Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):m981. doi: 10.1107/S1600536808019442

catena-Poly[[(nitrato-κ2 O,O′)silver(I)]-μ-1,2-bis­(diphenyl­phosphino)ethane-κ2 P:P′]

Xing-Cong Wang a, Yan-Li Wu a, Xiu-Li You a,*
PMCID: PMC2961910  PMID: 21203079

Abstract

In the title chain compound, [Ag(NO3)(C26H24P2)]n, the bis­(diphenyl­phosphino)ethane (dppe) units link the Ag+ ions into chains along [001]. A nitrate anion is coordinated to the Ag atom. There is a centre of symmetry at the mid-point of the ethane C—C bond and a twofold rotation axis passes through the Ag, N and terminal O atoms. Each Ag atom is four-coordinated in a distorted tetra­hedral geometry by two O atoms of the nitrate anion and two P atoms of dppe ligands. The two aromatic rings are oriented at a dihedral angle of 73.77 (3)°.

Related literature

For related literature, see: Harker & Tiekink (1990); Huang et al. (1991); Menezes Vicenti & Burrow (2007); Yang et al. (1992).graphic file with name e-64-0m981-scheme1.jpg

Experimental

Crystal data

  • [Ag(NO3)(C26H24P2)]

  • M r = 568.27

  • Monoclinic, Inline graphic

  • a = 17.123 (3) Å

  • b = 14.064 (3) Å

  • c = 11.120 (2) Å

  • β = 108.33 (3)°

  • V = 2542.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 223.2 K

  • 0.30 × 0.26 × 0.20 mm

Data collection

  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998) T min = 0.704, T max = 0.833

  • 12170 measured reflections

  • 2327 independent reflections

  • 2161 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.087

  • S = 1.07

  • 2327 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019442/hk2480sup1.cif

e-64-0m981-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019442/hk2480Isup2.hkl

e-64-0m981-Isup2.hkl (114.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ag1—P1 2.4066 (9)
Ag1—O1 2.508 (2)
P1—Ag1—P1i 137.49 (4)
P1—Ag1—O1i 115.92 (7)
P1—Ag1—O1 102.63 (6)
O1i—Ag1—O1 50.52 (11)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

supplementary crystallographic information

Comment

The complexes obtained by the reaction of AgNO3 with bis(diphenylphosphino)- ethane), dppe, include mono-nuclear complex Ag(dppe)(NO3), (II) (Harker & Tiekink, 1990), binuclear complex [Ag(dppe)]2(NO3)2.2MeOH, (III) (Yang et al., 1992), and one-dimensional polymers: [Ag4(dppe)3(NO3)4]n, (III) (Huang et al., 1991) and [Ag(dppe)(NO3)(DMF)]n, (IV) (Menezes Vicenti & Burrow, 2007). We report herein the formation of a one-dimensional coordination polymer, (I), using AgNO3 as the metal source and dppe as bidentate bridging ligand, and its crystal structure.

The structure of the title compound, (I), is polymeric with dppe bridging ligands between Ag centres to form a chain (Fig. 1). There is one dppe ligand in the asymmetric unit. The remaining parts are generated by crystallographic centres of inversion at the mid-points of the C-C bond of the ethane group. The polymeric chains are elongated along [001] direction (Fig. 2). A nitrate anion is coordinated to the Ag atom, in which a twofold rotation axis passes through the N1-O2 bond. Each Ag atom is four-coordinated in a distorted tetrahedral geometry (Table 1) by two O atoms of the nitrate anion and two P atoms of dppe ligands. The two aromatic rings are oriented at a dihedral angle of 73.77 (3)°.

Experimental

For the preparation of the title compound, dppe (20 mg, 0.05 mmol) was dissolved in CH2Cl2 (5 ml) and was poured into the tube, then MeOH (3 ml) was layered on it. Finally, MeOH solution (5 ml) containing AgNO3 (8.5 mg, 0.05 mmol) was layered on the top of the tube. The crystals of the title compound, (I), were obtained for about 3 d.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, y, 1/2 - z].

Fig. 2.

Fig. 2.

The coordination polymer of (I) [symmetry code: (A) -x, y, 1/2 - z] along the c axis.

Crystal data

[Ag(NO3)(C26H24P2)] F000 = 1152
Mr = 568.27 Dx = 1.485 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5049 reflections
a = 17.123 (3) Å θ = 3.5–25.3º
b = 14.064 (3) Å µ = 0.95 mm1
c = 11.120 (2) Å T = 223.2 K
β = 108.33 (3)º Block, colorless
V = 2542.0 (9) Å3 0.30 × 0.26 × 0.20 mm
Z = 4

Data collection

Rigaku Mercury diffractometer 2327 independent reflections
Radiation source: fine-focus sealed tube 2161 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
Detector resolution: 14.6306 pixels mm-1 θmax = 25.3º
T = 223.15 K θmin = 3.5º
ω scans h = −20→19
Absorption correction: multi-scan(Jacobson, 1998) k = −16→15
Tmin = 0.704, Tmax = 0.833 l = −13→13
12170 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.087   w = 1/[σ2(Fo2) + (0.0457P)2 + 4.2828P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2327 reflections Δρmax = 0.97 e Å3
151 parameters Δρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. no
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.0000 0.33644 (2) 0.2500 0.03718 (14)
P1 0.08413 (5) 0.39847 (5) 0.13087 (7) 0.02910 (19)
O1 0.06120 (15) 0.17517 (16) 0.3151 (2) 0.0493 (6)
O2 0.0000 0.0421 (3) 0.2500 0.0783 (13)
N1 0.0000 0.1292 (3) 0.2500 0.0409 (9)
C1 0.18506 (17) 0.4287 (2) 0.2384 (3) 0.0342 (7)
C2 0.2341 (2) 0.5014 (3) 0.2188 (3) 0.0486 (8)
H2A 0.2160 0.5381 0.1457 0.058*
C3 0.3100 (2) 0.5200 (3) 0.3075 (4) 0.0635 (11)
H3A 0.3426 0.5693 0.2943 0.076*
C4 0.3370 (2) 0.4648 (3) 0.4153 (4) 0.0633 (11)
H4A 0.3878 0.4771 0.4750 0.076*
C5 0.2902 (2) 0.3933 (3) 0.4345 (4) 0.0612 (11)
H5A 0.3094 0.3560 0.5069 0.073*
C6 0.2142 (2) 0.3747 (3) 0.3484 (3) 0.0472 (8)
H6A 0.1822 0.3257 0.3639 0.057*
C7 0.10284 (19) 0.3224 (2) 0.0110 (3) 0.0351 (7)
C8 0.1568 (2) 0.3472 (3) −0.0540 (4) 0.0529 (9)
H8A 0.1849 0.4048 −0.0367 0.064*
C9 0.1693 (3) 0.2867 (3) −0.1445 (4) 0.0690 (12)
H9A 0.2050 0.3040 −0.1888 0.083*
C10 0.1292 (3) 0.2022 (3) −0.1684 (4) 0.0702 (13)
H10A 0.1385 0.1613 −0.2282 0.084*
C11 0.0753 (3) 0.1761 (3) −0.1058 (4) 0.0677 (13)
H11A 0.0477 0.1183 −0.1237 0.081*
C12 0.0620 (2) 0.2364 (2) −0.0154 (3) 0.0490 (9)
H12A 0.0255 0.2189 0.0274 0.059*
C13 0.04348 (17) 0.5080 (2) 0.0442 (3) 0.0339 (6)
H13A 0.0432 0.5582 0.1039 0.041*
H13B 0.0787 0.5278 −0.0046 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0364 (2) 0.0378 (2) 0.0391 (2) 0.000 0.01439 (15) 0.000
P1 0.0287 (4) 0.0281 (4) 0.0297 (4) 0.0031 (3) 0.0081 (3) 0.0020 (3)
O1 0.0397 (13) 0.0446 (14) 0.0527 (14) 0.0038 (10) −0.0010 (11) 0.0004 (11)
O2 0.077 (3) 0.038 (2) 0.118 (4) 0.000 0.029 (3) 0.000
N1 0.042 (2) 0.033 (2) 0.049 (2) 0.000 0.0154 (19) 0.000
C1 0.0290 (15) 0.0384 (16) 0.0348 (15) 0.0051 (12) 0.0096 (13) −0.0052 (13)
C2 0.0403 (19) 0.049 (2) 0.054 (2) −0.0047 (15) 0.0113 (16) −0.0005 (16)
C3 0.0357 (19) 0.063 (3) 0.088 (3) −0.0127 (17) 0.014 (2) −0.018 (2)
C4 0.0361 (19) 0.082 (3) 0.059 (2) 0.006 (2) −0.0046 (18) −0.028 (2)
C5 0.047 (2) 0.083 (3) 0.043 (2) 0.015 (2) −0.0008 (18) −0.0020 (19)
C6 0.0372 (18) 0.062 (2) 0.0404 (18) 0.0085 (16) 0.0087 (15) 0.0075 (16)
C7 0.0380 (17) 0.0331 (16) 0.0326 (15) 0.0098 (12) 0.0088 (13) −0.0003 (12)
C8 0.054 (2) 0.052 (2) 0.060 (2) −0.0011 (17) 0.0288 (19) −0.0087 (17)
C9 0.077 (3) 0.081 (3) 0.062 (3) 0.013 (2) 0.040 (2) −0.015 (2)
C10 0.097 (3) 0.063 (3) 0.049 (2) 0.027 (2) 0.021 (2) −0.014 (2)
C11 0.107 (4) 0.040 (2) 0.047 (2) 0.000 (2) 0.011 (2) −0.0088 (17)
C12 0.071 (2) 0.0376 (18) 0.0369 (17) −0.0022 (16) 0.0145 (17) 0.0004 (14)
C13 0.0335 (16) 0.0294 (15) 0.0366 (15) 0.0031 (12) 0.0080 (13) 0.0042 (12)

Geometric parameters (Å, °)

Ag1—P1 2.4066 (9) C5—C6 1.376 (5)
Ag1—P1i 2.4066 (9) C5—H5A 0.9300
Ag1—O1i 2.508 (2) C6—H6A 0.9300
Ag1—O1 2.508 (2) C7—C12 1.381 (5)
P1—C7 1.815 (3) C7—C8 1.386 (5)
P1—C1 1.816 (3) C8—C9 1.385 (5)
P1—C13 1.834 (3) C8—H8A 0.9300
O1—N1 1.250 (3) C9—C10 1.357 (7)
O2—N1 1.225 (5) C9—H9A 0.9300
N1—O1i 1.250 (3) C10—C11 1.370 (7)
C1—C2 1.382 (5) C10—H10A 0.9300
C1—C6 1.393 (4) C11—C12 1.387 (5)
C2—C3 1.388 (5) C11—H11A 0.9300
C2—H2A 0.9300 C12—H12A 0.9300
C3—C4 1.381 (6) C13—C13ii 1.521 (6)
C3—H3A 0.9300 C13—H13A 0.9700
C4—C5 1.343 (6) C13—H13B 0.9700
C4—H4A 0.9300
P1—Ag1—P1i 137.49 (4) C4—C5—H5A 119.6
P1—Ag1—O1i 115.92 (7) C6—C5—H5A 119.6
P1i—Ag1—O1i 102.63 (7) C5—C6—C1 120.4 (4)
P1—Ag1—O1 102.63 (6) C5—C6—H6A 119.8
P1i—Ag1—O1 115.92 (7) C1—C6—H6A 119.8
O1i—Ag1—O1 50.52 (11) C12—C7—C8 119.1 (3)
C7—P1—C1 105.68 (14) C12—C7—P1 118.6 (3)
C7—P1—C13 103.59 (14) C8—C7—P1 122.4 (3)
C1—P1—C13 105.93 (14) C9—C8—C7 120.3 (4)
C7—P1—Ag1 117.71 (11) C9—C8—H8A 119.8
C1—P1—Ag1 109.46 (10) C7—C8—H8A 119.8
C13—P1—Ag1 113.56 (10) C10—C9—C8 119.8 (4)
N1—O1—Ag1 95.88 (19) C10—C9—H9A 120.1
O2—N1—O1 121.14 (18) C8—C9—H9A 120.1
O2—N1—O1i 121.14 (18) C9—C10—C11 121.0 (4)
O1—N1—O1i 117.7 (4) C9—C10—H10A 119.5
C2—C1—C6 118.3 (3) C11—C10—H10A 119.5
C2—C1—P1 124.7 (2) C10—C11—C12 119.7 (4)
C6—C1—P1 117.0 (3) C10—C11—H11A 120.2
C1—C2—C3 120.5 (4) C12—C11—H11A 120.2
C1—C2—H2A 119.8 C7—C12—C11 120.1 (4)
C3—C2—H2A 119.8 C7—C12—H12A 119.9
C4—C3—C2 119.6 (4) C11—C12—H12A 119.9
C4—C3—H3A 120.2 C13ii—C13—P1 110.4 (3)
C2—C3—H3A 120.2 C13ii—C13—H13A 109.6
C5—C4—C3 120.4 (3) P1—C13—H13A 109.6
C5—C4—H4A 119.8 C13ii—C13—H13B 109.6
C3—C4—H4A 119.8 P1—C13—H13B 109.6
C4—C5—C6 120.9 (4) H13A—C13—H13B 108.1

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2480).

References

  1. Harker, C. S. W. & Tiekink, E. R. T. (1990). J. Coord. Chem.21, 287–293.
  2. Huang, M. S., Zhang, P., Zhang, Y., Yang, H. H. & Zheng, L. S. (1991). Acta Phys. Chim. Sinica, 7, 694–698.
  3. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  4. Menezes Vicenti, J. R. de & Burrow, R. A. (2007). Acta Cryst. C63, m88–m90. [DOI] [PubMed]
  5. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Yang, H. H., Zheng, L. S., Xu, Y. J. & Zhang, Q. E. (1992). Chin. J. Inorg. Chem.8, 65–67.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019442/hk2480sup1.cif

e-64-0m981-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019442/hk2480Isup2.hkl

e-64-0m981-Isup2.hkl (114.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES