Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):i46. doi: 10.1107/S1600536808018898

Lithium manganese(II) diaqua­boro­phosphate monohydrate

Rong-Chuan Zhuang a, Xue-Yun Chen b, Jin-Xiao Mi a,*
PMCID: PMC2961901  PMID: 21202989

Abstract

The title compound, LiMn(H2O)2[BP2O8]·H2O, is built up of an open framework of helical borophosphate ribbons inter­connected by MnO4(H2O)2 octa­hedra, forming one-dimensional channels along [001] occupied by Li+ cations and disordered H2O mol­ecules (site occupancy 0.5). The Li cations reside in two partially occupied sites [occupancies = 0.42 (3) and 0.289 (13)] near the helices.

Related literature

For related structures, see: Boy & Kniep (2001a ,b ) for LiCu(H2O)2[BP2O8]·(H2O) and LiZn(H2O)2[BP2O8]·H2O; Ge et al. (2003) for LiCd(H2O)2[BP2O8]·H2O; Lin et al. (2008) for LiMg(H2O)2[BP2O8]·H2O. For related literature, see: Ewald et al. (2006); Kniep et al. (1997).

Experimental

Crystal data

  • LiMn(H2O)2[BP2O8]·H2O

  • M r = 316.68

  • Hexagonal, Inline graphic

  • a = 9.5765 (4) Å

  • c = 15.857 (1) Å

  • V = 1259.4 (1) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 295 (2) K

  • 0.16 × 0.12 × 0.12 mm

Data collection

  • Rigaku AFC-7 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.740, T max = 0.795

  • 9731 measured reflections

  • 1230 independent reflections

  • 1223 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.097

  • S = 1.19

  • 1230 reflections

  • 85 parameters

  • 1 restraint

  • Only H-atom coordinates refined

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983), 443 Friedel pairs

  • Flack parameter: −0.01 (4)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018898/mg2052sup1.cif

e-64-00i46-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018898/mg2052Isup2.hkl

e-64-00i46-Isup2.hkl (59.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O4i 2.133 (3)
Mn1—O3 2.139 (3)
Mn1—O5 2.311 (4)
P1—O3 1.504 (3)
P1—O4 1.510 (3)
P1—O1ii 1.553 (3)
P1—O2iii 1.560 (2)
O5—H1 0.82 (7)
O5—H2 0.81 (2)
B1—O1iv 1.463 (4)
B1—O2ii 1.470 (4)
Li1—O5ii 2.111 (4)
Li1—O3ii 2.112 (17)
Li2—O6v 1.95 (3)
Li2—O6vi 1.98 (3)
Li2—O4v 2.11 (3)
Li2—O5vii 2.18 (3)
B1viii—O1—P1ii 129.4 (2)
B1—O2—P1ix 131.1 (2)
P1—O3—Mn1 128.38 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O4x 0.83 (7) 2.09 (7) 2.878 (5) 159.80
O5—H2⋯O2i 0.81 (4) 2.09 (5) 2.845 (5) 155.74

Symmetry codes: (i) Inline graphic; (x) Inline graphic.

Acknowledgments

This project was supported by a fund from the National Natural Science Foundation of China (No. 40472027).

supplementary crystallographic information

Comment

A large family of compounds contains helical borophosphate anions 1[BP2O8]3- with various combinations of metal cations (MIMII, M0.5IMII, MIII) (Kniep et al., 1997; Ewald et al., 2006). To date, the only Li-containing members are LiMII(H2O)2[BP2O8].H2O (MII = Cu, Zn, Cd, Mg) (Boy & Kniep, 2001a, 2001b; Ge et al., 2003; Lin et al., 2008). The structure of LiMn(H2O)2[BP2O8].H2O is reported here.

The borophosphate helices, built up of four-membered rings of alternating BO4 and PO4 tetrahedra, extend along the 65 screw axis (Fig. 1 and 2). These helices are interconnected by Jahn-Teller-distorted Mn2+-centred octahedra, with four oxygen atoms (O3, O4) from PO4 groups and two (O5) from water molecules at the vertices (Fig. 3). Unlike the compounds containing Cu and Zn (Boy & Kniep, 2001a, 2001b) but similar to those containing Cd and Mg (Ge et al., 2003; Lin et al., 2008), there are two distinct Li sites: Li1 is close to the outer wall of the borophosphate helices and Li2 is situated at the free loops (inner wall) of the helices. The sum of occupancies of these Li sites refines to almost unity, as required to maintain charge neutrality in the compound.

Experimental

LiMn(H2O)2[BP2O8].H2O was obtained in the presence of boric acid as a flux. A mixture of 0.1149 g MnCO3, 1.484 g H3BO3, and 0.6235 g LiH2PO4 was ground to a homogeneous powder, which was transferred to a teflon autoclave with 10 ml inline (degree of filling 10%) where it was heated at 443 K for four days.

Refinement

The hydrogen atoms connected to O5 were located from difference Fourier maps with displacement parameters fixed as 1.2*U(O5), whereas those connected to O6 belonging to the disordered water molecules were not located. The sum of the occupancies of Li sites was restrained to maintain charge neutrality within the entire compound. The occupancy of the O6 site associated with the disordered water molecules was fixed at 0.5.

Figures

Fig. 1.

Fig. 1.

Linkage of borophosphate helices in LiMn(H2O)2[BP2O8].H2O through MnO4(H2O)2 octahedra (BO4, green tetrahedra; PO4, orange tetrahedra; MnO6, violet octahedra; Li, black spheres; H2O, red spheres).

Fig. 2.

Fig. 2.

Section of LiMn(H2O)2[BP2O8].H2O viewed along the c axis (colour scheme as in Fig. 1).

Fig. 3.

Fig. 3.

Coordination environment of Mn, B, and P atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (i) -x+y, y, 1/2-z; (ii) 1-x, 1-x+y, 1/3-z; (iii) y,1-x+y, 1/6+z; (iv) 1-y,1-x, 1/6-z; (v) x-y, x,-1/6+z; (vi) 1+x-y, 1-y,-z, (vii) x-y, 1-y,-z; (viii) 1+x-y,1+x,-1/6+z).

Crystal data

LiMn(H2O)2[BP2O8]·H2O Dx = 2.505 Mg m3
Mr = 316.68 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522 Cell parameters from 6263 reflections
Hall symbol: P 65 2 (0 0 1) θ = 2.5–33.2°
a = 9.5765 (4) Å µ = 2.01 mm1
c = 15.857 (1) Å T = 295 K
V = 1259.4 (1) Å3 Hexagonal bipyramid, pale pink
Z = 6 0.16 × 0.12 × 0.12 mm
F(000) = 942

Data collection

Rigaku AFC-7 CCD diffractometer 1230 independent reflections
Radiation source: fine-focus sealed tube 1223 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 14.6306 pixels mm-1 θmax = 30.0°, θmin = 2.5°
thin–slice Δφ=0.6 & Δω=0.6 scans h = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −13→12
Tmin = 0.740, Tmax = 0.795 l = −19→22
9731 measured reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full Only H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.008P)2 + 5.1269P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097 (Δ/σ)max < 0.001
S = 1.19 Δρmax = 0.62 e Å3
1230 reflections Δρmin = −0.44 e Å3
85 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0054 (19)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 443 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.44888 (4) 0.89775 (9) 0.2500 0.0163 (2)
P1 0.61636 (10) 0.83327 (10) 0.08453 (6) 0.0134 (2)
O1 0.0204 (3) 0.2129 (3) 0.06593 (16) 0.0181 (5)
O2 0.7681 (3) 0.1804 (3) 0.01267 (14) 0.0158 (5)
O3 0.4860 (3) 0.8589 (4) 0.12112 (17) 0.0227 (6)
O4 0.6237 (4) 0.6903 (3) 0.11938 (17) 0.0228 (6)
O5 0.1884 (4) 0.7081 (4) 0.2127 (2) 0.0340 (8)
O6 0.9000 (19) 0.8166 (12) 0.2717 (7) 0.079 (3)* 0.50
B1 0.8493 (3) 0.1507 (3) 0.0833 0.0140 (9)
Li1 0.2428 (18) 0.7572 (18) 0.0833 0.034 (4) 0.42 (3)
Li2 0.899 (4) 0.763 (3) 0.3479 (16) 0.034 (4) 0.289 (13)
H1 0.133 (8) 0.683 (7) 0.256 (4) 0.041*
H2 0.179 (7) 0.620 (4) 0.218 (4) 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0170 (3) 0.0165 (4) 0.0153 (3) 0.00826 (18) 0.0028 (2) 0.000
P1 0.0153 (4) 0.0131 (4) 0.0113 (3) 0.0068 (3) 0.0011 (3) −0.0005 (3)
O1 0.0139 (11) 0.0196 (12) 0.0200 (12) 0.0077 (10) −0.0012 (9) −0.0060 (9)
O2 0.0195 (12) 0.0185 (11) 0.0106 (9) 0.0104 (10) −0.0029 (9) −0.0024 (8)
O3 0.0222 (14) 0.0306 (15) 0.0177 (12) 0.0151 (12) 0.0028 (10) −0.0046 (11)
O4 0.0348 (16) 0.0150 (12) 0.0177 (11) 0.0117 (11) −0.0008 (12) 0.0022 (10)
O5 0.0280 (17) 0.0233 (15) 0.0393 (17) 0.0041 (13) 0.0118 (14) −0.0065 (14)
B1 0.0157 (17) 0.0157 (17) 0.011 (2) 0.0083 (19) 0.0013 (16) 0.0013 (16)
Li1 0.036 (7) 0.036 (7) 0.023 (8) 0.012 (8) 0.003 (6) 0.003 (6)
Li2 0.036 (7) 0.036 (7) 0.023 (8) 0.012 (8) 0.003 (6) 0.003 (6)

Geometric parameters (Å, °)

Mn1—O4i 2.133 (3) O5—H1 0.82 (7)
Mn1—O4ii 2.133 (3) O5—H2 0.81 (2)
Mn1—O3 2.139 (3) O6—O6ix 0.71 (2)
Mn1—O3iii 2.139 (3) O6—Li2 1.31 (3)
Mn1—O5 2.311 (4) O6—Li2ix 1.95 (3)
Mn1—O5iii 2.311 (3) O6—Li2xii 1.98 (3)
P1—O3 1.504 (3) O6—Li2x 2.45 (3)
P1—O4 1.510 (3) O6—Li1xiii 2.53 (3)
P1—O1iv 1.553 (3) B1—O1xiv 1.463 (4)
P1—O2v 1.560 (2) B1—O1xv 1.463 (4)
O1—B1vi 1.463 (4) B1—O2iv 1.470 (4)
O1—P1iv 1.553 (3) Li1—O5iv 2.111 (4)
O1—Li2vii 2.65 (3) Li1—O3iv 2.112 (17)
O2—B1 1.470 (4) Li2—O6ix 1.95 (3)
O2—P1viii 1.560 (2) Li2—O6xii 1.98 (3)
O3—Li1 2.112 (17) Li2—O4ix 2.11 (3)
O4—Li2ix 2.11 (3) Li2—O5xiii 2.18 (3)
O4—Mn1x 2.133 (3) Li2—Li2xii 2.30 (6)
O5—Li1 2.111 (4) Li2—O6i 2.45 (3)
O5—Li2xi 2.18 (3)
O4i—Mn1—O4ii 97.89 (17) O2—B1—O2iv 102.6 (4)
O4i—Mn1—O3 100.17 (11) O5iv—Li1—O5 177.6 (17)
O4ii—Mn1—O3 91.22 (11) O5iv—Li1—O3iv 85.4 (4)
O4i—Mn1—O3iii 91.22 (11) O5—Li1—O3iv 96.0 (5)
O4ii—Mn1—O3iii 100.17 (11) O5iv—Li1—O3 96.0 (5)
O3—Mn1—O3iii 162.68 (17) O5—Li1—O3 85.4 (4)
O4i—Mn1—O5 178.14 (13) O3iv—Li1—O3 112.6 (14)
O4ii—Mn1—O5 83.95 (13) O5iv—Li1—O6ii 80.8 (8)
O3—Mn1—O5 80.01 (12) O5—Li1—O6ii 96.8 (9)
O3iii—Mn1—O5 88.19 (12) O3iv—Li1—O6ii 122.4 (7)
O4i—Mn1—O5iii 83.95 (13) O3—Li1—O6ii 124.3 (8)
O4ii—Mn1—O5iii 178.14 (14) O5iv—Li1—O6xi 96.8 (9)
O3—Mn1—O5iii 88.19 (12) O5—Li1—O6xi 80.8 (8)
O3iii—Mn1—O5iii 80.01 (12) O3iv—Li1—O6xi 124.3 (8)
O5—Mn1—O5iii 94.2 (2) O3—Li1—O6xi 122.4 (7)
O3—P1—O4 115.17 (17) O6ii—Li1—O6xi 16.0 (5)
O3—P1—O1iv 111.97 (16) O6—Li2—O6ix 10.8 (10)
O4—P1—O1iv 104.62 (16) O6—Li2—O6xii 90.8 (17)
O3—P1—O2v 105.62 (15) O6ix—Li2—O6xii 101.7 (15)
O4—P1—O2v 111.81 (15) O6—Li2—O4ix 119.9 (19)
O1iv—P1—O2v 107.54 (14) O6ix—Li2—O4ix 110.3 (14)
B1vi—O1—P1iv 129.4 (2) O6xii—Li2—O4ix 138.2 (14)
B1—O2—P1viii 131.1 (2) O6—Li2—O5xiii 117.8 (18)
P1—O3—Mn1 128.38 (17) O6ix—Li2—O5xiii 114.8 (14)
Li1—O5—H1 157 (4) O6xii—Li2—O5xiii 102.8 (13)
Li2xi—O5—H1 93 (4) O4ix—Li2—O5xiii 87.8 (11)
Mn1—O5—H1 107 (4) O6—Li2—O6i 104.2 (18)
Li1—O5—H2 103 (4) O6ix—Li2—O6i 115.0 (14)
Li2xi—O5—H2 162 (4) O6xii—Li2—O6i 13.8 (7)
Mn1—O5—H2 107 (4) O4ix—Li2—O6i 125.5 (12)
H1—O5—H2 84 (5) O5xiii—Li2—O6i 99.1 (11)
Li2—O6—Li2ix 146 (2) O6—Li2—O1xvi 100.4 (16)
O1xiv—B1—O1xv 103.7 (4) O6ix—Li2—O1xvi 100.1 (12)
O1xiv—B1—O2 113.70 (14) O6xii—Li2—O1xvi 89.1 (11)
O1xv—B1—O2 111.75 (14) O4ix—Li2—O1xvi 59.9 (8)
O1xiv—B1—O2iv 111.75 (14) O5xiii—Li2—O1xvi 139.4 (13)
O1xv—B1—O2iv 113.70 (14) O6i—Li2—O1xvi 83.4 (9)

Symmetry codes: (i) y, −x+y+1, z+1/6; (ii) −x+1, −x+y+1, −z+1/3; (iii) −x+y, y, −z+1/2; (iv) −y+1, −x+1, −z+1/6; (v) xy, −y+1, −z; (vi) x−1, y, z; (vii) −y+1, xy, z−1/3; (viii) xy+1, −y+1, −z; (ix) −x+y+1, y, −z+1/2; (x) xy+1, x, z−1/6; (xi) xy, x, z−1/6; (xii) y, x, −z+2/3; (xiii) y, −x+y, z+1/6; (xiv) −y+1, −x, −z+1/6; (xv) x+1, y, z; (xvi) −x+y+1, −x+1, z+1/3.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H1···O4iii 0.83 (7) 2.09 (7) 2.878 (5) 159.80
O5—H2···O2i 0.81 (4) 2.09 (5) 2.845 (5) 156.

Symmetry codes: (iii) −x+y, y, −z+1/2; (i) y, −x+y+1, z+1/6.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2052).

References

  1. Boy, I. & Kniep, R. (2001a). Z. Kristallogr. New Cryst. Struct.216, 7–8.
  2. Boy, I. & Kniep, R. (2001b). Z. Kristallogr. New Cryst. Struct.216, 9–10.
  3. Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Dowty, E. (2004). ATOMS Shape Software, Kingsport, Tennessee, USA.
  5. Ewald, B., Prots, Yu., Kudla, C., Grünner, D., Cardoso-Gil, R. & Kniep, R. (2006). Chem. Mater.18, 673–679.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Ge, M.-H., Mi, J.-X., Huang, Y.-X., Zhao, J.-T. & Kniep, R. (2003). Z. Kristallogr. New Cryst. Struct.218, 273–274.
  8. Kniep, R., Will, H.-G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. Engl.36, 1013–1014.
  9. Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. [DOI] [PMC free article] [PubMed]
  10. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018898/mg2052sup1.cif

e-64-00i46-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018898/mg2052Isup2.hkl

e-64-00i46-Isup2.hkl (59.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES