Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):m993. doi: 10.1107/S1600536808019880

catena-Poly[[bis­(3-benzoyl­pyridine-κN)zinc(II)]-di-μ-dicyanamido-κ4 N 1:N 5]

Fei Yu a, Zhong-Shu Li a, Bai-Wang Sun a,*
PMCID: PMC2961919  PMID: 21203088

Abstract

The title compound, [Zn(C2N3)2(C12H9NO)2]n, is a polymeric zinc(II) complex with the metal ion located on an inversion centre. The ZnII ion is six-coordinated by two N atoms of two 3-benzoyl­pyridine ligands and four N atoms from four dicyanamide ligands, forming a slightly distorted octa­hedral configuration. In the crystal structure, neighboring Zn atoms are linked together by double dicyanamide bridges to form a polymeric zinc(II) complex.

Related literature

For related literature, see: Armentano et al. (2006); Claramunt et al. (2000); Manson et al. (1998); Miller (2006).graphic file with name e-64-0m993-scheme1.jpg

Experimental

Crystal data

  • [Zn(C2N3)2(C12H9NO)2]

  • M r = 563.89

  • Monoclinic, Inline graphic

  • a = 6.463 (4) Å

  • b = 7.490 (4) Å

  • c = 26.300 (15) Å

  • β = 98.399 (16)°

  • V = 1259.5 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 (2) K

  • 0.07 × 0.04 × 0.03 mm

Data collection

  • Rigaku Scxmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.867, T max = 1.000 (expected range = 0.841–0.970)

  • 12079 measured reflections

  • 2880 independent reflections

  • 2342 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.129

  • S = 1.09

  • 2880 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019880/bq2086sup1.cif

e-64-0m993-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019880/bq2086Isup2.hkl

e-64-0m993-Isup2.hkl (141.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—N2 2.162 (3)
Zn1—N3 2.169 (2)
Zn1—N4 2.172 (3)
N2—Zn1—N3 92.27 (11)
N2—Zn1—N4 90.79 (9)
N3—Zn1—N4 89.87 (9)

supplementary crystallographic information

Comment

The dicyanamide ligand has frequently been used to bridge polynuclear transition metal complexes in the study of multidimensional molecule-based magnetic materials and other areas. Many such compounds have been reported (Manson et al., 1998; Claramunt et al., 2000; Armentano et al., 2006; Miller, 2006;). Here, we report the structure of the title ZnII compound, (I). The structure of (I) is illustrated in Fig. 1, and bond distances and angles are given in Table 1. The ZnII ion, which lies on the inversion centre, is in an octahedral geometry and is six-coordinated by six N atoms, from four dicyanamide ligands and two 3-benzoylpyridine ligands in a trans arrangement. The resulting coordination geometry is very close to that expected for an ideal octahedral complex. In the crystal structure, the ZnII ions are bridged to form a one-dimensional chain by dicyanamide ligands, through single end-to-end coordination, the dicyanamide ligand acts as a bidentate bridging ligand by coordinating to adjacent ZnII centres through its two terminal nitrile N atoms. No significant contacts are observed between adjacent chains in the crystal structure.

Experimental

All chemicals used (reagent grade) were commercially available. 3-benzoylpyridine (18.3 mg, 0.1 mmol) was added slowly with stirring in aqueous solution (5 ml) of Zn(CH3COO)2.2H2O (21.9 mg, 0.1 mmol) and then sodium dicyanamide (17.8 mg, 0.2 mmol) in aqueous solution (5 ml) was added slowly. The resulting colorless solution was continuously stirred for about 30 min at room temperature and then filtered. The filtrate was slowly evaporated at room temperature over several days, and colorless needles crystals suitable for X-ray analysis were obtained.

Refinement

Positional parameters of all H atoms were calculated geometrically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme and all dydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

One-dimensional structure in the title compound. Displacement ellipsoids are drawn at the 30% probability level and all dydrogen atoms.

Crystal data

[Zn(C2N3)2(C12H9NO)2] F000 = 576
Mr = 563.89 Dx = 1.487 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2637 reflections
a = 6.463 (4) Å θ = 3.1–27.5º
b = 7.490 (4) Å µ = 1.02 mm1
c = 26.300 (15) Å T = 293 (2) K
β = 98.399 (16)º Block, colorless
V = 1259.5 (13) Å3 0.07 × 0.04 × 0.03 mm
Z = 2

Data collection

Rigaku Scxmini 1K CCD area-detector diffractometer 2880 independent reflections
Radiation source: fine-focus sealed tube 2342 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.045
Detector resolution: 8.192 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 3.1º
thin–slice ω scans h = −8→8
Absorption correction: Multi-scan(CrystalClear; Rigaku, 2005) k = −9→9
Tmin = 0.867, Tmax = 1.000 l = −34→33
12079 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.129   w = 1/[σ2(Fo2) + (0.0563P)2 + 0.6329P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2880 reflections Δρmax = 0.60 e Å3
178 parameters Δρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 −0.5000 0.0000 0.03523 (16)
O1 0.1648 (4) −0.5269 (5) −0.20379 (11) 0.1080 (15)
N2 0.7192 (4) −0.2827 (3) 0.01736 (10) 0.0467 (6)
N3 0.7294 (4) −0.6966 (3) 0.03187 (9) 0.0441 (6)
N4 0.5973 (4) −0.5346 (3) −0.07500 (9) 0.0374 (5)
N5 0.8571 (7) −0.9980 (3) 0.05024 (17) 0.0911 (15)
C1 0.7821 (4) −0.8411 (4) 0.03808 (11) 0.0405 (6)
C2 0.7750 (4) −0.1441 (4) 0.03062 (11) 0.0411 (6)
C4 0.7925 (4) −0.5898 (4) −0.07850 (11) 0.0442 (7)
H4A 0.8899 −0.5924 −0.0487 0.053*
C5 0.8557 (5) −0.6427 (4) −0.12406 (11) 0.0488 (7)
H5C 0.9914 −0.6831 −0.1247 0.059*
C6 0.7130 (5) −0.6347 (4) −0.16892 (11) 0.0465 (7)
H6A 0.7504 −0.6728 −0.2000 0.056*
C7 0.5141 (5) −0.5690 (4) −0.16669 (11) 0.0435 (6)
C8 0.4633 (4) −0.5223 (3) −0.11864 (11) 0.0395 (6)
H8A 0.3290 −0.4805 −0.1169 0.047*
C9 0.3436 (5) −0.5503 (5) −0.21175 (12) 0.0568 (8)
C10 0.3845 (5) −0.5665 (4) −0.26610 (11) 0.0491 (7)
C11 0.5699 (6) −0.5147 (4) −0.28267 (13) 0.0553 (8)
H11A 0.6808 −0.4735 −0.2591 0.066*
C12 0.2197 (6) −0.6285 (5) −0.30199 (13) 0.0635 (9)
H12A 0.0948 −0.6634 −0.2913 0.076*
C13 0.2419 (8) −0.6382 (5) −0.35361 (14) 0.0783 (13)
H13A 0.1321 −0.6804 −0.3774 0.094*
C14 0.4252 (8) −0.5857 (6) −0.36965 (15) 0.0811 (14)
H14A 0.4386 −0.5915 −0.4043 0.097*
C15 0.5896 (8) −0.5245 (5) −0.33469 (14) 0.0707 (12)
H15A 0.7137 −0.4898 −0.3458 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0407 (3) 0.0283 (2) 0.0361 (3) 0.00125 (17) 0.00358 (18) −0.00050 (17)
O1 0.0444 (14) 0.232 (5) 0.0468 (15) 0.0126 (19) 0.0035 (12) −0.0020 (19)
N2 0.0456 (13) 0.0353 (13) 0.0569 (15) −0.0031 (10) 0.0002 (11) −0.0015 (11)
N3 0.0486 (14) 0.0348 (13) 0.0479 (14) 0.0061 (10) 0.0033 (11) 0.0023 (10)
N4 0.0400 (12) 0.0358 (12) 0.0364 (11) 0.0012 (9) 0.0055 (9) 0.0000 (9)
N5 0.097 (3) 0.0326 (15) 0.121 (3) 0.0078 (15) −0.060 (2) −0.0090 (15)
C1 0.0391 (14) 0.0354 (15) 0.0438 (15) 0.0003 (11) −0.0044 (12) −0.0041 (11)
C2 0.0414 (15) 0.0348 (15) 0.0444 (15) 0.0057 (12) −0.0024 (12) 0.0006 (12)
C4 0.0394 (14) 0.0520 (18) 0.0407 (15) 0.0017 (13) 0.0047 (12) 0.0034 (13)
C5 0.0421 (15) 0.0588 (19) 0.0459 (16) 0.0102 (14) 0.0078 (13) 0.0037 (14)
C6 0.0481 (16) 0.0505 (17) 0.0432 (15) 0.0007 (13) 0.0142 (13) −0.0029 (13)
C7 0.0442 (15) 0.0478 (16) 0.0387 (15) −0.0025 (13) 0.0065 (12) −0.0015 (12)
C8 0.0390 (14) 0.0392 (15) 0.0402 (14) 0.0013 (11) 0.0052 (11) 0.0001 (11)
C9 0.0495 (18) 0.079 (2) 0.0413 (17) 0.0025 (17) 0.0050 (14) 0.0018 (16)
C10 0.0579 (19) 0.0500 (17) 0.0378 (15) 0.0099 (15) 0.0017 (13) −0.0014 (13)
C11 0.071 (2) 0.0519 (19) 0.0445 (17) 0.0105 (16) 0.0125 (16) 0.0005 (14)
C12 0.068 (2) 0.066 (2) 0.0512 (19) 0.0146 (18) −0.0106 (16) −0.0011 (16)
C13 0.105 (3) 0.072 (3) 0.048 (2) 0.034 (2) −0.021 (2) −0.0112 (18)
C14 0.119 (4) 0.081 (3) 0.043 (2) 0.044 (3) 0.011 (2) 0.0005 (19)
C15 0.097 (3) 0.070 (3) 0.049 (2) 0.028 (2) 0.025 (2) 0.0075 (17)

Geometric parameters (Å, °)

Zn1—N2 2.162 (3) C6—C7 1.385 (4)
Zn1—N2i 2.162 (3) C6—H6A 0.9300
Zn1—N3i 2.169 (2) C7—C8 1.396 (4)
Zn1—N3 2.169 (2) C7—C9 1.502 (4)
Zn1—N4 2.172 (3) C8—H8A 0.9300
Zn1—N4i 2.172 (3) C9—C10 1.496 (4)
O1—C9 1.217 (4) C10—C11 1.389 (5)
N2—C2 1.137 (4) C10—C12 1.395 (5)
N3—C1 1.139 (4) C11—C15 1.395 (5)
N4—C8 1.337 (4) C11—H11A 0.9300
N4—C4 1.343 (4) C12—C13 1.388 (5)
N5—C2ii 1.290 (4) C12—H12A 0.9300
N5—C1 1.293 (4) C13—C14 1.372 (6)
C2—N5iii 1.290 (4) C13—H13A 0.9300
C4—C5 1.379 (4) C14—C15 1.378 (6)
C4—H4A 0.9300 C14—H14A 0.9300
C5—C6 1.389 (4) C15—H15A 0.9300
C5—H5C 0.9300
N2—Zn1—N2i 180.00 (9) C7—C6—H6A 120.5
N2—Zn1—N3i 87.73 (11) C5—C6—H6A 120.5
N2i—Zn1—N3i 92.27 (11) C6—C7—C8 118.0 (3)
N2—Zn1—N3 92.27 (11) C6—C7—C9 125.3 (3)
N2i—Zn1—N3 87.73 (11) C8—C7—C9 116.6 (3)
N3i—Zn1—N3 180.0 N4—C8—C7 123.5 (3)
N2—Zn1—N4 90.79 (9) N4—C8—H8A 118.3
N2i—Zn1—N4 89.21 (9) C7—C8—H8A 118.3
N3i—Zn1—N4 90.13 (9) O1—C9—C10 118.7 (3)
N3—Zn1—N4 89.87 (9) O1—C9—C7 118.9 (3)
N2—Zn1—N4i 89.21 (9) C10—C9—C7 122.3 (3)
N2i—Zn1—N4i 90.79 (9) C11—C10—C12 119.3 (3)
N3i—Zn1—N4i 89.87 (9) C11—C10—C9 123.9 (3)
N3—Zn1—N4i 90.13 (9) C12—C10—C9 116.7 (3)
N4—Zn1—N4i 180.00 (4) C10—C11—C15 120.0 (4)
C2—N2—Zn1 157.0 (2) C10—C11—H11A 120.0
C1—N3—Zn1 150.9 (2) C15—C11—H11A 120.0
C8—N4—C4 117.4 (2) C13—C12—C10 120.1 (4)
C8—N4—Zn1 122.30 (19) C13—C12—H12A 120.0
C4—N4—Zn1 119.90 (18) C10—C12—H12A 120.0
C2ii—N5—C1 123.7 (3) C14—C13—C12 120.2 (4)
N3—C1—N5 172.8 (3) C14—C13—H13A 119.9
N2—C2—N5iii 172.0 (3) C12—C13—H13A 119.9
N4—C4—C5 123.2 (3) C13—C14—C15 120.4 (4)
N4—C4—H4A 118.4 C13—C14—H14A 119.8
C5—C4—H4A 118.4 C15—C14—H14A 119.8
C4—C5—C6 118.8 (3) C14—C15—C11 120.0 (4)
C4—C5—H5C 120.6 C14—C15—H15A 120.0
C6—C5—H5C 120.6 C11—C15—H15A 120.0
C7—C6—C5 119.0 (3)
N3i—Zn1—N2—C2 40.5 (6) C4—N4—C8—C7 2.1 (4)
N3—Zn1—N2—C2 −139.5 (6) Zn1—N4—C8—C7 −170.4 (2)
N4—Zn1—N2—C2 130.6 (6) C6—C7—C8—N4 1.3 (4)
N4i—Zn1—N2—C2 −49.4 (6) C9—C7—C8—N4 178.9 (3)
N2—Zn1—N3—C1 −168.8 (5) C6—C7—C9—O1 164.8 (4)
N2i—Zn1—N3—C1 11.2 (5) C8—C7—C9—O1 −12.6 (5)
N4—Zn1—N3—C1 −78.0 (5) C6—C7—C9—C10 −12.8 (5)
N4i—Zn1—N3—C1 102.0 (5) C8—C7—C9—C10 169.8 (3)
N2i—Zn1—N4—C8 58.2 (2) O1—C9—C10—C11 150.0 (4)
N3i—Zn1—N4—C8 −34.0 (2) C7—C9—C10—C11 −32.4 (5)
N3—Zn1—N4—C8 146.0 (2) O1—C9—C10—C12 −26.4 (5)
N2—Zn1—N4—C4 65.9 (2) C7—C9—C10—C12 151.2 (3)
N2i—Zn1—N4—C4 −114.1 (2) C12—C10—C11—C15 0.2 (5)
N3i—Zn1—N4—C4 153.6 (2) C9—C10—C11—C15 −176.1 (3)
N3—Zn1—N4—C4 −26.4 (2) C11—C10—C12—C13 0.1 (5)
C8—N4—C4—C5 −3.7 (4) C9—C10—C12—C13 176.6 (3)
Zn1—N4—C4—C5 169.0 (2) C10—C12—C13—C14 −0.5 (6)
N4—C4—C5—C6 1.7 (5) C12—C13—C14—C15 0.6 (6)
C4—C5—C6—C7 1.8 (5) C13—C14—C15—C11 −0.4 (6)
C5—C6—C7—C8 −3.2 (5) C10—C11—C15—C14 0.0 (5)
C5—C6—C7—C9 179.4 (3)

Symmetry codes: (i) −x+1, −y−1, −z; (ii) x, y−1, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2086).

References

  1. Armentano, D., De Munno, G., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem.45, 4626–4636. [DOI] [PubMed]
  2. Claramunt, A., Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2627–2630.
  3. Manson, J. L., Lee, D. W., Rheingold, A. L. & Miller, J. S. (1998). Inorg. Chem.37, 5966–5967. [DOI] [PubMed]
  4. Miller, J. S. (2006). Pramana, 67, 1–16.
  5. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019880/bq2086sup1.cif

e-64-0m993-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019880/bq2086Isup2.hkl

e-64-0m993-Isup2.hkl (141.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES