Abstract
The title compound, LiMn(H2O)2[BP2O8]·H2O, is built up of an open framework of helical borophosphate ribbons interconnected by MnO4(H2O)2 octahedra, forming one-dimensional channels along [001] occupied by Li+ cations and disordered H2O molecules (site occupancy 0.5). The Li cations reside in two partially occupied sites [occupancies = 0.42 (3) and 0.289 (13)] near the helices.
Related literature
For related structures, see: Boy & Kniep (2001a ▶,b ▶) for LiCu(H2O)2[BP2O8]·(H2O) and LiZn(H2O)2[BP2O8]·H2O; Ge et al. (2003 ▶) for LiCd(H2O)2[BP2O8]·H2O; Lin et al. (2008 ▶) for LiMg(H2O)2[BP2O8]·H2O. For related literature, see: Ewald et al. (2006 ▶); Kniep et al. (1997 ▶).
Experimental
Crystal data
LiMn(H2O)2[BP2O8]·H2O
M r = 316.68
Hexagonal,
a = 9.5765 (4) Å
c = 15.857 (1) Å
V = 1259.4 (1) Å3
Z = 6
Mo Kα radiation
μ = 2.01 mm−1
T = 295 (2) K
0.16 × 0.12 × 0.12 mm
Data collection
Rigaku AFC-7 CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ▶) T min = 0.740, T max = 0.795
9731 measured reflections
1230 independent reflections
1223 reflections with I > 2σ(I)
R int = 0.032
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.097
S = 1.19
1230 reflections
85 parameters
1 restraint
Only H-atom coordinates refined
Δρmax = 0.61 e Å−3
Δρmin = −0.44 e Å−3
Absolute structure: Flack (1983 ▶), 443 Friedel pairs
Flack parameter: −0.01 (4)
Data collection: CrystalClear (Rigaku, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 2005 ▶) and ATOMS (Dowty, 2004 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018898/mg2052sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018898/mg2052Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Mn1—O4i | 2.133 (3) |
| Mn1—O3 | 2.139 (3) |
| Mn1—O5 | 2.311 (4) |
| P1—O3 | 1.504 (3) |
| P1—O4 | 1.510 (3) |
| P1—O1ii | 1.553 (3) |
| P1—O2iii | 1.560 (2) |
| O5—H1 | 0.82 (7) |
| O5—H2 | 0.81 (2) |
| B1—O1iv | 1.463 (4) |
| B1—O2ii | 1.470 (4) |
| Li1—O5ii | 2.111 (4) |
| Li1—O3ii | 2.112 (17) |
| Li2—O6v | 1.95 (3) |
| Li2—O6vi | 1.98 (3) |
| Li2—O4v | 2.11 (3) |
| Li2—O5vii | 2.18 (3) |
| B1viii—O1—P1ii | 129.4 (2) |
| B1—O2—P1ix | 131.1 (2) |
| P1—O3—Mn1 | 128.38 (17) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
; (viii)
; (ix)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O5—H1⋯O4x | 0.83 (7) | 2.09 (7) | 2.878 (5) | 159.80 |
| O5—H2⋯O2i | 0.81 (4) | 2.09 (5) | 2.845 (5) | 155.74 |
Symmetry codes: (i)
; (x)
.
Acknowledgments
This project was supported by a fund from the National Natural Science Foundation of China (No. 40472027).
supplementary crystallographic information
Comment
A large family of compounds contains helical borophosphate anions ∞1[BP2O8]3- with various combinations of metal cations (MIMII, M0.5IMII, MIII) (Kniep et al., 1997; Ewald et al., 2006). To date, the only Li-containing members are LiMII(H2O)2[BP2O8].H2O (MII = Cu, Zn, Cd, Mg) (Boy & Kniep, 2001a, 2001b; Ge et al., 2003; Lin et al., 2008). The structure of LiMn(H2O)2[BP2O8].H2O is reported here.
The borophosphate helices, built up of four-membered rings of alternating BO4 and PO4 tetrahedra, extend along the 65 screw axis (Fig. 1 and 2). These helices are interconnected by Jahn-Teller-distorted Mn2+-centred octahedra, with four oxygen atoms (O3, O4) from PO4 groups and two (O5) from water molecules at the vertices (Fig. 3). Unlike the compounds containing Cu and Zn (Boy & Kniep, 2001a, 2001b) but similar to those containing Cd and Mg (Ge et al., 2003; Lin et al., 2008), there are two distinct Li sites: Li1 is close to the outer wall of the borophosphate helices and Li2 is situated at the free loops (inner wall) of the helices. The sum of occupancies of these Li sites refines to almost unity, as required to maintain charge neutrality in the compound.
Experimental
LiMn(H2O)2[BP2O8].H2O was obtained in the presence of boric acid as a flux. A mixture of 0.1149 g MnCO3, 1.484 g H3BO3, and 0.6235 g LiH2PO4 was ground to a homogeneous powder, which was transferred to a teflon autoclave with 10 ml inline (degree of filling 10%) where it was heated at 443 K for four days.
Refinement
The hydrogen atoms connected to O5 were located from difference Fourier maps with displacement parameters fixed as 1.2*U(O5), whereas those connected to O6 belonging to the disordered water molecules were not located. The sum of the occupancies of Li sites was restrained to maintain charge neutrality within the entire compound. The occupancy of the O6 site associated with the disordered water molecules was fixed at 0.5.
Figures
Fig. 1.
Linkage of borophosphate helices in LiMn(H2O)2[BP2O8].H2O through MnO4(H2O)2 octahedra (BO4, green tetrahedra; PO4, orange tetrahedra; MnO6, violet octahedra; Li, black spheres; H2O, red spheres).
Fig. 2.
Section of LiMn(H2O)2[BP2O8].H2O viewed along the c axis (colour scheme as in Fig. 1).
Fig. 3.
Coordination environment of Mn, B, and P atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (i) -x+y, y, 1/2-z; (ii) 1-x, 1-x+y, 1/3-z; (iii) y,1-x+y, 1/6+z; (iv) 1-y,1-x, 1/6-z; (v) x-y, x,-1/6+z; (vi) 1+x-y, 1-y,-z, (vii) x-y, 1-y,-z; (viii) 1+x-y,1+x,-1/6+z).
Crystal data
| LiMn(H2O)2[BP2O8]·H2O | Dx = 2.505 Mg m−3 |
| Mr = 316.68 | Mo Kα radiation, λ = 0.71073 Å |
| Hexagonal, P6522 | Cell parameters from 6263 reflections |
| Hall symbol: P 65 2 (0 0 1) | θ = 2.5–33.2° |
| a = 9.5765 (4) Å | µ = 2.01 mm−1 |
| c = 15.857 (1) Å | T = 295 K |
| V = 1259.4 (1) Å3 | Hexagonal bipyramid, pale pink |
| Z = 6 | 0.16 × 0.12 × 0.12 mm |
| F(000) = 942 |
Data collection
| Rigaku AFC-7 CCD diffractometer | 1230 independent reflections |
| Radiation source: fine-focus sealed tube | 1223 reflections with I > 2σ(I) |
| graphite | Rint = 0.032 |
| Detector resolution: 14.6306 pixels mm-1 | θmax = 30.0°, θmin = 2.5° |
| thin–slice Δφ=0.6 & Δω=0.6 scans | h = −13→13 |
| Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −13→12 |
| Tmin = 0.740, Tmax = 0.795 | l = −19→22 |
| 9731 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: difference Fourier map |
| Least-squares matrix: full | Only H-atom coordinates refined |
| R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.008P)2 + 5.1269P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.097 | (Δ/σ)max < 0.001 |
| S = 1.19 | Δρmax = 0.62 e Å−3 |
| 1230 reflections | Δρmin = −0.44 e Å−3 |
| 85 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 1 restraint | Extinction coefficient: 0.0054 (19) |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 443 Friedel pairs |
| Secondary atom site location: difference Fourier map | Flack parameter: −0.01 (4) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Mn1 | 0.44888 (4) | 0.89775 (9) | 0.2500 | 0.0163 (2) | |
| P1 | 0.61636 (10) | 0.83327 (10) | 0.08453 (6) | 0.0134 (2) | |
| O1 | 0.0204 (3) | 0.2129 (3) | 0.06593 (16) | 0.0181 (5) | |
| O2 | 0.7681 (3) | 0.1804 (3) | 0.01267 (14) | 0.0158 (5) | |
| O3 | 0.4860 (3) | 0.8589 (4) | 0.12112 (17) | 0.0227 (6) | |
| O4 | 0.6237 (4) | 0.6903 (3) | 0.11938 (17) | 0.0228 (6) | |
| O5 | 0.1884 (4) | 0.7081 (4) | 0.2127 (2) | 0.0340 (8) | |
| O6 | 0.9000 (19) | 0.8166 (12) | 0.2717 (7) | 0.079 (3)* | 0.50 |
| B1 | 0.8493 (3) | 0.1507 (3) | 0.0833 | 0.0140 (9) | |
| Li1 | 0.2428 (18) | 0.7572 (18) | 0.0833 | 0.034 (4) | 0.42 (3) |
| Li2 | 0.899 (4) | 0.763 (3) | 0.3479 (16) | 0.034 (4) | 0.289 (13) |
| H1 | 0.133 (8) | 0.683 (7) | 0.256 (4) | 0.041* | |
| H2 | 0.179 (7) | 0.620 (4) | 0.218 (4) | 0.041* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Mn1 | 0.0170 (3) | 0.0165 (4) | 0.0153 (3) | 0.00826 (18) | 0.0028 (2) | 0.000 |
| P1 | 0.0153 (4) | 0.0131 (4) | 0.0113 (3) | 0.0068 (3) | 0.0011 (3) | −0.0005 (3) |
| O1 | 0.0139 (11) | 0.0196 (12) | 0.0200 (12) | 0.0077 (10) | −0.0012 (9) | −0.0060 (9) |
| O2 | 0.0195 (12) | 0.0185 (11) | 0.0106 (9) | 0.0104 (10) | −0.0029 (9) | −0.0024 (8) |
| O3 | 0.0222 (14) | 0.0306 (15) | 0.0177 (12) | 0.0151 (12) | 0.0028 (10) | −0.0046 (11) |
| O4 | 0.0348 (16) | 0.0150 (12) | 0.0177 (11) | 0.0117 (11) | −0.0008 (12) | 0.0022 (10) |
| O5 | 0.0280 (17) | 0.0233 (15) | 0.0393 (17) | 0.0041 (13) | 0.0118 (14) | −0.0065 (14) |
| B1 | 0.0157 (17) | 0.0157 (17) | 0.011 (2) | 0.0083 (19) | 0.0013 (16) | 0.0013 (16) |
| Li1 | 0.036 (7) | 0.036 (7) | 0.023 (8) | 0.012 (8) | 0.003 (6) | 0.003 (6) |
| Li2 | 0.036 (7) | 0.036 (7) | 0.023 (8) | 0.012 (8) | 0.003 (6) | 0.003 (6) |
Geometric parameters (Å, °)
| Mn1—O4i | 2.133 (3) | O5—H1 | 0.82 (7) |
| Mn1—O4ii | 2.133 (3) | O5—H2 | 0.81 (2) |
| Mn1—O3 | 2.139 (3) | O6—O6ix | 0.71 (2) |
| Mn1—O3iii | 2.139 (3) | O6—Li2 | 1.31 (3) |
| Mn1—O5 | 2.311 (4) | O6—Li2ix | 1.95 (3) |
| Mn1—O5iii | 2.311 (3) | O6—Li2xii | 1.98 (3) |
| P1—O3 | 1.504 (3) | O6—Li2x | 2.45 (3) |
| P1—O4 | 1.510 (3) | O6—Li1xiii | 2.53 (3) |
| P1—O1iv | 1.553 (3) | B1—O1xiv | 1.463 (4) |
| P1—O2v | 1.560 (2) | B1—O1xv | 1.463 (4) |
| O1—B1vi | 1.463 (4) | B1—O2iv | 1.470 (4) |
| O1—P1iv | 1.553 (3) | Li1—O5iv | 2.111 (4) |
| O1—Li2vii | 2.65 (3) | Li1—O3iv | 2.112 (17) |
| O2—B1 | 1.470 (4) | Li2—O6ix | 1.95 (3) |
| O2—P1viii | 1.560 (2) | Li2—O6xii | 1.98 (3) |
| O3—Li1 | 2.112 (17) | Li2—O4ix | 2.11 (3) |
| O4—Li2ix | 2.11 (3) | Li2—O5xiii | 2.18 (3) |
| O4—Mn1x | 2.133 (3) | Li2—Li2xii | 2.30 (6) |
| O5—Li1 | 2.111 (4) | Li2—O6i | 2.45 (3) |
| O5—Li2xi | 2.18 (3) | ||
| O4i—Mn1—O4ii | 97.89 (17) | O2—B1—O2iv | 102.6 (4) |
| O4i—Mn1—O3 | 100.17 (11) | O5iv—Li1—O5 | 177.6 (17) |
| O4ii—Mn1—O3 | 91.22 (11) | O5iv—Li1—O3iv | 85.4 (4) |
| O4i—Mn1—O3iii | 91.22 (11) | O5—Li1—O3iv | 96.0 (5) |
| O4ii—Mn1—O3iii | 100.17 (11) | O5iv—Li1—O3 | 96.0 (5) |
| O3—Mn1—O3iii | 162.68 (17) | O5—Li1—O3 | 85.4 (4) |
| O4i—Mn1—O5 | 178.14 (13) | O3iv—Li1—O3 | 112.6 (14) |
| O4ii—Mn1—O5 | 83.95 (13) | O5iv—Li1—O6ii | 80.8 (8) |
| O3—Mn1—O5 | 80.01 (12) | O5—Li1—O6ii | 96.8 (9) |
| O3iii—Mn1—O5 | 88.19 (12) | O3iv—Li1—O6ii | 122.4 (7) |
| O4i—Mn1—O5iii | 83.95 (13) | O3—Li1—O6ii | 124.3 (8) |
| O4ii—Mn1—O5iii | 178.14 (14) | O5iv—Li1—O6xi | 96.8 (9) |
| O3—Mn1—O5iii | 88.19 (12) | O5—Li1—O6xi | 80.8 (8) |
| O3iii—Mn1—O5iii | 80.01 (12) | O3iv—Li1—O6xi | 124.3 (8) |
| O5—Mn1—O5iii | 94.2 (2) | O3—Li1—O6xi | 122.4 (7) |
| O3—P1—O4 | 115.17 (17) | O6ii—Li1—O6xi | 16.0 (5) |
| O3—P1—O1iv | 111.97 (16) | O6—Li2—O6ix | 10.8 (10) |
| O4—P1—O1iv | 104.62 (16) | O6—Li2—O6xii | 90.8 (17) |
| O3—P1—O2v | 105.62 (15) | O6ix—Li2—O6xii | 101.7 (15) |
| O4—P1—O2v | 111.81 (15) | O6—Li2—O4ix | 119.9 (19) |
| O1iv—P1—O2v | 107.54 (14) | O6ix—Li2—O4ix | 110.3 (14) |
| B1vi—O1—P1iv | 129.4 (2) | O6xii—Li2—O4ix | 138.2 (14) |
| B1—O2—P1viii | 131.1 (2) | O6—Li2—O5xiii | 117.8 (18) |
| P1—O3—Mn1 | 128.38 (17) | O6ix—Li2—O5xiii | 114.8 (14) |
| Li1—O5—H1 | 157 (4) | O6xii—Li2—O5xiii | 102.8 (13) |
| Li2xi—O5—H1 | 93 (4) | O4ix—Li2—O5xiii | 87.8 (11) |
| Mn1—O5—H1 | 107 (4) | O6—Li2—O6i | 104.2 (18) |
| Li1—O5—H2 | 103 (4) | O6ix—Li2—O6i | 115.0 (14) |
| Li2xi—O5—H2 | 162 (4) | O6xii—Li2—O6i | 13.8 (7) |
| Mn1—O5—H2 | 107 (4) | O4ix—Li2—O6i | 125.5 (12) |
| H1—O5—H2 | 84 (5) | O5xiii—Li2—O6i | 99.1 (11) |
| Li2—O6—Li2ix | 146 (2) | O6—Li2—O1xvi | 100.4 (16) |
| O1xiv—B1—O1xv | 103.7 (4) | O6ix—Li2—O1xvi | 100.1 (12) |
| O1xiv—B1—O2 | 113.70 (14) | O6xii—Li2—O1xvi | 89.1 (11) |
| O1xv—B1—O2 | 111.75 (14) | O4ix—Li2—O1xvi | 59.9 (8) |
| O1xiv—B1—O2iv | 111.75 (14) | O5xiii—Li2—O1xvi | 139.4 (13) |
| O1xv—B1—O2iv | 113.70 (14) | O6i—Li2—O1xvi | 83.4 (9) |
Symmetry codes: (i) y, −x+y+1, z+1/6; (ii) −x+1, −x+y+1, −z+1/3; (iii) −x+y, y, −z+1/2; (iv) −y+1, −x+1, −z+1/6; (v) x−y, −y+1, −z; (vi) x−1, y, z; (vii) −y+1, x−y, z−1/3; (viii) x−y+1, −y+1, −z; (ix) −x+y+1, y, −z+1/2; (x) x−y+1, x, z−1/6; (xi) x−y, x, z−1/6; (xii) y, x, −z+2/3; (xiii) y, −x+y, z+1/6; (xiv) −y+1, −x, −z+1/6; (xv) x+1, y, z; (xvi) −x+y+1, −x+1, z+1/3.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O5—H1···O4iii | 0.83 (7) | 2.09 (7) | 2.878 (5) | 159.80 |
| O5—H2···O2i | 0.81 (4) | 2.09 (5) | 2.845 (5) | 156. |
Symmetry codes: (iii) −x+y, y, −z+1/2; (i) y, −x+y+1, z+1/6.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2052).
References
- Boy, I. & Kniep, R. (2001a). Z. Kristallogr. New Cryst. Struct.216, 7–8.
- Boy, I. & Kniep, R. (2001b). Z. Kristallogr. New Cryst. Struct.216, 9–10.
- Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Dowty, E. (2004). ATOMS Shape Software, Kingsport, Tennessee, USA.
- Ewald, B., Prots, Yu., Kudla, C., Grünner, D., Cardoso-Gil, R. & Kniep, R. (2006). Chem. Mater.18, 673–679.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Ge, M.-H., Mi, J.-X., Huang, Y.-X., Zhao, J.-T. & Kniep, R. (2003). Z. Kristallogr. New Cryst. Struct.218, 273–274.
- Kniep, R., Will, H.-G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. Engl.36, 1013–1014.
- Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. [DOI] [PMC free article] [PubMed]
- Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018898/mg2052sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018898/mg2052Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



