Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):m1012. doi: 10.1107/S1600536808020461

Dichloridobis(3,5-dimethyl-1H-pyrazol-4-amine-κN 2)cobalt(II)

Xing-Wei Cai a,*, Yu-Yuan Zhao a, Guang-Fan Han a
PMCID: PMC2961935  PMID: 21203006

Abstract

In the title compound, [CoCl2(C5H9N3)2], the CoII atom adopts a slightly distorted tetra­hedral coordination geometry provided by two chloride anions and two N atoms from the organic ligands. The dihedral angle between the pyrazole rings is 85.91 (10)°. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯N and N—H⋯Cl hydrogen-bonding inter­actions.

Related literature

For the crystal structures of related pyrazole compounds, see: Francisco et al. (1980); Murray et al. (1988); Zhao & Eichhorn (2005).graphic file with name e-64-m1012-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C5H9N3)2]

  • M r = 352.13

  • Triclinic, Inline graphic

  • a = 9.182 (3) Å

  • b = 9.191 (4) Å

  • c = 10.085 (3) Å

  • α = 94.807 (13)°

  • β = 106.105 (4)°

  • γ = 107.814 (12)°

  • V = 765.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.04 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.836, T max = 0.940

  • 7916 measured reflections

  • 3456 independent reflections

  • 2579 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.102

  • S = 0.98

  • 3456 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020461/rz2230sup1.cif

e-64-m1012-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020461/rz2230Isup2.hkl

e-64-m1012-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl1 0.96 2.67 3.570 (5) 157
N2—H2A⋯N6i 0.86 1.98 2.835 (3) 175
N5—H5D⋯N3ii 0.86 2.08 2.919 (4) 164
N3—H3A⋯Cl2iii 0.90 2.56 3.452 (3) 169
N6—H6B⋯Cl1iv 0.90 2.72 3.457 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Pyrazolylmethane late-transition-metal complexes of the first row have shown great potential for the construction of magnetic devices. In the course of our studies of the coordination chemistry of these ligands with cobalt, the title compound was synthesized and we report its crystal structure here.

There have been a few crystal structures reported to date for four-coordinate metal complexes containing two coordinated pyrazoles and two coordinated halides, for examples, dichlorobis(1- phenyl-3,5-dimethylpyrazole)copper(II) (Francisco et al., 1980;), dibromobis(3,5-diphenylpyrazole)copper(II) (Murray et al., 1988) and dichlorobis(3,5-dimethylpyrazole) copper(II) (Zhao & Eichhorn, 2005). The Co—N (2.003 (2) and 2.006 (2) Å) and Co—Cl bond lengths (2.2373 (10) and 2.2829 (11) Å) are within the ranges expected. The dihedral angle formed by the pyrazole rings is 85.91 (10)°. An intramolecular C—H···Cl hydrogen bond (Table 1) helps to stabilzie the molecular conformation. In the crystal structure, molecules are linked by intermolecular N—H···N and N—H···Cl hydrogen bonding interactions to form a three-dimensional network (Table 1).

Experimental

3,5-Dimethyl-1H-pyrazol-4-amine (0.111 g, 1 mmol) was dissolved in ethanol (5 ml) and CoCl2 (0.127 g, 1 mmol) in aqueous solution (5 ml) was added with stirring. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days

Refinement

All H atoms were located in a difference Fourier map and refined using the riding-atom approximation, with C—H = 0.96 Å, N—H = 0.86-0.90 Å, and with Uiso(H) = 1.2 Ueq (N) or 1.5 Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[CoCl2(C5H9N3)2] Z = 2
Mr = 352.13 F000 = 362
Triclinic, P1 Dx = 1.528 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.182 (3) Å Cell parameters from 2030 reflections
b = 9.191 (4) Å θ = 2.7–27.5º
c = 10.085 (3) Å µ = 1.47 mm1
α = 94.807 (13)º T = 293 (2) K
β = 106.105 (4)º Plate, colourless
γ = 107.814 (12)º 0.25 × 0.15 × 0.04 mm
V = 765.1 (5) Å3

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer 3456 independent reflections
Radiation source: fine-focus sealed tube 2579 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.050
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 2.8º
CCD_Profile_fitting scans h = −11→11
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −11→11
Tmin = 0.836, Tmax = 0.940 l = −13→13
7916 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.102   w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
3456 reflections Δρmax = 0.35 e Å3
176 parameters Δρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.36013 (4) 0.23415 (4) 0.15884 (4) 0.03042 (13)
Cl1 0.21996 (10) 0.22767 (10) −0.06317 (8) 0.0469 (2)
Cl2 0.24095 (9) 0.03437 (9) 0.25653 (8) 0.0412 (2)
C1 0.4561 (3) 0.5640 (3) 0.3357 (3) 0.0286 (6)
C2 0.3704 (3) 0.6573 (3) 0.3698 (3) 0.0287 (6)
C3 0.2086 (4) 0.5675 (3) 0.3138 (3) 0.0343 (7)
C4 0.6339 (4) 0.6063 (4) 0.3676 (3) 0.0423 (8)
H4A 0.6603 0.5134 0.3594 0.064*
H4B 0.6879 0.6646 0.4615 0.064*
H4C 0.6681 0.6683 0.3025 0.064*
C5 0.0604 (4) 0.6012 (4) 0.3138 (4) 0.0548 (10)
H5A −0.0320 0.5235 0.2461 0.082*
H5B 0.0687 0.7017 0.2900 0.082*
H5C 0.0486 0.6001 0.4054 0.082*
C6 0.6694 (3) 0.2278 (3) 0.0980 (3) 0.0328 (6)
C7 0.7967 (3) 0.1765 (3) 0.1557 (3) 0.0289 (6)
C8 0.7838 (3) 0.1407 (3) 0.2824 (3) 0.0322 (6)
C9 0.6290 (5) 0.2806 (5) −0.0382 (4) 0.0587 (10)
H9A 0.5146 0.2584 −0.0741 0.088*
H9B 0.6621 0.2270 −0.1039 0.088*
H9C 0.6841 0.3905 −0.0249 0.088*
C10 0.8851 (4) 0.0783 (4) 0.3884 (3) 0.0491 (9)
H10A 0.8390 0.0580 0.4624 0.074*
H10B 0.9923 0.1532 0.4267 0.074*
H10C 0.8894 −0.0164 0.3445 0.074*
N1 0.3517 (3) 0.4248 (3) 0.2644 (2) 0.0325 (5)
N2 0.2026 (3) 0.4300 (3) 0.2516 (3) 0.0382 (6)
H2A 0.1144 0.3540 0.2085 0.046*
N3 0.4325 (3) 0.8117 (3) 0.4457 (3) 0.0368 (6)
H3A 0.3934 0.8723 0.3907 0.044*
H3B 0.5407 0.8473 0.4675 0.044*
N4 0.5806 (3) 0.2228 (3) 0.1851 (2) 0.0335 (6)
N5 0.6537 (3) 0.1685 (3) 0.2974 (2) 0.0342 (6)
H5D 0.6207 0.1541 0.3687 0.041*
N6 0.9218 (3) 0.1729 (3) 0.1011 (3) 0.0362 (6)
H6A 0.8924 0.1782 0.0093 0.043*
H6B 0.9413 0.0835 0.1104 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0280 (2) 0.0327 (2) 0.0333 (2) 0.01479 (17) 0.00943 (16) 0.00507 (16)
Cl1 0.0451 (5) 0.0591 (5) 0.0349 (4) 0.0222 (4) 0.0057 (3) 0.0085 (4)
Cl2 0.0346 (4) 0.0415 (4) 0.0474 (5) 0.0122 (3) 0.0119 (3) 0.0154 (3)
C1 0.0293 (15) 0.0267 (15) 0.0297 (15) 0.0091 (11) 0.0094 (11) 0.0068 (11)
C2 0.0342 (16) 0.0288 (15) 0.0249 (14) 0.0114 (12) 0.0116 (11) 0.0057 (11)
C3 0.0357 (17) 0.0332 (17) 0.0374 (17) 0.0173 (13) 0.0117 (13) 0.0038 (13)
C4 0.0331 (17) 0.0422 (19) 0.049 (2) 0.0115 (14) 0.0106 (14) 0.0073 (15)
C5 0.039 (2) 0.048 (2) 0.078 (3) 0.0178 (16) 0.0199 (18) −0.0025 (18)
C6 0.0285 (16) 0.0401 (17) 0.0332 (16) 0.0120 (12) 0.0133 (12) 0.0117 (13)
C7 0.0249 (14) 0.0283 (15) 0.0322 (15) 0.0085 (11) 0.0090 (11) 0.0005 (11)
C8 0.0262 (15) 0.0392 (17) 0.0314 (16) 0.0140 (12) 0.0075 (11) 0.0031 (12)
C9 0.056 (2) 0.096 (3) 0.053 (2) 0.045 (2) 0.0306 (18) 0.044 (2)
C10 0.049 (2) 0.070 (3) 0.0416 (19) 0.0387 (18) 0.0132 (15) 0.0163 (17)
N1 0.0281 (13) 0.0320 (14) 0.0392 (14) 0.0123 (10) 0.0121 (10) 0.0027 (11)
N2 0.0237 (13) 0.0328 (14) 0.0517 (17) 0.0064 (10) 0.0092 (11) −0.0040 (12)
N3 0.0401 (15) 0.0314 (14) 0.0364 (14) 0.0109 (11) 0.0113 (11) 0.0016 (11)
N4 0.0322 (14) 0.0442 (15) 0.0313 (14) 0.0198 (11) 0.0122 (10) 0.0122 (11)
N5 0.0347 (14) 0.0486 (16) 0.0309 (13) 0.0232 (12) 0.0165 (10) 0.0146 (11)
N6 0.0297 (14) 0.0422 (15) 0.0398 (15) 0.0145 (11) 0.0148 (11) 0.0033 (11)

Geometric parameters (Å, °)

Co1—N4 2.003 (2) C6—C9 1.483 (4)
Co1—N1 2.006 (2) C7—C8 1.373 (4)
Co1—Cl1 2.2373 (10) C7—N6 1.412 (3)
Co1—Cl2 2.2829 (11) C8—N5 1.340 (3)
C1—N1 1.337 (3) C8—C10 1.488 (4)
C1—C2 1.409 (4) C9—H9A 0.9600
C1—C4 1.490 (4) C9—H9B 0.9600
C2—C3 1.384 (4) C9—H9C 0.9600
C2—N3 1.416 (3) C10—H10A 0.9600
C3—N2 1.341 (4) C10—H10B 0.9600
C3—C5 1.486 (4) C10—H10C 0.9600
C4—H4A 0.9600 N1—N2 1.355 (3)
C4—H4B 0.9600 N2—H2A 0.8600
C4—H4C 0.9600 N3—H3A 0.9000
C5—H5A 0.9600 N3—H3B 0.9000
C5—H5B 0.9600 N4—N5 1.364 (3)
C5—H5C 0.9600 N5—H5D 0.8600
C6—N4 1.349 (3) N6—H6A 0.9001
C6—C7 1.391 (4) N6—H6B 0.9000
N4—Co1—N1 116.07 (10) N5—C8—C7 107.2 (2)
N4—Co1—Cl1 114.54 (7) N5—C8—C10 122.7 (3)
N1—Co1—Cl1 103.32 (8) C7—C8—C10 130.0 (3)
N4—Co1—Cl2 103.72 (7) C6—C9—H9A 109.5
N1—Co1—Cl2 104.88 (8) C6—C9—H9B 109.5
Cl1—Co1—Cl2 114.26 (4) H9A—C9—H9B 109.5
N1—C1—C2 109.4 (2) C6—C9—H9C 109.5
N1—C1—C4 122.5 (2) H9A—C9—H9C 109.5
C2—C1—C4 128.1 (3) H9B—C9—H9C 109.5
C3—C2—C1 106.1 (2) C8—C10—H10A 109.5
C3—C2—N3 125.5 (2) C8—C10—H10B 109.5
C1—C2—N3 128.4 (3) H10A—C10—H10B 109.5
N2—C3—C2 106.3 (2) C8—C10—H10C 109.5
N2—C3—C5 122.1 (3) H10A—C10—H10C 109.5
C2—C3—C5 131.6 (3) H10B—C10—H10C 109.5
C1—C4—H4A 109.5 C1—N1—N2 106.1 (2)
C1—C4—H4B 109.5 C1—N1—Co1 137.05 (19)
H4A—C4—H4B 109.5 N2—N1—Co1 116.27 (17)
C1—C4—H4C 109.5 C3—N2—N1 112.1 (2)
H4A—C4—H4C 109.5 C3—N2—H2A 124.0
H4B—C4—H4C 109.5 N1—N2—H2A 124.0
C3—C5—H5A 109.5 C2—N3—H3A 109.0
C3—C5—H5B 109.5 C2—N3—H3B 109.1
H5A—C5—H5B 109.5 H3A—N3—H3B 108.0
C3—C5—H5C 109.5 C6—N4—N5 105.4 (2)
H5A—C5—H5C 109.5 C6—N4—Co1 132.8 (2)
H5B—C5—H5C 109.5 N5—N4—Co1 120.26 (18)
N4—C6—C7 109.9 (3) C8—N5—N4 111.3 (2)
N4—C6—C9 122.4 (3) C8—N5—H5D 124.3
C7—C6—C9 127.7 (3) N4—N5—H5D 124.3
C8—C7—C6 106.2 (2) C7—N6—H6A 109.9
C8—C7—N6 126.4 (3) C7—N6—H6B 109.9
C6—C7—N6 127.3 (3) H6A—N6—H6B 108.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···Cl1 0.96 2.67 3.570 (5) 157
N2—H2A···N6i 0.86 1.98 2.835 (3) 175
N5—H5D···N3ii 0.86 2.08 2.919 (4) 164
N3—H3A···Cl2iii 0.90 2.56 3.452 (3) 169
N6—H6B···Cl1iv 0.90 2.72 3.457 (3) 140

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2230).

References

  1. Francisco, R. H. P., Lechat, J. R., Massabni, A. C., Melios, C. B. & Molina, M. (1980). J. Coord. Chem.10, 149–153.
  2. Murray, J. J., Raptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem.27, 26–33.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Zhao, N. & Eichhorn, D. M. (2005). Acta Cryst. E61, m822–m823.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020461/rz2230sup1.cif

e-64-m1012-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020461/rz2230Isup2.hkl

e-64-m1012-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES