Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1200. doi: 10.1107/S1600536808016346

2-(4,5,6,7,8,9-Hexahydro-6a-aza­phenyl­en-2-ylmethyl­ene)indan-1,3-dione

Sergey Belyakov a,*, Valdis Kampars b, Pauls J Pastors b, Andrey Tokmakov a
PMCID: PMC2961890  PMID: 21202841

Abstract

The title compound, C22H19NO2, has potential for use as a new nonlinear optical material. Mol­ecules are almost planar. One C atom of the heterocyclic ring system is disordered over two positions; the site occupancy factors are 0.6 and 0.4.

Related literature

For related literature, see: Honda et al. (1996); Allen (2002).graphic file with name e-64-o1200-scheme1.jpg

Experimental

Crystal data

  • C22H19NO2

  • M r = 329.38

  • Monoclinic, Inline graphic

  • a = 8.5125 (2) Å

  • b = 19.2973 (5) Å

  • c = 10.4969 (3) Å

  • β = 109.5301 (10)°

  • V = 1625.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.26 × 0.19 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 6190 measured reflections

  • 3685 independent reflections

  • 2852 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.155

  • S = 1.01

  • 3685 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1999); cell refinement: KappaCCD Server Software; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: maXus (Mackay et al., 1999) and SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016346/rk2090sup1.cif

e-64-o1200-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016346/rk2090Isup2.hkl

e-64-o1200-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Latvian Council of Science.

supplementary crystallographic information

Comment

The molecular structure of the title compound, C22H19NO2, (I), with atomic numbering scheme and thermal ellipsoids is presented in Fig. 1. The indandione fragment geometry is usual. The aromatic C14-C15 and C23-C24 bonds are shorter than other aromatic bonds in yulolidine system, indicating the quinoid character. Thus, presenting schematically the structure of I as two mesomeric forms (A or B) one can infer that the specific weight of the ionic form of B is increased (see Fig. 2). Therefore, the deep coloration occurs for the crystals I. A search of the Cambridge Structural Database (CSD, Version 5.29, November 2007; Allen, 2002) indicates that there are only 26 entries containing yulolidine fragments. For the title compound there is the disorder of crystal structure analogously to the crystal structure of "Coumarin 106" (Honda et al., 1996). In the yulolidine system the C17 atom is disordered and the site occupancies were initially refined then fixed at 0.6 and 0.4 for C17 and C17', respectively, in the final refinement. Atoms C17 and C17' are located on the opposite sides of the least-squares plane of the molecule. The atoms C17, C17' and C21 deviate from the molecule plane on 0.597 (4), -0.288 (6) and -0.527 (2)Å, respectively.

The packing diagram of the molecules is given in Fig. 3. The moderate π-π-stacking interaction in the crystal structure of (I) is between paris of inversion-related indandione systems. The five-membered cycle overlaps with the benzene ring of indandione; the centroids of these rings are separated by 3.509 (3)Å, but the distance between planes of these indandione systems is 3.435 (3)Å.

Experimental

A mixture of indan-1,3-dione, (0.44 g, 3.0 mmole), yulolidine-9-carbaldehyde (0.62 g, 3.1 mmole) of and 30 ml of absolute ethanol was boiled for 15 minutes, cooled to room temperature and filtered. Deep red crystals of I with metallic sheen were obtained after recrystallyzation from ethanol. M.p. is 504 K (decomp.); Yield 83%. Analysis calculated for C22H19NO2: C 80.22, H 5.81, N 4.25%; found: C 80.07, H 5.43, N 4.30%.

Refinement

The H atoms were place in geometrically idealized positions, with C–H distances of 0.93Å for aromatic H atoms and 0.96Å for other H-atoms. All H atoms were refined riding on their attached C atoms, with Uiso values equal to 1.2 times the Ueq values of the parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom numbering scheme. The displacement ellipsoids are showed at 50% probability level. H atoms are represented by spheres of arbitrary radii. Only major fragnent are presented for clarity.

Fig. 2.

Fig. 2.

Two mesomeric forms for molecular structure of I.

Fig. 3.

Fig. 3.

Perspective view of the molecular packing for I, showing the stacking interactions betwee indandione systems.

Crystal data

C22H19NO2 F000 = 696
Mr = 329.38 Dx = 1.346 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6190 reflections
a = 8.5125 (2) Å θ = 2.1–27.5º
b = 19.2973 (5) Å µ = 0.09 mm1
c = 10.4969 (3) Å T = 293 (2) K
β = 109.5301 (10)º Plate, red
V = 1625.10 (7) Å3 0.26 × 0.19 × 0.04 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2852 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
Monochromator: graphite θmax = 27.5º
T = 293(2) K θmin = 2.1º
φ and ω scans h = −11→11
Absorption correction: none k = −24→23
6190 measured reflections l = −13→13
3685 independent reflections

Refinement

Refinement on F2 Secondary atom site location: Difmap
Least-squares matrix: full Hydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.155 Calculated w = 1/[σ2(Fo2) + (0.0792P)2 + 0.4361P] where P = (Fo2 + 2Fc2)/3 ?
S = 1.01 (Δ/σ)max = 0.008
3685 reflections Δρmax = 0.27 e Å3
255 parameters Δρmin = −0.39 e Å3
Primary atom site location: Direct Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will beeven larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.0787 (2) 0.02825 (8) 0.26816 (16) 0.0432 (4)
C2 0.9234 (2) −0.00221 (8) 0.27606 (15) 0.0423 (4)
C3 0.8928 (2) −0.06707 (8) 0.19540 (17) 0.0475 (4)
C4 1.0528 (2) −0.12254 (9) 0.04817 (18) 0.0539 (4)
H4 0.9807 −0.1600 0.0197 0.065*
C5 1.1874 (2) −0.11410 (10) 0.00365 (19) 0.0579 (5)
H5 1.2054 −0.1463 −0.0560 0.069*
C6 1.2957 (2) −0.05867 (10) 0.04616 (19) 0.0585 (5)
H6 1.3854 −0.0542 0.0149 0.070*
C7 1.2720 (2) −0.00962 (9) 0.13495 (18) 0.0526 (4)
H7 1.3447 0.0276 0.1640 0.063*
C8 1.1372 (2) −0.01783 (8) 0.17868 (15) 0.0432 (4)
C9 1.0285 (2) −0.07358 (8) 0.13643 (16) 0.0447 (4)
O10 1.15210 (15) 0.08098 (6) 0.32016 (13) 0.0576 (4)
O11 0.77589 (18) −0.10689 (7) 0.17663 (15) 0.0686 (4)
C12 0.8117 (2) 0.01796 (8) 0.33618 (15) 0.0439 (4)
H12 0.7261 −0.0140 0.3238 0.053*
C13 0.79509 (19) 0.07662 (8) 0.41372 (15) 0.0411 (4)
C14 0.9044 (2) 0.13387 (8) 0.44714 (17) 0.0462 (4)
H14 0.9949 0.1349 0.4163 0.055*
C15 0.8815 (2) 0.18804 (8) 0.52349 (18) 0.0471 (4)
C16 0.9979 (3) 0.24908 (11) 0.5566 (3) 0.0806 (7)
H16A 1.1051 0.2352 0.5539 0.097* 0.60
H16B 0.9532 0.2850 0.4912 0.097* 0.60
H16C 1.1060 0.2347 0.6147 0.097* 0.40
H16D 1.0066 0.2676 0.4744 0.097* 0.40
C17 1.0199 (4) 0.27643 (19) 0.6845 (4) 0.0554 (7) 0.60
H17A 1.0823 0.2443 0.7524 0.067* 0.60
H17B 1.0798 0.3194 0.6949 0.067* 0.60
C17' 0.9495 (7) 0.3072 (3) 0.6257 (6) 0.0557 (11) 0.40
H17C 1.0477 0.3309 0.6812 0.067* 0.40
H17D 0.8808 0.3388 0.5597 0.067* 0.40
C18 0.8574 (2) 0.29182 (10) 0.7109 (2) 0.0615 (5)
H18A 0.8169 0.3357 0.6700 0.074* 0.60
H18B 0.8839 0.2952 0.8071 0.074* 0.60
H18C 0.8064 0.3340 0.7258 0.074* 0.40
H18D 0.9360 0.2761 0.7949 0.074* 0.40
N19 0.72946 (17) 0.23902 (7) 0.65742 (14) 0.0466 (3)
C20 0.5980 (2) 0.23753 (10) 0.71759 (18) 0.0531 (4)
H20A 0.5683 0.2842 0.7317 0.064*
H20B 0.6392 0.2152 0.8042 0.064*
C21 0.4455 (2) 0.19991 (10) 0.6302 (2) 0.0557 (5)
H21A 0.3947 0.2258 0.5486 0.067*
H21B 0.3663 0.1964 0.6771 0.067*
C22 0.4894 (2) 0.12830 (9) 0.59526 (18) 0.0505 (4)
H22A 0.5184 0.0996 0.6744 0.061*
H22B 0.3941 0.1081 0.5283 0.061*
C23 0.63360 (19) 0.13043 (8) 0.54173 (15) 0.0405 (3)
C24 0.65899 (19) 0.07823 (8) 0.46198 (16) 0.0429 (4)
H24 0.5825 0.0420 0.4385 0.051*
C25 0.74777 (18) 0.18666 (8) 0.57636 (15) 0.0386 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0486 (8) 0.0375 (8) 0.0416 (8) 0.0002 (6) 0.0127 (6) −0.0002 (6)
C2 0.0505 (9) 0.0344 (7) 0.0408 (7) −0.0031 (6) 0.0134 (7) −0.0001 (6)
C3 0.0559 (9) 0.0382 (8) 0.0465 (9) −0.0039 (7) 0.0148 (7) −0.0019 (7)
C4 0.0628 (11) 0.0430 (9) 0.0532 (10) 0.0064 (8) 0.0158 (8) −0.0053 (7)
C5 0.0709 (12) 0.0508 (10) 0.0529 (10) 0.0159 (9) 0.0218 (9) −0.0032 (8)
C6 0.0605 (11) 0.0585 (11) 0.0620 (11) 0.0167 (9) 0.0278 (9) 0.0065 (9)
C7 0.0525 (10) 0.0480 (9) 0.0580 (10) 0.0035 (7) 0.0194 (8) 0.0029 (8)
C8 0.0482 (8) 0.0375 (8) 0.0405 (8) 0.0063 (6) 0.0104 (7) 0.0032 (6)
C9 0.0530 (9) 0.0365 (8) 0.0400 (8) 0.0052 (7) 0.0093 (7) 0.0008 (6)
O10 0.0591 (7) 0.0499 (7) 0.0697 (8) −0.0157 (6) 0.0291 (6) −0.0182 (6)
O11 0.0757 (9) 0.0525 (8) 0.0845 (10) −0.0240 (7) 0.0358 (7) −0.0233 (7)
C12 0.0513 (9) 0.0370 (8) 0.0427 (8) −0.0083 (6) 0.0146 (7) −0.0002 (6)
C13 0.0462 (8) 0.0368 (7) 0.0406 (8) −0.0024 (6) 0.0148 (6) 0.0013 (6)
C14 0.0438 (8) 0.0418 (8) 0.0577 (10) −0.0031 (7) 0.0235 (7) −0.0059 (7)
C15 0.0416 (8) 0.0404 (8) 0.0630 (10) −0.0048 (6) 0.0225 (7) −0.0073 (7)
C16 0.0712 (13) 0.0601 (12) 0.135 (2) −0.0293 (10) 0.0664 (14) −0.0441 (13)
C17 0.0490 (16) 0.0517 (18) 0.0645 (19) −0.0096 (14) 0.0176 (15) −0.0153 (16)
C17' 0.058 (3) 0.044 (3) 0.068 (3) −0.010 (2) 0.025 (2) −0.007 (2)
C18 0.0574 (10) 0.0550 (11) 0.0747 (12) −0.0070 (8) 0.0258 (9) −0.0237 (9)
N19 0.0465 (7) 0.0460 (8) 0.0511 (8) −0.0001 (6) 0.0211 (6) −0.0054 (6)
C20 0.0578 (10) 0.0537 (10) 0.0554 (10) 0.0087 (8) 0.0291 (8) 0.0006 (8)
C21 0.0482 (9) 0.0641 (11) 0.0634 (11) 0.0081 (8) 0.0299 (8) 0.0103 (9)
C22 0.0479 (9) 0.0550 (10) 0.0527 (9) −0.0050 (7) 0.0223 (7) 0.0063 (8)
C23 0.0393 (7) 0.0432 (8) 0.0384 (7) −0.0009 (6) 0.0122 (6) 0.0073 (6)
C24 0.0455 (8) 0.0393 (8) 0.0433 (8) −0.0078 (6) 0.0140 (7) 0.0023 (6)
C25 0.0380 (7) 0.0376 (7) 0.0390 (7) 0.0029 (6) 0.0113 (6) 0.0033 (6)

Geometric parameters (Å, °)

C1—O10 1.2231 (19) C17—C18 1.528 (4)
C1—C2 1.474 (2) C17—H16C 1.4431
C1—C8 1.494 (2) C17—H17A 0.9600
C2—C12 1.362 (2) C17—H17B 0.9600
C2—C3 1.485 (2) C17—H17C 1.0804
C3—O11 1.220 (2) C17—H18D 1.5509
C3—C9 1.487 (2) C17'—C18 1.405 (5)
C4—C5 1.384 (3) C17'—H16B 1.4854
C4—C9 1.386 (2) C17'—H17B 1.1288
C4—H4 0.9300 C17'—H17C 0.9599
C5—C6 1.385 (3) C17'—H17D 0.9600
C5—H5 0.9300 C17'—H18A 1.4642
C6—C7 1.390 (3) C18—N19 1.460 (2)
C6—H6 0.9300 C18—H18A 0.9600
C7—C8 1.380 (2) C18—H18B 0.9600
C7—H7 0.9300 C18—H18C 0.9600
C8—C9 1.391 (2) C18—H18D 0.9600
C12—C13 1.429 (2) N19—C25 1.363 (2)
C12—H12 0.9300 N19—C20 1.458 (2)
C13—C14 1.411 (2) C20—C21 1.503 (3)
C13—C24 1.412 (2) C20—H20A 0.9600
C14—C15 1.370 (2) C20—H20B 0.9600
C14—H14 0.9300 C21—C22 1.509 (3)
C15—C25 1.423 (2) C21—H21A 0.9600
C15—C16 1.503 (2) C21—H21B 0.9600
C16—C17 1.396 (4) C22—C23 1.512 (2)
C16—C17' 1.468 (5) C22—H22A 0.9600
C16—H16A 0.9600 C22—H22B 0.9600
C16—H16B 0.9601 C23—C24 1.372 (2)
C16—H16C 0.9600 C23—C25 1.420 (2)
C16—H16D 0.9600 C24—H24 0.9300
C17—C17' 0.920 (6)
O10—C1—C2 129.84 (15) H16C—C17—H18D 144.7
O10—C1—C8 123.21 (15) H17A—C17—H18D 73.8
C2—C1—C8 106.95 (13) H17B—C17—H18D 106.2
C12—C2—C1 133.65 (15) H17C—C17—H18D 100.9
C12—C2—C3 119.24 (14) C17—C17'—C18 79.2 (4)
C1—C2—C3 107.09 (14) C17—C17'—C16 67.1 (4)
O11—C3—C9 125.77 (15) C18—C17'—C16 117.5 (4)
O11—C3—C2 126.97 (17) C17—C17'—H16B 103.6
C9—C3—C2 107.21 (13) C18—C17'—H16B 137.5
C5—C4—C9 118.09 (17) C16—C17'—H16B 37.9
C5—C4—H4 121.0 C17—C17'—H17B 54.7
C9—C4—H4 121.0 C18—C17'—H17B 105.8
C6—C5—C4 121.28 (17) C16—C17'—H17B 95.7
C6—C5—H5 119.4 H16B—C17'—H17B 110.1
C4—C5—H5 119.4 C17—C17'—H17C 70.1
C5—C6—C7 120.78 (18) C18—C17'—H17C 105.8
C5—C6—H6 119.6 C16—C17'—H17C 109.4
C7—C6—H6 119.6 H16B—C17'—H17C 115.0
C8—C7—C6 117.91 (17) H17B—C17'—H17C 16.5
C8—C7—H7 121.0 C17—C17'—H17D 175.6
C6—C7—H7 121.0 C18—C17'—H17D 105.0
C7—C8—C9 121.41 (15) C16—C17'—H17D 109.4
C7—C8—C1 129.00 (15) H16B—C17'—H17D 72.4
C9—C8—C1 109.55 (14) H17B—C17'—H17D 124.3
C8—C9—C4 120.53 (17) H17C—C17'—H17D 109.5
C8—C9—C3 109.16 (14) C17—C17'—H18A 115.3
C4—C9—C3 130.25 (16) C18—C17'—H18A 39.0
C2—C12—C13 135.06 (15) C16—C17'—H18A 144.8
C2—C12—H12 112.5 H16B—C17'—H18A 132.4
C13—C12—H12 112.5 H17B—C17'—H18A 114.4
C14—C13—C24 116.46 (14) H17C—C17'—H18A 103.7
C14—C13—C12 125.41 (14) H17D—C17'—H18A 69.1
C24—C13—C12 118.14 (14) C17'—C18—N19 114.0 (2)
C15—C14—C13 122.13 (15) C17'—C18—C17 36.3 (2)
C15—C14—H14 118.9 N19—C18—C17 113.50 (17)
C13—C14—H14 118.9 C17'—C18—H18A 73.8
C14—C15—C25 120.17 (14) N19—C18—H18A 109.5
C14—C15—C16 121.40 (16) C17—C18—H18A 107.6
C25—C15—C16 118.42 (15) C17'—C18—H18B 132.1
C17—C16—C17' 37.4 (2) N19—C18—H18B 109.5
C17—C16—C15 112.6 (2) C17—C18—H18B 107.2
C17'—C16—C15 116.2 (2) H18A—C18—H18B 109.5
C17—C16—H16A 108.1 C17'—C18—H18C 107.7
C17'—C16—H16A 130.8 N19—C18—H18C 109.5
C15—C16—H16A 109.6 C17—C18—H18C 132.9
C17—C16—H16B 107.9 H18A—C18—H18C 37.8
C17'—C16—H16B 72.0 H18B—C18—H18C 74.4
C15—C16—H16B 109.1 C17'—C18—H18D 106.6
H16A—C16—H16B 109.5 N19—C18—H18D 109.5
C17—C16—H16C 72.9 C17—C18—H18D 73.1
C17'—C16—H16C 106.0 H18A—C18—H18D 136.5
C15—C16—H16C 109.8 H18B—C18—H18D 37.8
H16A—C16—H16C 38.7 H18C—C18—H18D 109.5
H16B—C16—H16C 136.9 C25—N19—C20 121.36 (14)
C17—C16—H16D 134.2 C25—N19—C18 122.09 (14)
C17'—C16—H16D 106.1 C20—N19—C18 115.42 (14)
C15—C16—H16D 109.2 N19—C20—C21 112.15 (14)
H16A—C16—H16D 73.6 N19—C20—H20A 109.2
H16B—C16—H16D 38.7 C21—C20—H20A 109.2
H16C—C16—H16D 109.5 N19—C20—H20B 109.2
C17'—C17—C16 75.6 (4) C21—C20—H20B 109.2
C17'—C17—C18 64.5 (4) H20A—C20—H20B 107.9
C16—C17—C18 114.2 (2) C20—C21—C22 110.93 (14)
C17'—C17—H16C 110.3 C20—C21—H21A 109.5
C16—C17—H16C 39.5 C22—C21—H21A 109.5
C18—C17—H16C 147.7 C20—C21—H21B 109.5
C17'—C17—H17A 172.0 C22—C21—H21B 109.5
C16—C17—H17A 109.5 H21A—C21—H21B 108.0
C18—C17—H17A 107.5 C23—C22—C21 111.32 (14)
H16C—C17—H17A 76.6 C23—C22—H22A 109.4
C17'—C17—H17B 73.7 C21—C22—H22A 109.4
C16—C17—H17B 109.3 C23—C22—H22B 109.4
C18—C17—H17B 106.9 C21—C22—H22B 109.4
H16C—C17—H17B 101.5 H22A—C22—H22B 108.0
H17A—C17—H17B 109.5 C24—C23—C25 118.88 (14)
C17'—C17—H17C 56.7 C24—C23—C22 121.31 (14)
C16—C17—H17C 107.3 C25—C23—C22 119.79 (14)
C18—C17—H17C 92.2 C23—C24—C13 123.41 (14)
H16C—C17—H17C 111.9 C23—C24—H24 118.3
H17A—C17—H17C 125.4 C13—C24—H24 118.3
H17B—C17—H17C 18.2 N19—C25—C15 120.18 (14)
C17'—C17—H18D 98.3 N19—C25—C23 120.98 (14)
C16—C17—H18D 140.3 C15—C25—C23 118.83 (14)
C18—C17—H18D 36.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2090).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Honda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 364–365.
  5. Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus Bruker–Nonius, Delft, The Netherlands, MacScience, Yokohama, Japan, and The University of Glasgow, Scotland.
  6. Nonius (1999). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016346/rk2090sup1.cif

e-64-o1200-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016346/rk2090Isup2.hkl

e-64-o1200-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES