Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):m1010. doi: 10.1107/S1600536808020564

(Benzoato-κ2 O,O′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane-κ4 N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate

Guang-Chuan Ou a,*, Min Zhang a, Xian-You Yuan a
PMCID: PMC2961933  PMID: 21203004

Abstract

The Ni atom in the title salt, [Ni(C7H5O2)(C16H36N4)]ClO4·H2O, is in a six-coordinate octa­hedral geometry. The metal atom is chelated by the carboxyl­ate group, and the macrocyclic ligand adopts a folded configuration. The cation, anion and water mol­ecules engage in hydrogen bonding to form a layer structure.

Related literature

For related literature, see: Jiang et al. (2005); Ou et al. (2008).graphic file with name e-64-m1010-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H5O2)(C16H36N4)]ClO4·H2O

  • M r = 581.77

  • Monoclinic, Inline graphic

  • a = 15.1239 (14) Å

  • b = 8.9351 (8) Å

  • c = 20.9918 (19) Å

  • β = 102.414 (2)°

  • V = 2770.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 173 (2) K

  • 0.48 × 0.40 × 0.21 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.688, T max = 0.843

  • 15892 measured reflections

  • 6007 independent reflections

  • 4802 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.121

  • S = 1.10

  • 6007 reflections

  • 337 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020564/ng2469sup1.cif

e-64-m1010-sup1.cif (29.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020564/ng2469Isup2.hkl

e-64-m1010-Isup2.hkl (294.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—N4 2.0859 (19)
Ni1—N2 2.1053 (18)
Ni1—N3 2.117 (2)
Ni1—N1 2.1333 (19)
Ni1—O1 2.1379 (17)
Ni1—O2 2.1698 (16)
O1—Ni1—O2 61.52 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1W 0.93 2.16 3.080 (3) 168
O1W—H1D⋯O6 0.844 (19) 2.12 (3) 2.934 (4) 162 (6)
O1W—H1E⋯O2 0.86 (2) 2.18 (4) 2.931 (3) 146 (5)

Acknowledgments

This work was supported financially by the Foundation for University Key Teachers of the Education Department of Hunan Province, and the Key Subject Construction Project of Hunan Province (grant No. 2006-180).

supplementary crystallographic information

Comment

It's important to control the geometries of ML2+ [M = Ni(II), Co(II), Cu(II)] with cis- or trans-conformation, since they form different structures and show different properties (Jiang et al., 2005). A racemic nickel(II) complex with cis-conformation can be separated to two enantiomers by the reactions of [Ni(rac-L)]2+ with chiral amino acid such as phenylalanine (Ou et al., 2008). Then we employ no chiral benzoic acid as separation reagent, but the result of experiment indicate a racemic complex of [Ni(rac-L)(bz)(ClO4)]H2O is obtained instead of two enantiomers. In the asymmetric unit of (I), contains one [Ni(rac-L)(bz)]+ cation, one [ClO4]- anion and one water molecule. As illustrated in Fig.1, The six-coordinated Ni2+ of [Ni(rac-L)(bz)]+ cation display a distorted octahedral geometry by coordination with four N atoms of macrocyclic ligand L in a folded configuration, and two carboxylate oxygen atoms of benzoic acid in cis-position. The Ni—N distances ranging from 2.086 (19) to 2.133 (19) Å, are slight shorter than the Ni—O distance [2.138 (17) to 2.170 (16) Å] (Table 1). Neighbouring cations and anions are discrete, connected to each other through two intermolecular hydrogen bond (Table 2), water and oxygen atom of benzoato anion, and water and oxygen atom of [ClO4]- anion (See Fig. 2).

Experimental

benzoic acid (H2bz, 0.122 g, 1 mmol) was mixed with NaOH (0.040 g, 1 mmol) dissolved in 10 ml of water. To this solution was added [Ni(rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. The solution was left to stand at room temperature and blue crystals formed after several weeks(yield 53%).

Refinement

H atoms attached to O (water) atoms were located in difference Fourier maps and condtrained to ride on their carrier atoms, with O—H distances in the range 0.82 Å, and with Uiso (H) = 1.5 times Ueq (O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Two intermolecular hydrogen bond, O1w and O2 of benzoato anion, and O1w and O6 of [ClO4]- anion.

Crystal data

[Ni(C7H5O2)(C16H36N4)]ClO4·H2O F000 = 1240
Mr = 581.77 Dx = 1.395 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8118 reflections
a = 15.1239 (14) Å θ = 2.7–27.1º
b = 8.9351 (8) Å µ = 0.84 mm1
c = 20.9918 (19) Å T = 173 (2) K
β = 102.414 (2)º Block, blue
V = 2770.4 (4) Å3 0.48 × 0.40 × 0.21 mm
Z = 4

Data collection

Bruker SMART diffractometer 6007 independent reflections
Radiation source: fine-focus sealed tube 4802 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 173(2) K θmax = 27.1º
φ and ω scans θmin = 1.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −16→19
Tmin = 0.688, Tmax = 0.843 k = −11→11
15892 measured reflections l = −26→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0673P)2 + 1.378P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
6007 reflections Δρmax = 0.43 e Å3
337 parameters Δρmin = −0.44 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.250097 (18) 0.59158 (3) 0.132452 (13) 0.01980 (10)
N4 0.15871 (13) 0.4136 (2) 0.11775 (9) 0.0229 (4)
H4D 0.1685 0.3575 0.1559 0.027*
O1 0.30893 (11) 0.79837 (19) 0.11139 (8) 0.0256 (4)
O2 0.20094 (11) 0.69355 (18) 0.03764 (8) 0.0256 (4)
N1 0.16886 (12) 0.7161 (2) 0.18507 (9) 0.0226 (4)
H1C 0.1839 0.8159 0.1806 0.027*
N3 0.33157 (13) 0.4525 (2) 0.08693 (9) 0.0237 (4)
H3A 0.3228 0.4868 0.0442 0.028*
N2 0.33164 (12) 0.5457 (2) 0.22499 (9) 0.0209 (4)
H2C 0.3111 0.4562 0.2392 0.025*
C9 0.20586 (16) 0.6787 (3) 0.25445 (11) 0.0259 (5)
H9A 0.1799 0.5828 0.2653 0.031*
H9B 0.1890 0.7577 0.2827 0.031*
C18 0.27474 (16) 0.9066 (3) 0.00497 (11) 0.0233 (5)
C17 0.26017 (15) 0.7949 (3) 0.05489 (11) 0.0232 (5)
C10 0.30721 (16) 0.6661 (3) 0.26643 (12) 0.0277 (5)
H10A 0.3333 0.7623 0.2560 0.033*
H10B 0.3321 0.6431 0.3130 0.033*
C13 0.45580 (16) 0.4159 (3) 0.18539 (12) 0.0273 (5)
H13A 0.4254 0.3212 0.1924 0.033*
H13B 0.5218 0.3976 0.1982 0.033*
C11 0.43209 (15) 0.5309 (3) 0.23209 (11) 0.0249 (5)
H11 0.4566 0.6300 0.2221 0.030*
C2 0.18611 (17) 0.3218 (3) 0.06704 (12) 0.0296 (5)
H2A 0.1664 0.3708 0.0240 0.036*
H2B 0.1566 0.2225 0.0650 0.036*
C14 0.43295 (16) 0.4485 (3) 0.11189 (12) 0.0273 (5)
C16 0.47053 (18) 0.5992 (3) 0.09632 (14) 0.0355 (6)
H16A 0.5365 0.5997 0.1117 0.053*
H16B 0.4439 0.6791 0.1182 0.053*
H16C 0.4553 0.6158 0.0491 0.053*
C3 0.06071 (15) 0.4551 (3) 0.10069 (12) 0.0273 (5)
H3 0.0499 0.5183 0.0604 0.033*
C8 0.02322 (18) 0.7801 (3) 0.21821 (14) 0.0375 (6)
H8A 0.0347 0.7164 0.2571 0.056*
H8B −0.0422 0.7892 0.2014 0.056*
H8C 0.0491 0.8796 0.2296 0.056*
C5 0.03588 (16) 0.5467 (3) 0.15609 (13) 0.0300 (5)
H5A −0.0309 0.5462 0.1496 0.036*
H5B 0.0600 0.4931 0.1974 0.036*
C21 0.3060 (2) 1.1047 (3) −0.08971 (13) 0.0344 (6)
H21 0.3168 1.1726 −0.1220 0.041*
C23 0.20363 (17) 0.9519 (3) −0.04531 (13) 0.0318 (6)
H23 0.1443 0.9144 −0.0475 0.038*
C22 0.21979 (19) 1.0518 (3) −0.09210 (13) 0.0368 (6)
H22 0.1712 1.0839 −0.1259 0.044*
C20 0.37688 (18) 1.0589 (3) −0.04021 (13) 0.0313 (6)
H20 0.4365 1.0940 −0.0391 0.038*
C1 0.28810 (17) 0.3027 (3) 0.08246 (13) 0.0312 (6)
H1A 0.3076 0.2488 0.1243 0.037*
H1B 0.3066 0.2432 0.0478 0.037*
C7 0.03832 (18) 0.8008 (3) 0.10272 (13) 0.0362 (6)
H7A 0.0533 0.9065 0.1118 0.054*
H7B −0.0271 0.7904 0.0863 0.054*
H7C 0.0703 0.7638 0.0699 0.054*
C19 0.36099 (16) 0.9624 (3) 0.00744 (12) 0.0278 (5)
H19 0.4094 0.9340 0.0422 0.033*
C12 0.47882 (18) 0.4865 (3) 0.30144 (12) 0.0351 (6)
H12A 0.4629 0.5584 0.3324 0.053*
H12B 0.5446 0.4866 0.3054 0.053*
H12C 0.4590 0.3862 0.3110 0.053*
C4 −0.00056 (18) 0.3171 (3) 0.08730 (14) 0.0389 (7)
H4A 0.0125 0.2620 0.0500 0.058*
H4B −0.0641 0.3488 0.0774 0.058*
H4C 0.0107 0.2523 0.1259 0.058*
C6 0.06727 (15) 0.7097 (3) 0.16554 (11) 0.0266 (5)
C15 0.47577 (19) 0.3267 (3) 0.07671 (13) 0.0375 (6)
H15A 0.5419 0.3357 0.0885 0.056*
H15B 0.4550 0.3386 0.0294 0.056*
H15C 0.4578 0.2279 0.0897 0.056*
O1W 0.2792 (2) 0.5335 (4) −0.05895 (13) 0.0872 (11)
H1D 0.246 (3) 0.505 (7) −0.0943 (18) 0.131*
H1E 0.238 (3) 0.581 (6) −0.045 (3) 0.131*
Cl1 0.23445 (4) 0.37222 (7) −0.24307 (3) 0.03201 (16)
O3 0.21061 (14) 0.2166 (2) −0.24210 (9) 0.0415 (5)
O5 0.19455 (19) 0.4317 (2) −0.30582 (11) 0.0585 (7)
O4 0.32947 (18) 0.3837 (4) −0.23043 (17) 0.0865 (10)
O6 0.1992 (2) 0.4479 (3) −0.19397 (11) 0.0654 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01889 (16) 0.02163 (17) 0.01882 (16) −0.00185 (11) 0.00392 (11) 0.00090 (11)
N4 0.0240 (10) 0.0251 (10) 0.0189 (9) −0.0024 (8) 0.0033 (8) 0.0007 (7)
O1 0.0255 (8) 0.0277 (9) 0.0232 (8) −0.0025 (7) 0.0043 (7) 0.0029 (7)
O2 0.0244 (8) 0.0258 (9) 0.0255 (8) −0.0029 (7) 0.0032 (7) 0.0017 (7)
N1 0.0207 (9) 0.0227 (10) 0.0246 (10) −0.0001 (8) 0.0057 (8) 0.0002 (8)
N3 0.0209 (9) 0.0282 (11) 0.0224 (10) −0.0001 (8) 0.0056 (8) 0.0008 (8)
N2 0.0192 (9) 0.0232 (10) 0.0198 (9) −0.0005 (7) 0.0034 (7) 0.0013 (7)
C9 0.0291 (12) 0.0268 (13) 0.0226 (11) 0.0015 (10) 0.0074 (9) −0.0020 (9)
C18 0.0246 (11) 0.0233 (12) 0.0235 (11) 0.0021 (9) 0.0083 (9) 0.0006 (9)
C17 0.0201 (11) 0.0244 (12) 0.0256 (11) 0.0035 (9) 0.0063 (9) 0.0003 (9)
C10 0.0284 (13) 0.0283 (13) 0.0245 (12) 0.0003 (10) 0.0012 (10) −0.0041 (10)
C13 0.0232 (12) 0.0300 (13) 0.0276 (12) 0.0031 (9) 0.0034 (10) 0.0012 (10)
C11 0.0208 (11) 0.0282 (13) 0.0249 (12) −0.0010 (9) 0.0028 (9) 0.0030 (9)
C2 0.0296 (13) 0.0339 (14) 0.0257 (12) −0.0074 (10) 0.0067 (10) −0.0093 (10)
C14 0.0221 (12) 0.0329 (13) 0.0282 (12) 0.0024 (10) 0.0082 (10) 0.0010 (10)
C16 0.0263 (13) 0.0443 (17) 0.0367 (15) −0.0027 (11) 0.0090 (11) 0.0089 (12)
C3 0.0193 (11) 0.0340 (14) 0.0269 (12) −0.0038 (10) 0.0015 (9) −0.0004 (10)
C8 0.0302 (13) 0.0434 (17) 0.0420 (16) 0.0040 (12) 0.0142 (12) −0.0067 (12)
C5 0.0205 (12) 0.0370 (14) 0.0331 (13) −0.0047 (10) 0.0073 (10) −0.0024 (11)
C21 0.0448 (16) 0.0312 (14) 0.0316 (14) 0.0048 (11) 0.0182 (12) 0.0095 (11)
C23 0.0252 (12) 0.0350 (14) 0.0343 (14) −0.0005 (10) 0.0042 (10) 0.0050 (11)
C22 0.0345 (14) 0.0425 (16) 0.0311 (14) 0.0068 (12) 0.0018 (11) 0.0102 (12)
C20 0.0285 (13) 0.0333 (14) 0.0353 (14) −0.0006 (11) 0.0138 (11) 0.0035 (11)
C1 0.0333 (14) 0.0250 (13) 0.0377 (14) −0.0004 (10) 0.0129 (11) −0.0067 (10)
C7 0.0269 (13) 0.0417 (16) 0.0378 (14) 0.0092 (11) 0.0023 (11) 0.0027 (12)
C19 0.0234 (12) 0.0320 (13) 0.0284 (12) 0.0027 (10) 0.0066 (10) 0.0046 (10)
C12 0.0290 (13) 0.0463 (17) 0.0266 (13) 0.0064 (12) −0.0017 (10) 0.0001 (12)
C4 0.0270 (13) 0.0446 (17) 0.0444 (16) −0.0144 (12) 0.0060 (11) −0.0119 (13)
C6 0.0212 (11) 0.0329 (14) 0.0253 (12) 0.0016 (10) 0.0045 (9) −0.0017 (10)
C15 0.0332 (14) 0.0447 (17) 0.0371 (15) 0.0087 (12) 0.0134 (11) 0.0004 (12)
O1W 0.108 (3) 0.104 (2) 0.0420 (15) 0.051 (2) −0.0002 (15) −0.0162 (15)
Cl1 0.0377 (3) 0.0263 (3) 0.0303 (3) 0.0022 (2) 0.0035 (3) −0.0017 (2)
O3 0.0604 (13) 0.0272 (10) 0.0369 (10) −0.0006 (9) 0.0105 (9) 0.0005 (8)
O5 0.096 (2) 0.0360 (12) 0.0376 (12) 0.0114 (12) 0.0018 (12) 0.0082 (9)
O4 0.0395 (14) 0.112 (3) 0.104 (2) −0.0220 (15) 0.0060 (15) 0.0054 (19)
O6 0.097 (2) 0.0534 (15) 0.0436 (13) 0.0220 (14) 0.0098 (13) −0.0208 (11)

Geometric parameters (Å, °)

Ni1—N4 2.0859 (19) C16—H16C 0.9800
Ni1—N2 2.1053 (18) C3—C4 1.532 (3)
Ni1—N3 2.117 (2) C3—C5 1.533 (4)
Ni1—N1 2.1333 (19) C3—H3 1.0000
Ni1—O1 2.1379 (17) C8—C6 1.542 (3)
Ni1—O2 2.1698 (16) C8—H8A 0.9800
N4—C2 1.472 (3) C8—H8B 0.9800
N4—C3 1.495 (3) C8—H8C 0.9800
N4—H4D 0.9300 C5—C6 1.531 (4)
O1—C17 1.255 (3) C5—H5A 0.9900
O2—C17 1.271 (3) C5—H5B 0.9900
N1—C9 1.482 (3) C21—C22 1.377 (4)
N1—C6 1.504 (3) C21—C20 1.385 (4)
N1—H1C 0.9300 C21—H21 0.9500
N3—C1 1.485 (3) C23—C22 1.387 (4)
N3—C14 1.510 (3) C23—H23 0.9500
N3—H3A 0.9300 C22—H22 0.9500
N2—C10 1.480 (3) C20—C19 1.380 (3)
N2—C11 1.500 (3) C20—H20 0.9500
N2—H2C 0.9300 C1—H1A 0.9900
C9—C10 1.503 (3) C1—H1B 0.9900
C9—H9A 0.9900 C7—C6 1.531 (4)
C9—H9B 0.9900 C7—H7A 0.9800
C18—C19 1.387 (3) C7—H7B 0.9800
C18—C23 1.395 (3) C7—H7C 0.9800
C18—C17 1.497 (3) C19—H19 0.9500
C10—H10A 0.9900 C12—H12A 0.9800
C10—H10B 0.9900 C12—H12B 0.9800
C13—C11 1.515 (3) C12—H12C 0.9800
C13—C14 1.535 (3) C4—H4A 0.9800
C13—H13A 0.9900 C4—H4B 0.9800
C13—H13B 0.9900 C4—H4C 0.9800
C11—C12 1.528 (3) C15—H15A 0.9800
C11—H11 1.0000 C15—H15B 0.9800
C2—C1 1.516 (3) C15—H15C 0.9800
C2—H2A 0.9900 O1W—H1D 0.844 (19)
C2—H2B 0.9900 O1W—H1E 0.86 (2)
C14—C16 1.524 (4) Cl1—O4 1.408 (3)
C14—C15 1.535 (4) Cl1—O5 1.428 (2)
C16—H16A 0.9800 Cl1—O6 1.428 (2)
C16—H16B 0.9800 Cl1—O3 1.437 (2)
N4—Ni1—N2 103.07 (8) C16—C14—C15 108.0 (2)
N4—Ni1—N3 85.25 (8) C13—C14—C15 108.8 (2)
N2—Ni1—N3 91.14 (7) C14—C16—H16A 109.5
N4—Ni1—N1 92.13 (8) C14—C16—H16B 109.5
N2—Ni1—N1 84.96 (7) H16A—C16—H16B 109.5
N3—Ni1—N1 174.71 (8) C14—C16—H16C 109.5
N4—Ni1—O1 156.97 (7) H16A—C16—H16C 109.5
N2—Ni1—O1 99.89 (7) H16B—C16—H16C 109.5
N3—Ni1—O1 96.05 (7) N4—C3—C4 111.9 (2)
N1—Ni1—O1 88.16 (7) N4—C3—C5 110.04 (19)
N4—Ni1—O2 95.68 (7) C4—C3—C5 109.4 (2)
N2—Ni1—O2 160.97 (7) N4—C3—H3 108.5
N3—Ni1—O2 87.15 (7) C4—C3—H3 108.5
N1—Ni1—O2 97.70 (7) C5—C3—H3 108.5
O1—Ni1—O2 61.52 (6) C6—C8—H8A 109.5
C2—N4—C3 112.56 (18) C6—C8—H8B 109.5
C2—N4—Ni1 104.54 (14) H8A—C8—H8B 109.5
C3—N4—Ni1 115.95 (15) C6—C8—H8C 109.5
C2—N4—H4D 107.8 H8A—C8—H8C 109.5
C3—N4—H4D 107.8 H8B—C8—H8C 109.5
Ni1—N4—H4D 107.8 C6—C5—C3 119.1 (2)
C17—O1—Ni1 89.32 (14) C6—C5—H5A 107.5
C17—O2—Ni1 87.50 (13) C3—C5—H5A 107.5
C9—N1—C6 114.04 (17) C6—C5—H5B 107.5
C9—N1—Ni1 104.68 (13) C3—C5—H5B 107.5
C6—N1—Ni1 120.50 (14) H5A—C5—H5B 107.0
C9—N1—H1C 105.5 C22—C21—C20 120.0 (2)
C6—N1—H1C 105.5 C22—C21—H21 120.0
Ni1—N1—H1C 105.5 C20—C21—H21 120.0
C1—N3—C14 113.78 (19) C22—C23—C18 119.9 (2)
C1—N3—Ni1 105.34 (14) C22—C23—H23 120.1
C14—N3—Ni1 120.21 (15) C18—C23—H23 120.1
C1—N3—H3A 105.4 C21—C22—C23 120.3 (2)
C14—N3—H3A 105.4 C21—C22—H22 119.9
Ni1—N3—H3A 105.4 C23—C22—H22 119.9
C10—N2—C11 112.42 (18) C19—C20—C21 120.0 (2)
C10—N2—Ni1 103.31 (14) C19—C20—H20 120.0
C11—N2—Ni1 119.26 (14) C21—C20—H20 120.0
C10—N2—H2C 107.1 N3—C1—C2 109.2 (2)
C11—N2—H2C 107.1 N3—C1—H1A 109.8
Ni1—N2—H2C 107.1 C2—C1—H1A 109.8
N1—C9—C10 109.72 (18) N3—C1—H1B 109.8
N1—C9—H9A 109.7 C2—C1—H1B 109.8
C10—C9—H9A 109.7 H1A—C1—H1B 108.3
N1—C9—H9B 109.7 C6—C7—H7A 109.5
C10—C9—H9B 109.7 C6—C7—H7B 109.5
H9A—C9—H9B 108.2 H7A—C7—H7B 109.5
C19—C18—C23 119.3 (2) C6—C7—H7C 109.5
C19—C18—C17 119.5 (2) H7A—C7—H7C 109.5
C23—C18—C17 121.1 (2) H7B—C7—H7C 109.5
O1—C17—O2 121.4 (2) C20—C19—C18 120.4 (2)
O1—C17—C18 120.0 (2) C20—C19—H19 119.8
O2—C17—C18 118.5 (2) C18—C19—H19 119.8
O1—C17—Ni1 60.09 (12) C11—C12—H12A 109.5
O2—C17—Ni1 61.52 (12) C11—C12—H12B 109.5
C18—C17—Ni1 172.92 (16) H12A—C12—H12B 109.5
N2—C10—C9 109.31 (19) C11—C12—H12C 109.5
N2—C10—H10A 109.8 H12A—C12—H12C 109.5
C9—C10—H10A 109.8 H12B—C12—H12C 109.5
N2—C10—H10B 109.8 C3—C4—H4A 109.5
C9—C10—H10B 109.8 C3—C4—H4B 109.5
H10A—C10—H10B 108.3 H4A—C4—H4B 109.5
C11—C13—C14 119.2 (2) C3—C4—H4C 109.5
C11—C13—H13A 107.5 H4A—C4—H4C 109.5
C14—C13—H13A 107.5 H4B—C4—H4C 109.5
C11—C13—H13B 107.5 N1—C6—C7 107.51 (19)
C14—C13—H13B 107.5 N1—C6—C5 109.96 (19)
H13A—C13—H13B 107.0 C7—C6—C5 111.7 (2)
N2—C11—C13 111.78 (19) N1—C6—C8 111.26 (19)
N2—C11—C12 111.64 (19) C7—C6—C8 108.2 (2)
C13—C11—C12 108.4 (2) C5—C6—C8 108.1 (2)
N2—C11—H11 108.3 C14—C15—H15A 109.5
C13—C11—H11 108.3 C14—C15—H15B 109.5
C12—C11—H11 108.3 H15A—C15—H15B 109.5
N4—C2—C1 109.87 (19) C14—C15—H15C 109.5
N4—C2—H2A 109.7 H15A—C15—H15C 109.5
C1—C2—H2A 109.7 H15B—C15—H15C 109.5
N4—C2—H2B 109.7 H1D—O1W—H1E 96 (5)
C1—C2—H2B 109.7 O4—Cl1—O5 110.99 (19)
H2A—C2—H2B 108.2 O4—Cl1—O6 110.70 (19)
N3—C14—C16 107.6 (2) O5—Cl1—O6 109.89 (15)
N3—C14—C13 110.23 (19) O4—Cl1—O3 108.47 (17)
C16—C14—C13 111.7 (2) O5—Cl1—O3 108.38 (13)
N3—C14—C15 110.6 (2) O6—Cl1—O3 108.32 (15)
N2—Ni1—N4—C2 −108.67 (15) C19—C18—C17—O2 −145.7 (2)
N3—Ni1—N4—C2 −18.60 (15) C23—C18—C17—O2 32.2 (3)
N1—Ni1—N4—C2 166.01 (15) N4—Ni1—C17—O1 174.52 (12)
O1—Ni1—N4—C2 75.7 (2) N2—Ni1—C17—O1 −9.01 (17)
O2—Ni1—N4—C2 68.05 (15) N3—Ni1—C17—O1 −100.98 (13)
C17—Ni1—N4—C2 68.56 (17) N1—Ni1—C17—O1 78.34 (14)
N2—Ni1—N4—C3 126.78 (15) O2—Ni1—C17—O1 175.5 (2)
N3—Ni1—N4—C3 −143.15 (16) N4—Ni1—C17—O2 −0.99 (17)
N1—Ni1—N4—C3 41.46 (16) N2—Ni1—C17—O2 175.48 (12)
O1—Ni1—N4—C3 −48.8 (3) N3—Ni1—C17—O2 83.51 (13)
O2—Ni1—N4—C3 −56.50 (16) N1—Ni1—C17—O2 −97.16 (13)
C17—Ni1—N4—C3 −55.99 (18) O1—Ni1—C17—O2 −175.5 (2)
N4—Ni1—O1—C17 −11.3 (3) C11—N2—C10—C9 177.47 (19)
N2—Ni1—O1—C17 173.02 (13) Ni1—N2—C10—C9 47.6 (2)
N3—Ni1—O1—C17 80.80 (14) N1—C9—C10—N2 −60.6 (3)
N1—Ni1—O1—C17 −102.42 (14) C10—N2—C11—C13 −175.36 (19)
O2—Ni1—O1—C17 −2.63 (13) Ni1—N2—C11—C13 −54.3 (2)
N4—Ni1—O2—C17 179.21 (13) C10—N2—C11—C12 63.1 (3)
N2—Ni1—O2—C17 −10.6 (3) Ni1—N2—C11—C12 −175.85 (17)
N3—Ni1—O2—C17 −95.85 (14) C14—C13—C11—N2 68.1 (3)
N1—Ni1—O2—C17 86.27 (14) C14—C13—C11—C12 −168.4 (2)
O1—Ni1—O2—C17 2.60 (12) C3—N4—C2—C1 171.8 (2)
N4—Ni1—N1—C9 93.70 (15) Ni1—N4—C2—C1 45.1 (2)
N2—Ni1—N1—C9 −9.24 (14) C1—N3—C14—C16 164.6 (2)
O1—Ni1—N1—C9 −109.34 (14) Ni1—N3—C14—C16 −69.1 (2)
O2—Ni1—N1—C9 −170.27 (14) C1—N3—C14—C13 −73.3 (2)
C17—Ni1—N1—C9 −139.25 (14) Ni1—N3—C14—C13 52.9 (2)
N4—Ni1—N1—C6 −36.32 (17) C1—N3—C14—C15 47.0 (3)
N2—Ni1—N1—C6 −139.26 (17) Ni1—N3—C14—C15 173.21 (16)
O1—Ni1—N1—C6 120.64 (17) C11—C13—C14—N3 −66.7 (3)
O2—Ni1—N1—C6 59.71 (17) C11—C13—C14—C16 52.9 (3)
C17—Ni1—N1—C6 90.73 (17) C11—C13—C14—C15 171.9 (2)
N4—Ni1—N3—C1 −10.58 (15) C2—N4—C3—C4 56.6 (3)
N2—Ni1—N3—C1 92.45 (15) Ni1—N4—C3—C4 176.92 (17)
O1—Ni1—N3—C1 −167.48 (15) C2—N4—C3—C5 178.5 (2)
O2—Ni1—N3—C1 −106.52 (15) Ni1—N4—C3—C5 −61.2 (2)
C17—Ni1—N3—C1 −137.33 (15) N4—C3—C5—C6 74.1 (3)
N4—Ni1—N3—C14 −140.64 (17) C4—C3—C5—C6 −162.6 (2)
N2—Ni1—N3—C14 −37.62 (17) C19—C18—C23—C22 0.0 (4)
O1—Ni1—N3—C14 62.45 (17) C17—C18—C23—C22 −177.9 (2)
O2—Ni1—N3—C14 123.41 (17) C20—C21—C22—C23 −0.4 (4)
N4—Ni1—N2—C10 −111.54 (15) C18—C23—C22—C21 1.0 (4)
N3—Ni1—N2—C10 163.07 (15) C22—C21—C20—C19 −1.2 (4)
N1—Ni1—N2—C10 −20.52 (14) C14—N3—C1—C2 171.41 (19)
O1—Ni1—N2—C10 66.73 (15) Ni1—N3—C1—C2 37.7 (2)
O2—Ni1—N2—C10 78.5 (3) N4—C2—C1—N3 −58.1 (3)
C17—Ni1—N2—C10 71.37 (17) C21—C20—C19—C18 2.2 (4)
N4—Ni1—N2—C11 122.90 (17) C23—C18—C19—C20 −1.6 (4)
N3—Ni1—N2—C11 37.51 (17) C17—C18—C19—C20 176.3 (2)
N1—Ni1—N2—C11 −146.08 (17) C9—N1—C6—C7 160.6 (2)
O1—Ni1—N2—C11 −58.84 (17) Ni1—N1—C6—C7 −73.6 (2)
O2—Ni1—N2—C11 −47.1 (3) C9—N1—C6—C5 −77.6 (2)
C6—N1—C9—C10 171.69 (19) Ni1—N1—C6—C5 48.2 (2)
Ni1—N1—C9—C10 38.0 (2) C9—N1—C6—C8 42.2 (3)
Ni1—O1—C17—O2 4.6 (2) Ni1—N1—C6—C8 168.01 (17)
Ni1—O1—C17—C18 −171.82 (19) C3—C5—C6—N1 −65.4 (3)
Ni1—O2—C17—O1 −4.6 (2) C3—C5—C6—C7 53.9 (3)
C19—C18—C17—O1 30.9 (3) C3—C5—C6—C8 172.9 (2)
C23—C18—C17—O1 −151.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1W 0.93 2.16 3.080 (3) 168
O1W—H1D···O6 0.844 (19) 2.12 (3) 2.934 (4) 162 (6)
O1W—H1E···O2 0.86 (2) 2.18 (4) 2.931 (3) 146 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2469).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jiang, L., Feng, X. L. & Lu, T. B. (2005). Cryst. Growth Des.5, 1469–1475.
  3. Ou, G. C., Jiang, L., Feng, X. L. & Lu, T. B. (2008). Inorg. Chem.47, 2710–2718. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020564/ng2469sup1.cif

e-64-m1010-sup1.cif (29.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020564/ng2469Isup2.hkl

e-64-m1010-Isup2.hkl (294.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES