Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):m996–m997. doi: 10.1107/S1600536808019326

Di-μ-aqua-bis­[diaqua­bis(thio­cyanato-κN)iron(II)] 4-(4-chloro­phen­yl)-1,2,4-triazole hexa­solvate

Xiuhua Li a,*, Ya Zuo b
PMCID: PMC2961922  PMID: 21203091

Abstract

The title complex, [Fe2(NCS)4(H2O)6]·6C8H6ClN3, comprises two distorted octa­hedral iron(II) centers straddling a crystallographic inversion center and bridged by two aqua O atoms to form a quadrilateral core. The aqua O atom of the core is involved in hydrogen bonds with the triazole N atoms of the solvent mol­ecules, generating one-dimensional ladder motifs, and three inter­molecular C—H⋯S hydrogen bonds, forming a three-dimensional hydrogen-bonding network.

Related literature

For related literature, see: Hsu et al. (1999); MacMurdo et al. (2000); Nordlund & Eklund (1993); Sazinsky et al. (2004); Stubbe & Van der Donk (1998); Yoon et al. (2004); Zheng et al. (1999).graphic file with name e-64-0m996-scheme1.jpg

Experimental

Crystal data

  • [Fe2(NCS)4(H2O)6]·6C8H6ClN3

  • M r = 1529.76

  • Triclinic, Inline graphic

  • a = 7.944 (3) Å

  • b = 11.085 (5) Å

  • c = 19.912 (10) Å

  • α = 105.613 (10)°

  • β = 97.750 (10)°

  • γ = 97.932 (7)°

  • V = 1645.1 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 (2) K

  • 0.25 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.810, T max = 0.865

  • 8642 measured reflections

  • 5705 independent reflections

  • 2903 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.076

  • S = 0.77

  • 5705 reflections

  • 439 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019326/si2093sup1.cif

e-64-0m996-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019326/si2093Isup2.hkl

e-64-0m996-Isup2.hkl (279.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Fe1—N1 2.086 (3)
Fe1—O2 2.100 (2)
Fe1—O3 2.102 (3)
Fe1—N2 2.107 (3)
Fe1—O1i 2.264 (3)
Fe1—O1 2.281 (2)
N1—Fe1—O2 90.22 (11)
N1—Fe1—O3 89.68 (12)
O2—Fe1—O3 101.01 (10)
N1—Fe1—N2 178.33 (12)
O2—Fe1—O1i 89.04 (10)
O3—Fe1—O1i 169.95 (9)
N2—Fe1—O1i 91.32 (11)
O1i—Fe1—O1 78.36 (9)
Fe1i—O1—Fe1 101.64 (9)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N10ii 0.87 (3) 1.97 (3) 2.827 (4) 170 (3)
O1—H2⋯N9 0.88 (3) 1.94 (3) 2.819 (4) 173 (3)
O2—H3⋯N7iii 0.88 (3) 1.98 (3) 2.866 (5) 178 (3)
O2—H4⋯N4iv 0.88 (2) 1.97 (3) 2.853 (4) 175 (3)
O3—H5⋯N6 0.88 (3) 1.92 (3) 2.802 (4) 174 (3)
O3—H6⋯N3v 0.88 (2) 1.93 (2) 2.803 (4) 172 (3)
C3—H7⋯S2vi 0.93 2.72 3.624 (5) 165
C22—H21⋯S2ii 0.93 2.87 3.736 (5) 156
C11—H13⋯S1vii 0.93 2.87 3.783 (5) 167

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

supplementary crystallographic information

Comment

The diiron unit, with a carboxylate-rich coordination environment, continue to attract considerable attention due to the enzyme catalysis activity, which occur in related multicompent dioxygen dependent enzymes, including toluene monooxygenase (Sazinsky et al., 2004), the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contained the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central 2Fe2O quadrilateral have been currently obtained. Compared with the chelating to the iron atoms with the carboxylic oxygen atoms, it is rarely reported that the quadrilateral center includes both aqueous oxygen atoms. In order to explore the furthur details of the coordinated environment of the diiron system, the title complex was synthesized. As shown in Fig. 1, the complex structure comprises two distorted octahedron iron(II) centers straddling a crystallographic inversion center bridged by two aqueous oxygen atoms to form a quadrilateral core. The separation between the iron atoms is 3.523 (2) Å, which is remarkably different from that 3.0430 (7)Å reported previously, owing to the absence of two carboxylate ligands (Yoon et al., 2004). Moreover, the distance of Fe—Fe is comparatively distinguished from that diiron containing the other higher valence of iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). The bond lengths of Fe—O1 and Fe—O1a are 2.264 (3) and 2.281 (2) Å, and the angles of O1—Fe—O1a and Fe1a—O1—Fe are 78.36 (9)° and 101.64 (9)°. Each Fe(II) center resides in a six-coordinated octahedron of N2O4. On the equator plane, the center is bridged by two symmetrical O1 (water) to form the quadrilateral core with the mean distance of 2.272 (2) Å, and is connected with O2 and O3 offered by different waters as the terminal ligands with the bond lengths 2.102 (3)Å and 2.100 (2) Å. The axial positions are occupied by two N atoms from the NCS- anions with the distances 2.086 (3)Å and 2.107 (3)Å to the iron core. Selected bonds and angles are listed in Table 1. As indicated in Fig.2, the classic intermolecular O—H···N H-bonds are formed between the triazol nitrogen atom supplied by the uncoordinated organic ligand 1,2,4-triazol-chloro-benzene and aquous oxygen atoms supplied by the bridging and terminal water ligands to generate a one-dimension ladder structure with the N···O separation ranged from 2.803 (2)Å to 2.866 (4) Å. Moreover, there are three weak intermolecular hydrogen bonding contacts C—H···S that form a three-dimensional network with the C···S distances between 3.624 (5) Å and 3.783 (5) Å. The details of the hydrogen bonds are shown in Table 2.

Experimental

The compound was synthesized under hydrothermal conditions. A mixture of L (L=1,2,4-triazol-chloro-benzene) (0.3 mmol, 0.0538 g), FeSO4˙7H2O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 mL) was placed in a 25 mL acid digestion bomb and heated at 433 K for two days, then equably cooled to room temperature for three days. After washed by 5 ml water for twice, green block crystals of the compound were obtained.

Refinement

The water H atoms were located in a Fourier difference map and refined subject to an O—H restraint 0.88 (1)Å and an H···H restraint of 1.42 (2)Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å (Uiso(H)=1.2Ueq(C)). All of the non-hydrogen atoms were refined anisotropically.

Figures

Fig. 1.

Fig. 1.

The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering schemes. H atoms have been omitted for clarity. Atoms of the inversion-related half-complex are indicated with A, symmetry code: (-x + 1, -y, -z + 1).

Fig. 2.

Fig. 2.

The three-dimensional structure of the title complex, the chains were drawn in different colors. Dashed lines indicate hydrogen bonds.

Crystal data

[Fe2(NCS)4(H2O)6]·6C8H6ClN3 Z = 1
Mr = 1529.76 F000 = 780
Triclinic, P1 Dx = 1.544 Mg m3
a = 7.944 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 11.085 (5) Å Cell parameters from 1471 reflections
c = 19.912 (10) Å θ = 2.5–22.0º
α = 105.613 (10)º µ = 0.88 mm1
β = 97.750 (10)º T = 298 (2) K
γ = 97.932 (7)º Block, green
V = 1645.1 (12) Å3 0.25 × 0.21 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer 5705 independent reflections
Radiation source: fine-focus sealed tube 2903 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.032
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.811, Tmax = 0.865 k = −11→13
8642 measured reflections l = −21→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076   w = 1/[σ2(Fo2) + (0.0191P)2] where P = (Fo2 + 2Fc2)/3
S = 0.77 (Δ/σ)max = 0.002
5705 reflections Δρmax = 0.25 e Å3
439 parameters Δρmin = −0.24 e Å3
9 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.53640 (6) 0.12392 (5) 0.46090 (2) 0.04255 (16)
Cl1 0.81665 (15) 0.70325 (12) −0.09593 (6) 0.0942 (4)
Cl2 0.41822 (16) 0.88209 (11) 0.91545 (5) 0.0932 (4)
Cl3 0.28229 (14) 0.59403 (11) 1.00137 (5) 0.0879 (4)
N1 0.5944 (4) 0.2571 (3) 0.56111 (15) 0.0518 (9)
N2 0.4754 (3) −0.0065 (3) 0.35844 (15) 0.0493 (8)
N3 1.0886 (4) 1.1192 (3) 0.31387 (16) 0.0633 (10)
N4 0.9153 (4) 1.0935 (3) 0.31608 (16) 0.0545 (9)
N5 0.9562 (4) 0.9986 (3) 0.20814 (15) 0.0469 (8)
N6 0.2192 (4) 0.4095 (3) 0.51909 (16) 0.0575 (9)
N7 0.0498 (4) 0.3852 (3) 0.53051 (17) 0.0575 (9)
N8 0.2018 (4) 0.5377 (3) 0.62253 (16) 0.0447 (8)
N9 0.1490 (4) 0.1463 (3) 0.59896 (14) 0.0468 (8)
N10 −0.0244 (4) 0.1290 (3) 0.60322 (15) 0.0461 (8)
N11 0.1199 (3) 0.2618 (3) 0.70379 (14) 0.0395 (7)
O1 0.3213 (3) 0.0112 (2) 0.49662 (13) 0.0402 (6)
O2 0.7680 (3) 0.2021 (3) 0.43624 (14) 0.0524 (7)
O3 0.3662 (3) 0.2333 (3) 0.42643 (14) 0.0517 (7)
S1 0.67311 (13) 0.44880 (10) 0.69114 (5) 0.0643 (3)
S2 0.40098 (12) −0.15078 (10) 0.21581 (5) 0.0616 (3)
C1 0.6275 (4) 0.3375 (3) 0.61526 (19) 0.0414 (9)
C2 0.4443 (4) −0.0668 (3) 0.29919 (19) 0.0432 (10)
C3 0.8410 (5) 1.0220 (4) 0.2526 (2) 0.0539 (11)
H7 0.7229 0.9906 0.2394 0.065*
C4 1.1071 (5) 1.0625 (4) 0.2506 (2) 0.0658 (13)
H8 1.2132 1.0651 0.2357 0.079*
C5 0.9232 (5) 0.9260 (4) 0.13488 (19) 0.0478 (10)
C6 1.0521 (5) 0.9321 (4) 0.0947 (2) 0.0678 (13)
H9 1.1598 0.9828 0.1154 0.081*
C7 1.0201 (5) 0.8626 (4) 0.0238 (2) 0.0769 (14)
H10 1.1065 0.8654 −0.0032 0.092*
C8 0.8611 (5) 0.7902 (4) −0.00595 (19) 0.0603 (11)
C9 0.7322 (5) 0.7823 (4) 0.0331 (2) 0.0647 (12)
H11 0.6246 0.7318 0.0120 0.078*
C10 0.7645 (5) 0.8500 (4) 0.1036 (2) 0.0633 (12)
H12 0.6784 0.8446 0.1305 0.076*
C11 0.0450 (5) 0.4635 (4) 0.5915 (2) 0.0558 (11)
H13 −0.0540 0.4683 0.6115 0.067*
C12 0.3038 (5) 0.5010 (4) 0.5745 (2) 0.0594 (11)
H14 0.4198 0.5364 0.5802 0.071*
C13 0.2501 (5) 0.6260 (3) 0.69190 (19) 0.0439 (9)
C14 0.1375 (5) 0.6350 (4) 0.7392 (2) 0.0592 (11)
H15 0.0265 0.5867 0.7250 0.071*
C15 0.1885 (5) 0.7152 (4) 0.8074 (2) 0.0665 (12)
H16 0.1112 0.7220 0.8389 0.080*
C16 0.3512 (6) 0.7843 (4) 0.82879 (19) 0.0579 (11)
C17 0.4632 (5) 0.7791 (4) 0.7819 (2) 0.0668 (13)
H17 0.5730 0.8292 0.7963 0.080*
C18 0.4138 (5) 0.7001 (4) 0.7134 (2) 0.0657 (12)
H18 0.4902 0.6966 0.6817 0.079*
C19 −0.0374 (4) 0.1979 (3) 0.66556 (19) 0.0474 (10)
H19 −0.1410 0.2029 0.6821 0.057*
C20 0.2307 (5) 0.2255 (3) 0.65901 (19) 0.0497 (10)
H20 0.3497 0.2536 0.6699 0.060*
C21 0.1591 (4) 0.3441 (3) 0.77494 (18) 0.0412 (9)
C22 0.0297 (4) 0.3605 (3) 0.81508 (19) 0.0527 (11)
H21 −0.0833 0.3191 0.7954 0.063*
C23 0.0681 (5) 0.4380 (4) 0.8839 (2) 0.0591 (11)
H22 −0.0194 0.4500 0.9104 0.071*
C24 0.2350 (5) 0.4975 (4) 0.91359 (19) 0.0560 (11)
C25 0.3640 (5) 0.4839 (4) 0.8742 (2) 0.0591 (11)
H23 0.4763 0.5268 0.8941 0.071*
C26 0.3268 (4) 0.4065 (3) 0.80535 (19) 0.0524 (10)
H24 0.4147 0.3961 0.7790 0.063*
H1 0.237 (3) −0.039 (3) 0.4646 (12) 0.094 (15)*
H2 0.276 (4) 0.058 (3) 0.5303 (14) 0.108 (18)*
H3 0.854 (3) 0.260 (3) 0.4649 (14) 0.108 (18)*
H4 0.809 (4) 0.170 (3) 0.3975 (10) 0.078 (15)*
H5 0.323 (4) 0.287 (3) 0.4580 (14) 0.100 (17)*
H6 0.279 (3) 0.192 (3) 0.3924 (12) 0.085 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0324 (3) 0.0523 (3) 0.0402 (3) 0.0071 (3) 0.0074 (2) 0.0088 (3)
Cl1 0.0811 (9) 0.1224 (11) 0.0619 (7) 0.0147 (8) 0.0189 (6) −0.0027 (7)
Cl2 0.1116 (11) 0.0920 (9) 0.0594 (7) 0.0173 (8) 0.0104 (7) −0.0025 (6)
Cl3 0.0801 (8) 0.1053 (10) 0.0563 (7) −0.0014 (7) 0.0202 (6) −0.0076 (7)
N1 0.043 (2) 0.057 (2) 0.050 (2) 0.0085 (17) 0.0069 (16) 0.0060 (17)
N2 0.0364 (19) 0.060 (2) 0.050 (2) 0.0120 (16) 0.0093 (16) 0.0124 (18)
N3 0.046 (2) 0.089 (3) 0.051 (2) 0.0173 (19) 0.0071 (18) 0.012 (2)
N4 0.040 (2) 0.072 (2) 0.052 (2) 0.0103 (18) 0.0118 (17) 0.0165 (18)
N5 0.0368 (19) 0.060 (2) 0.048 (2) 0.0127 (17) 0.0119 (17) 0.0190 (17)
N6 0.050 (2) 0.057 (2) 0.059 (2) 0.0136 (18) 0.0077 (18) 0.0059 (18)
N7 0.047 (2) 0.057 (2) 0.062 (2) 0.0009 (18) 0.0069 (18) 0.0117 (19)
N8 0.0355 (19) 0.046 (2) 0.051 (2) 0.0050 (16) 0.0086 (16) 0.0118 (16)
N9 0.0387 (19) 0.052 (2) 0.046 (2) 0.0069 (16) 0.0086 (16) 0.0082 (17)
N10 0.0346 (19) 0.054 (2) 0.0464 (19) 0.0113 (16) 0.0056 (15) 0.0086 (17)
N11 0.0306 (18) 0.0447 (19) 0.0417 (18) 0.0053 (15) 0.0082 (15) 0.0103 (15)
O1 0.0296 (14) 0.0511 (17) 0.0322 (14) 0.0038 (13) 0.0064 (12) 0.0007 (12)
O2 0.0385 (16) 0.0649 (19) 0.0454 (17) −0.0036 (15) 0.0167 (14) 0.0044 (15)
O3 0.0391 (16) 0.0647 (19) 0.0468 (17) 0.0134 (15) 0.0049 (15) 0.0081 (15)
S1 0.0502 (7) 0.0720 (8) 0.0539 (6) 0.0008 (6) 0.0134 (5) −0.0062 (6)
S2 0.0481 (7) 0.0740 (8) 0.0474 (6) −0.0018 (6) 0.0103 (5) −0.0020 (6)
C1 0.024 (2) 0.050 (3) 0.052 (2) 0.0080 (18) 0.0129 (18) 0.014 (2)
C2 0.026 (2) 0.048 (3) 0.051 (2) 0.0037 (18) 0.0081 (19) 0.009 (2)
C3 0.037 (2) 0.066 (3) 0.060 (3) 0.005 (2) 0.014 (2) 0.022 (2)
C4 0.036 (3) 0.095 (4) 0.060 (3) 0.004 (2) 0.005 (2) 0.019 (3)
C5 0.042 (2) 0.060 (3) 0.046 (2) 0.014 (2) 0.011 (2) 0.019 (2)
C6 0.049 (3) 0.092 (3) 0.055 (3) −0.002 (2) 0.013 (2) 0.015 (3)
C7 0.055 (3) 0.116 (4) 0.056 (3) 0.007 (3) 0.020 (2) 0.017 (3)
C8 0.060 (3) 0.068 (3) 0.053 (3) 0.016 (2) 0.016 (2) 0.013 (2)
C9 0.048 (3) 0.075 (3) 0.062 (3) −0.002 (2) 0.014 (2) 0.008 (2)
C10 0.046 (3) 0.077 (3) 0.060 (3) 0.002 (2) 0.016 (2) 0.012 (2)
C11 0.038 (3) 0.060 (3) 0.065 (3) 0.001 (2) 0.013 (2) 0.014 (2)
C12 0.043 (2) 0.066 (3) 0.064 (3) 0.012 (2) 0.015 (2) 0.006 (2)
C13 0.042 (2) 0.046 (2) 0.047 (2) 0.010 (2) 0.011 (2) 0.018 (2)
C14 0.048 (3) 0.062 (3) 0.070 (3) 0.008 (2) 0.019 (2) 0.021 (2)
C15 0.070 (3) 0.072 (3) 0.057 (3) 0.013 (3) 0.024 (2) 0.012 (2)
C16 0.070 (3) 0.054 (3) 0.045 (3) 0.011 (2) 0.008 (2) 0.009 (2)
C17 0.059 (3) 0.069 (3) 0.057 (3) −0.008 (2) 0.009 (2) 0.002 (2)
C18 0.056 (3) 0.077 (3) 0.060 (3) −0.002 (2) 0.022 (2) 0.015 (2)
C19 0.027 (2) 0.062 (3) 0.052 (2) 0.004 (2) 0.0068 (19) 0.016 (2)
C20 0.034 (2) 0.060 (3) 0.055 (3) 0.010 (2) 0.018 (2) 0.010 (2)
C21 0.034 (2) 0.046 (2) 0.045 (2) 0.0076 (18) 0.0099 (18) 0.0128 (19)
C22 0.035 (2) 0.066 (3) 0.050 (3) 0.002 (2) 0.011 (2) 0.008 (2)
C23 0.047 (3) 0.072 (3) 0.059 (3) 0.012 (2) 0.023 (2) 0.013 (2)
C24 0.063 (3) 0.055 (3) 0.046 (3) 0.007 (2) 0.013 (2) 0.007 (2)
C25 0.044 (3) 0.068 (3) 0.054 (3) 0.001 (2) 0.011 (2) 0.003 (2)
C26 0.036 (2) 0.065 (3) 0.053 (3) 0.009 (2) 0.016 (2) 0.008 (2)

Geometric parameters (Å, °)

Fe1—N1 2.086 (3) S2—C2 1.633 (4)
Fe1—O2 2.100 (2) C3—H7 0.9300
Fe1—O3 2.102 (3) C4—H8 0.9300
Fe1—N2 2.107 (3) C5—C10 1.378 (4)
Fe1—O1i 2.264 (3) C5—C6 1.387 (4)
Fe1—O1 2.281 (2) C6—C7 1.383 (5)
Cl1—C8 1.752 (4) C6—H9 0.9300
Cl2—C16 1.738 (4) C7—C8 1.362 (5)
Cl3—C24 1.745 (4) C7—H10 0.9300
N1—C1 1.169 (4) C8—C9 1.373 (4)
N2—C2 1.162 (4) C9—C10 1.372 (4)
N3—C4 1.285 (4) C9—H11 0.9300
N3—N4 1.376 (4) C10—H12 0.9300
N4—C3 1.305 (4) C11—H13 0.9300
N5—C4 1.351 (4) C12—H14 0.9300
N5—C3 1.360 (4) C13—C14 1.377 (4)
N5—C5 1.432 (4) C13—C18 1.384 (4)
N6—C12 1.306 (4) C14—C15 1.380 (4)
N6—N7 1.397 (4) C14—H15 0.9300
N7—C11 1.298 (4) C15—C16 1.357 (5)
N8—C12 1.352 (4) C15—H16 0.9300
N8—C11 1.359 (4) C16—C17 1.370 (4)
N8—C13 1.428 (4) C17—C18 1.378 (4)
N9—C20 1.300 (4) C17—H17 0.9300
N9—N10 1.381 (3) C18—H18 0.9300
N10—C19 1.296 (4) C19—H19 0.9300
N11—C19 1.361 (4) C20—H20 0.9300
N11—C20 1.359 (4) C21—C26 1.387 (4)
N11—C21 1.429 (4) C21—C22 1.387 (4)
O1—Fe1i 2.264 (3) C22—C23 1.374 (4)
O1—H1 0.869 (10) C22—H21 0.9300
O1—H2 0.880 (10) C23—C24 1.371 (4)
O2—H3 0.884 (10) C23—H22 0.9300
O2—H4 0.881 (10) C24—C25 1.372 (4)
O3—H5 0.885 (10) C25—C26 1.375 (4)
O3—H6 0.875 (10) C25—H23 0.9300
S1—C1 1.632 (4) C26—H24 0.9300
N1—Fe1—O2 90.22 (11) C8—C7—H10 120.3
N1—Fe1—O3 89.68 (12) C6—C7—H10 120.3
O2—Fe1—O3 101.01 (10) C7—C8—C9 121.6 (4)
N1—Fe1—N2 178.33 (12) C7—C8—Cl1 120.2 (3)
O2—Fe1—N2 89.47 (11) C9—C8—Cl1 118.2 (3)
O3—Fe1—N2 88.76 (11) C8—C9—C10 119.0 (4)
N1—Fe1—O1i 90.32 (11) C8—C9—H11 120.5
O2—Fe1—O1i 89.04 (10) C10—C9—H11 120.5
O3—Fe1—O1i 169.95 (9) C9—C10—C5 120.7 (4)
N2—Fe1—O1i 91.32 (11) C9—C10—H12 119.6
N1—Fe1—O1 89.79 (10) C5—C10—H12 119.6
O2—Fe1—O1 167.40 (10) N7—C11—N8 111.9 (3)
O3—Fe1—O1 91.59 (10) N7—C11—H13 124.0
N2—Fe1—O1 90.87 (10) N8—C11—H13 124.0
O1i—Fe1—O1 78.36 (9) N6—C12—N8 111.7 (3)
C1—N1—Fe1 175.9 (3) N6—C12—H14 124.2
C2—N2—Fe1 172.4 (3) N8—C12—H14 124.2
C4—N3—N4 107.0 (3) C14—C13—C18 119.2 (4)
C3—N4—N3 105.8 (3) C14—C13—N8 120.7 (3)
C4—N5—C3 102.1 (3) C18—C13—N8 120.1 (3)
C4—N5—C5 129.6 (3) C15—C14—C13 120.4 (4)
C3—N5—C5 128.4 (3) C15—C14—H15 119.8
C12—N6—N7 106.4 (3) C13—C14—H15 119.8
C11—N7—N6 106.3 (3) C16—C15—C14 120.1 (4)
C12—N8—C11 103.7 (3) C16—C15—H16 120.0
C12—N8—C13 128.3 (3) C14—C15—H16 120.0
C11—N8—C13 127.9 (3) C15—C16—C17 120.2 (4)
C20—N9—N10 106.8 (3) C15—C16—Cl2 120.3 (3)
C19—N10—N9 106.9 (3) C17—C16—Cl2 119.4 (3)
C19—N11—C20 103.5 (3) C16—C17—C18 120.3 (4)
C19—N11—C21 128.0 (3) C16—C17—H17 119.8
C20—N11—C21 128.5 (3) C18—C17—H17 119.8
Fe1i—O1—Fe1 101.64 (9) C17—C18—C13 119.7 (4)
Fe1i—O1—H1 104 (3) C17—C18—H18 120.1
Fe1—O1—H1 119 (2) C13—C18—H18 120.1
Fe1i—O1—H2 110 (3) N10—C19—N11 111.4 (3)
Fe1—O1—H2 114 (2) N10—C19—H19 124.3
H1—O1—H2 108 (2) N11—C19—H19 124.3
Fe1—O2—H3 128 (2) N9—C20—N11 111.3 (3)
Fe1—O2—H4 125 (2) N9—C20—H20 124.3
H3—O2—H4 106 (2) N11—C20—H20 124.3
Fe1—O3—H5 119 (3) C26—C21—C22 119.0 (3)
Fe1—O3—H6 117 (2) C26—C21—N11 120.8 (3)
H5—O3—H6 106 (2) C22—C21—N11 120.2 (3)
N1—C1—S1 179.6 (3) C23—C22—C21 120.1 (3)
N2—C2—S2 179.7 (3) C23—C22—H21 119.9
N4—C3—N5 112.2 (3) C21—C22—H21 119.9
N4—C3—H7 123.9 C24—C23—C22 120.2 (4)
N5—C3—H7 123.9 C24—C23—H22 119.9
N3—C4—N5 112.9 (4) C22—C23—H22 119.9
N3—C4—H8 123.6 C25—C24—C23 120.4 (4)
N5—C4—H8 123.6 C25—C24—Cl3 119.9 (3)
C10—C5—C6 119.4 (4) C23—C24—Cl3 119.7 (3)
C10—C5—N5 120.8 (3) C24—C25—C26 119.8 (4)
C6—C5—N5 119.8 (3) C24—C25—H23 120.1
C5—C6—C7 119.9 (4) C26—C25—H23 120.1
C5—C6—H9 120.1 C25—C26—C21 120.4 (3)
C7—C6—H9 120.1 C25—C26—H24 119.8
C8—C7—C6 119.4 (4) C21—C26—H24 119.8

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N10ii 0.87 (3) 1.97 (3) 2.827 (4) 170 (3)
O1—H2···N9 0.88 (3) 1.94 (3) 2.819 (4) 173 (3)
O2—H3···N7iii 0.88 (3) 1.98 (3) 2.866 (5) 178 (3)
O2—H4···N4iv 0.88 (2) 1.97 (3) 2.853 (4) 175 (3)
O3—H5···N6 0.88 (3) 1.92 (3) 2.802 (4) 174 (3)
O3—H6···N3v 0.88 (2) 1.93 (2) 2.803 (4) 172 (3)
C3—H7···S2vi 0.93 2.72 3.624 (5) 165
C22—H21···S2ii 0.93 2.87 3.736 (5) 156
C11—H13···S1vii 0.93 2.87 3.783 (5) 167

Symmetry codes: (ii) −x, −y, −z+1; (iii) x+1, y, z; (iv) x, y−1, z; (v) x−1, y−1, z; (vi) x, y+1, z; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2093).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc.121, 5230–5237.
  3. MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem.39, 2254–2255. [DOI] [PubMed]
  4. Nordlund, P. & Eklund, H. (1993). J. Mol. Biol.232, 123–164. [DOI] [PubMed]
  5. Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem.279, 30600–30610. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev.98, 705–762. [DOI] [PubMed]
  10. Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.
  11. Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc.121, 2226–2235.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019326/si2093sup1.cif

e-64-0m996-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019326/si2093Isup2.hkl

e-64-0m996-Isup2.hkl (279.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES