (5) 0.0084 (4) 0.0056 (4) 0.0067 (4)
O4 0.0281 (5) 0.0250 (6) 0.0371 (6) 0.0137 (5) 0.0120 (5) 0.0085 (5)
O5 0.0235 (5) 0.0227 (5) 0.0188 (5) 0.0032 (4) 0.0070 (4) 0.0042 (4)
O6 0.0276 (6) 0.0302 (6) 0.0273 (6) −0.0036 (5) 0.0019 (5) 0.0034 (5)
O7 0.0324 (6) 0.0314 (6) 0.0403 (7) −0.0042 (5) 0.0137 (5) 0.0091 (5)
O8 0.0252 (5) 0.0244 (5) 0.0216 (5) 0.0021 (4) 0.0065 (4) 0.0028 (4)
N1 0.0165 (5) 0.0168 (6) 0.0182 (6) 0.0022 (4) 0.0041 (4) 0.0035 (5)
N2 0.0218 (6) 0.0195 (6) 0.0191 (6) 0.0070 (5) 0.0066 (5) 0.0059 (5)
N3 0.0227 (6) 0.0185 (6) 0.0256 (6) 0.0079 (5) 0.0051 (5) 0.0069 (5)
N4 0.0301 (7) 0.0266 (7) 0.0295 (7) 0.0076 (5) 0.0061 (5) 0.0104 (6)
C1 0.0193 (7) 0.0210 (7) 0.0263 (8) 0.0049 (6) 0.0032 (6) 0.0059 (6)
C2 0.0166 (6) 0.0185 (7) 0.0232 (7) 0.0011 (5) 0.0023 (5) 0.0064 (6)
C3 0.0237 (7) 0.0262 (8) 0.0229 (7) 0.0011 (6) 0.0028 (6) 0.0105 (6)
C4 0.0285 (8) 0.0278 (8) 0.0181 (7) −0.0017 (6) 0.0063 (6) 0.0055 (6)
C5 0.0236 (7) 0.0197 (7) 0.0233 (8) 0.0000 (6) 0.0103 (6) 0.0015 (6)
C6 0.0163 (6) 0.0150 (7) 0.0223 (7) 0.0002 (5) 0.0064 (5) 0.0022 (6)
C7 0.0172 (6) 0.0164 (7) 0.0253 (8) 0.0018 (5) 0.0057 (6) 0.0044 (6)
C8 0.0221 (7) 0.0202 (7) 0.0219 (8) 0.0077 (6) 0.0049 (6) 0.0046 (6)
C9 0.0216 (7) 0.0196 (7) 0.0205 (7) 0.0085 (6) 0.0037 (6) 0.0050 (6)
C10 0.0305 (8) 0.0269 (8) 0.0195 (7) 0.0110 (6) 0.0033 (6) 0.0056 (6)
C11 0.0374 (8) 0.0340 (9) 0.0196 (7) 0.0155 (7) 0.0096 (6) 0.0117 (7)
C12 0.0304 (8) 0.0297 (8) 0.0291 (8) 0.0120 (6) 0.0140 (6) 0.0150 (7)
C13 0.0232 (7) 0.0207 (7) 0.0260 (8) 0.0084 (6) 0.0099 (6) 0.0097 (6)
C14 0.0244 (7) 0.0214 (7) 0.0289 (8) 0.0068 (6) 0.0099 (6) 0.0075 (6)
C15 0.0289 (8) 0.0244 (8) 0.0252 (8) 0.0063 (6) 0.0072 (6) 0.0054 (6)
C16 0.0280 (8) 0.0256 (8) 0.0278 (8) 0.0040 (6) 0.0015 (6) 0.0092 (6)
C17 0.0194 (7) 0.0183 (7) 0.0392 (9) 0.0025 (6) −0.0005 (6) 0.0095 (6)
C18 0.0177 (7) 0.0171 (7) 0.0349 (9) 0.0023 (5) 0.0058 (6) 0.0035 (6)
C19 0.0172 (6) 0.0158 (7) 0.0277 (8) 0.0003 (5) 0.0054 (6) 0.0032 (6)
C20 0.0226 (7) 0.0178 (7) 0.0261 (8) −0.0002 (6) 0.0037 (6) 0.0030 (6)
C21 0.0266 (8) 0.0280 (8) 0.0262 (8) 0.0016 (6) 0.0049 (6) −0.0002 (6)
C22 0.0377 (9) 0.0377 (10) 0.0247 (8) −0.0031 (7) 0.0080 (7) −0.0020 (7)
C23 0.0453 (10) 0.0366 (9) 0.0248 (8) −0.0027 (8) 0.0023 (7) 0.0079 (7)
C24 0.0391 (9) 0.0321 (9) 0.0316 (9) 0.0070 (7) 0.0026 (7) 0.0131 (7)

Geometric parameters (Å, °)

Al1—O8 1.9162 (11) C3—H3 0.9500
Al1—O2 1.9178 (11) C4—C5 1.391 (2)
Al1—O5 1.9211 (11) C4—H4 0.9500
Al1—O3 1.9226 (10) C5—C6 1.382 (2)
Al1—N1 1.9341 (12) C5—H5 0.9500
Al1—N2 1.9390 (12) C6—C7 1.516 (2)
O1S—H1B 0.8499 C8—C9 1.516 (2)
O1S—H1A 0.8501 C9—C10 1.381 (2)
O1—C1 1.2153 (18) C10—C11 1.394 (2)
O2S—H2A 0.8499 C10—H10 0.9500
O2S—H2B 0.8501 C11—C12 1.393 (2)
O2—C1 1.3016 (18) C11—H11 0.9500
O3S—H3B 0.8502 C12—C13 1.384 (2)
O3S—H3A 0.8499 C12—H12 0.9500
O3—C7 1.2901 (17) C13—C14 1.518 (2)
O4—C7 1.2245 (17) C15—C16 1.371 (2)
O5—C8 1.2908 (17) C15—H15 0.9500
O6—C8 1.2251 (18) C16—C17 1.385 (2)
O7—C14 1.2265 (18) C16—H16 0.9500
O8—C14 1.2938 (18) C17—C18 1.386 (2)
N1—C2 1.3320 (18) C17—H17 0.9500
N1—C6 1.3364 (17) C18—C19 1.386 (2)
N2—C9 1.3320 (18) C18—H18 0.9500
N2—C13 1.3358 (18) C19—C20 1.473 (2)
N3—C15 1.3373 (19) C20—C21 1.393 (2)
N3—C19 1.3548 (18) C21—C22 1.381 (2)
N3—H3C 0.8532 C21—H21 0.9500
N4—C24 1.340 (2) C22—C23 1.379 (3)
N4—C20 1.3434 (19) C22—H22 0.9500
C1—C2 1.5157 (19) C23—C24 1.384 (2)
C2—C3 1.383 (2) C23—H23 0.9500
C3—C4 1.393 (2) C24—H24 0.9500
O8—Al1—O2 91.91 (5) O3—C7—C6 113.16 (11)
O8—Al1—O5 159.66 (5) O6—C8—O5 126.52 (13)
O2—Al1—O5 92.30 (5) O6—C8—C9 120.22 (13)
O8—Al1—O3 92.25 (5) O5—C8—C9 113.26 (12)
O2—Al1—O3 159.56 (5) N2—C9—C10 120.48 (13)
O5—Al1—O3 90.72 (5) N2—C9—C8 109.84 (12)
O8—Al1—N1 101.41 (5) C10—C9—C8 129.67 (13)
O2—Al1—N1 79.78 (5) C9—C10—C11 117.41 (14)
O5—Al1—N1 98.92 (5) C9—C10—H10 121.3
O3—Al1—N1 79.79 (5) C11—C10—H10 121.3
O8—Al1—N2 79.79 (5) C12—C11—C10 121.29 (14)
O2—Al1—N2 99.48 (5) C12—C11—H11 119.4
O5—Al1—N2 79.89 (5) C10—C11—H11 119.4
O3—Al1—N2 100.95 (5) C13—C12—C11 117.84 (14)
N1—Al1—N2 178.59 (5) C13—C12—H12 121.1
H1B—O1S—H1A 107.3 C11—C12—H12 121.1
H2A—O2S—H2B 99.0 N2—C13—C12 119.83 (14)
C1—O2—Al1 119.04 (9) N2—C13—C14 109.62 (12)
H3B—O3S—H3A 101.0 C12—C13—C14 130.55 (13)
C7—O3—Al1 118.80 (9) O7—C14—O8 125.69 (14)
C8—O5—Al1 118.65 (9) O7—C14—C13 121.32 (13)
C14—O8—Al1 119.08 (9) O8—C14—C13 112.98 (12)
C2—N1—C6 122.76 (12) N3—C15—C16 119.62 (14)
C2—N1—Al1 118.66 (9) N3—C15—H15 120.2
C6—N1—Al1 118.58 (9) C16—C15—H15 120.2
C9—N2—C13 123.14 (12) C15—C16—C17 118.74 (14)
C9—N2—Al1 118.34 (9) C15—C16—H16 120.6
C13—N2—Al1 118.52 (10) C17—C16—H16 120.6
C15—N3—C19 123.93 (12) C16—C17—C18 120.49 (14)
C15—N3—H3C 116.3 C16—C17—H17 119.8
C19—N3—H3C 119.6 C18—C17—H17 119.8
C24—N4—C20 116.89 (14) C17—C18—C19 119.55 (13)
O1—C1—O2 126.75 (13) C17—C18—H18 120.2
O1—C1—C2 120.76 (13) C19—C18—H18 120.2
O2—C1—C2 112.49 (12) N3—C19—C18 117.66 (13)
N1—C2—C3 120.37 (13) N3—C19—C20 116.26 (12)
N1—C2—C1 110.01 (12) C18—C19—C20 126.07 (13)
C3—C2—C1 129.62 (13) N4—C20—C21 123.42 (14)
C2—C3—C4 117.76 (13) N4—C20—C19 114.72 (13)
C2—C3—H3 121.1 C21—C20—C19 121.85 (14)
C4—C3—H3 121.1 C22—C21—C20 118.29 (15)
C5—C4—C3 120.97 (13) C22—C21—H21 120.9
C5—C4—H4 119.5 C20—C21—H21 120.9
C3—C4—H4 119.5 C23—C22—C21 119.13 (15)
C6—C5—C4 117.92 (13) C23—C22—H22 120.4
C6—C5—H5 121.0 C21—C22—H22 120.4
C4—C5—H5 121.0 C22—C23—C24 118.73 (16)
N1—C6—C5 120.20 (13) C22—C23—H23 120.6
N1—C6—C7 109.62 (12) C24—C23—H23 120.6
C5—C6—C7 130.17 (12) N4—C24—C23 123.51 (16)
O4—C7—O3 126.31 (13) N4—C24—H24 118.2
O4—C7—C6 120.53 (13) C23—C24—H24 118.2
O8—Al1—O2—C1 101.43 (10) C4—C5—C6—N1 0.6 (2)
O5—Al1—O2—C1 −98.48 (10) C4—C5—C6—C7 −178.88 (13)
O3—Al1—O2—C1 −0.2 (2) Al1—O3—C7—O4 −177.70 (11)
N1—Al1—O2—C1 0.17 (10) Al1—O3—C7—C6 2.38 (15)
N2—Al1—O2—C1 −178.61 (10) N1—C6—C7—O4 177.78 (12)
O8—Al1—O3—C7 −102.56 (10) C5—C6—C7—O4 −2.7 (2)
O2—Al1—O3—C7 −0.96 (19) N1—C6—C7—O3 −2.29 (16)
O5—Al1—O3—C7 97.57 (10) C5—C6—C7—O3 177.20 (13)
N1—Al1—O3—C7 −1.36 (10) Al1—O5—C8—O6 179.47 (12)
N2—Al1—O3—C7 177.41 (10) Al1—O5—C8—C9 −0.78 (15)
O8—Al1—O5—C8 3.61 (19) C13—N2—C9—C10 0.3 (2)
O2—Al1—O5—C8 −98.17 (10) Al1—N2—C9—C10 −179.53 (10)
O3—Al1—O5—C8 102.05 (10) C13—N2—C9—C8 −179.09 (12)
N1—Al1—O5—C8 −178.18 (10) Al1—N2—C9—C8 1.05 (14)
N2—Al1—O5—C8 1.06 (10) O6—C8—C9—N2 179.59 (13)
O2—Al1—O8—C14 98.96 (10) O5—C8—C9—N2 −0.18 (16)
O5—Al1—O8—C14 −2.9 (2) O6—C8—C9—C10 0.2 (2)
O3—Al1—O8—C14 −101.06 (10) O5—C8—C9—C10 −179.52 (14)
N1—Al1—O8—C14 178.91 (10) N2—C9—C10—C11 −0.6 (2)
N2—Al1—O8—C14 −0.33 (10) C8—C9—C10—C11 178.64 (13)
O8—Al1—N1—C2 −88.99 (10) C9—C10—C11—C12 0.2 (2)
O2—Al1—N1—C2 0.90 (10) C10—C11—C12—C13 0.5 (2)
O5—Al1—N1—C2 91.64 (10) C9—N2—C13—C12 0.5 (2)
O3—Al1—N1—C2 −179.24 (10) Al1—N2—C13—C12 −179.68 (10)
O8—Al1—N1—C6 90.13 (10) C9—N2—C13—C14 −179.37 (12)
O2—Al1—N1—C6 −179.98 (10) Al1—N2—C13—C14 0.49 (14)
O5—Al1—N1—C6 −89.24 (10) C11—C12—C13—N2 −0.9 (2)
O3—Al1—N1—C6 −0.12 (10) C11—C12—C13—C14 178.93 (14)
O8—Al1—N2—C9 179.73 (11) Al1—O8—C14—O7 −179.45 (12)
O2—Al1—N2—C9 89.49 (10) Al1—O8—C14—C13 0.67 (15)
O5—Al1—N2—C9 −1.17 (10) N2—C13—C14—O7 179.40 (13)
O3—Al1—N2—C9 −89.94 (10) C12—C13—C14—O7 −0.4 (2)
O8—Al1—N2—C13 −0.14 (10) N2—C13—C14—O8 −0.72 (17)
O2—Al1—N2—C13 −90.38 (10) C12—C13—C14—O8 179.47 (14)
O5—Al1—N2—C13 178.96 (11) C19—N3—C15—C16 −0.3 (2)
O3—Al1—N2—C13 90.20 (10) N3—C15—C16—C17 −0.6 (2)
Al1—O2—C1—O1 179.55 (12) C15—C16—C17—C18 0.8 (2)
Al1—O2—C1—C2 −1.03 (15) C16—C17—C18—C19 0.0 (2)
C6—N1—C2—C3 −1.4 (2) C15—N3—C19—C18 1.1 (2)
Al1—N1—C2—C3 177.65 (10) C15—N3—C19—C20 −178.35 (13)
C6—N1—C2—C1 179.33 (12) C17—C18—C19—N3 −0.9 (2)
Al1—N1—C2—C1 −1.59 (14) C17—C18—C19—C20 178.44 (13)
O1—C1—C2—N1 −178.90 (13) C24—N4—C20—C21 0.2 (2)
O2—C1—C2—N1 1.64 (16) C24—N4—C20—C19 −178.64 (13)
O1—C1—C2—C3 1.9 (2) N3—C19—C20—N4 13.58 (18)
O2—C1—C2—C3 −177.51 (13) C18—C19—C20—N4 −165.77 (13)
N1—C2—C3—C4 0.6 (2) N3—C19—C20—C21 −165.29 (13)
C1—C2—C3—C4 179.71 (13) C18—C19—C20—C21 15.4 (2)
C2—C3—C4—C5 0.7 (2) N4—C20—C21—C22 −1.5 (2)
C3—C4—C5—C6 −1.3 (2) C19—C20—C21—C22 177.23 (14)
C2—N1—C6—C5 0.82 (19) C20—C21—C22—C23 1.3 (2)
Al1—N1—C6—C5 −178.27 (10) C21—C22—C23—C24 0.1 (2)
C2—N1—C6—C7 −179.64 (11) C20—N4—C24—C23 1.3 (2)
Al1—N1—C6—C7 1.28 (14) C22—C23—C24—N4 −1.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1S—H1B···O2 0.85 1.98 2.8166 (14) 166
O1S—H1A···O3Si 0.85 1.92 2.7472 (18) 165
O2S—H2A···O1Sii 0.85 1.92 2.7650 (17) 175
O2S—H2B···O6 0.85 1.92 2.7703 (16) 174
O3S—H3B···O7 0.85 2.02 2.8647 (16) 170
O3S—H3A···O2Siii 0.85 1.94 2.7886 (18) 172
N3—H3C···O4iv 0.85 2.04 2.7312 (15) 138
N3—H3C···N4 0.85 2.31 2.6497 (19) 104
C12—H12···O1Si 0.95 2.46 3.372 (2) 160
C15—H15···O4iv 0.95 2.52 2.965 (2) 109
C16—H16···O2Siii 0.95 2.33 3.248 (2) 162
C17—H17···O1v 0.95 2.25 3.136 (2) 155
C18—H18···O8vi 0.95 2.50 3.331 (2) 146
C1—O1···Cg1vii 1.2153 (18) 3.4924 (14) 3.9906 (17) 105.38 (10)
C7—O4···Cg2vi 1.2245 (17) 3.2311 (13) 3.4319 (17) 88.84 (9)
C1—O1···Cg3vii 1.2153 (18) 3.5731 (14) 3.8161 (18) 92.10 (9)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) −x+1, −y+2, −z+1; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2057).

References

  1. Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.
  2. Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.
  3. Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.
  4. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc.5, 184–227.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015973/su2057sup1.cif

e-64-0m870-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015973/su2057Isup2.hkl

e-64-0m870-Isup2.hkl (844KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES