Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):m1081–m1082. doi: 10.1107/S1600536808023362

{4,4′-Dimeth­oxy-2,2′-[1,1′-(ethane-1,2-diyldinitrilo)diethyl­idyne]diphenolato}nickel(II) hemihydrate

Hoong-Kun Fun a,*, Reza Kia a,
PMCID: PMC2961936  PMID: 21203060

Abstract

In the title complex, [Ni(C20H22N2O4)]·0.5H2O, the NiII ion is in a slightly distorted square-planar geometry involving an N2O2 atom set of the tetra­dentate Schiff base ligand. The asymmetric unit contains one mol­ecule of the complex and half a water solvent mol­ecule. The solvent water mol­ecule lies on a crystallographic twofold rotation axis. An inter­molecular O—H⋯O hydrogen bond forms an R 2 1(4) ring motif involving a bifurcated hydrogen bond to the phenolate O atoms of the complex. In the crystal structure, mol­ecules are linked by π–π stacking inter­actions, with centroid–centroid distances in the range 3.5310 (11)–3.7905 (12) Å, forming extended chains along the b axis. In addition, there are Ni⋯Ni and Ni⋯N inter­actions [3.4404 (4)–4.1588 (4) and 3.383 (2)–3.756 (2) Å, respectively] which are shorter than the sum of the van der Waals radii of the relevant atoms. Further stabilization of the crystal structure is attained by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see, for example: Clark et al. (1968, 1969, 1970); Hodgson (1975). For applications and bioactivities see, for example: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000); Fun & Kia (2008).graphic file with name e-64-m1081-scheme1.jpg

Experimental

Crystal data

  • [Ni(C20H22N2O4)]·0.5H2O

  • M r = 422.11

  • Monoclinic, Inline graphic

  • a = 29.1721 (7) Å

  • b = 7.3032 (2) Å

  • c = 17.2833 (4) Å

  • β = 101.323 (1)°

  • V = 3610.53 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 100.0 (1) K

  • 0.33 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.712, T max = 0.853

  • 21087 measured reflections

  • 5319 independent reflections

  • 4166 reflections with I > 2˘I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.138

  • S = 1.04

  • 5319 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023362/lh2663sup1.cif

e-64-m1081-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023362/lh2663Isup2.hkl

e-64-m1081-Isup2.hkl (260.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—O2 1.8201 (16)
Ni1—O1 1.8315 (15)
Ni1—N1 1.8575 (19)
Ni1—N2 1.8617 (19)
Ni1⋯Ni1i 3.4404 (4)
Ni1⋯Ni1ii 4.1588 (4)
Ni1⋯N1i 3.383 (2)
Ni1⋯N2i 3.756 (2)
Ni1⋯N2ii 3.728 (2)
Cg1⋯Cg3iii 3.7905 (12)
Cg3⋯Cg4iv 3.5310 (11)
Cg4⋯Cg4iii 3.6152 (11)
O2—Ni1—O1 81.89 (7)
O2—Ni1—N1 175.30 (8)
O1—Ni1—N1 94.47 (8)
O2—Ni1—N2 93.96 (8)
O1—Ni1—N2 175.13 (8)
N1—Ni1—N2 89.81 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1, Cg3, and Cg4 are the centroids of the C11–C16, Ni1-O1-C1-C6-C7-N1 and Ni1-O2-C16-C11-C10-N2 rings, respectively.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1 0.84 2.41 3.1173 (19) 143
O1W—H1W1⋯O2 0.84 2.21 2.9077 (16) 141
C8—H8A⋯O2i 0.97 2.47 3.319 (3) 146
C9—H9A⋯O1Wii 0.97 2.52 3.407 (3) 152
C18—H18BCg1iv 0.96 2.71 3.385 (2) 127
C19—H19CCg2iv 0.96 2.81 3.652 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iv) Inline graphic. Cg1 and Cg2 are centroids of the C11–C16 and C1–C6 benzene rings, respectively.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Transition metal complexes of Schiff base ligands are always of interest since they exhibit a marked tendency to oligomerize, thus leading to novel structural types, and also display a wide variety of magnetic properties. Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Metal derivatives of Schiff bases have been studied extensively, and Cu(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1993; Fun & Kia, 2008; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (I, Fig. 1), the NiII ion shows a sligthly distorted square-planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. An intermolecular O—H···O hydrogen bond forms a four-membered ring, producing a R12(4) ring motif (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The asymmetric unit of the compound contains one molecule of the complex, and one-half of the water solvent. The latter shows bifurcated hydrogen bond which is connected to the phenolato oxygen atoms of the complex. Atoms C8 and C9 are significantly out of the plane, as indicated by the torsion angle N1–C8–C9–N2, which is -23.6 (3)°. The dihedral angle betwen two benzene rings is 5.13 (11)°. In the crystal structure, (Fig. 2), the molecules are form 1-D extended chains along the b axis with Ni···Ni and Ni···N separations (Table 2) of 3.4404 (4) – 4.1588 (4), and 3.383 (2) – 3.756 (2) Å, and short intermolecular distances between the centroids of the six-membered rings [3.5310 (11) – 3.7905 (12) Å], respectively. The Ni···Ni dimeric separations are significantly shorter than the sum of the van der Waals radii of two Ni atoms (4.60 Å). The crystal packing is stabilized by intermolecular O—H···O (x 2), and C—H···O (x 2) hydrogen bonds, and weak intermolecular C—H···π interactions.

Experimental

A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20 ml) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air for 4 d, red block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

The water H-atoms are located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refined using a riding model. A rotating-group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewd down the b axis, showing stacking of molecules along the b axis. Intramolecular and intermolecular interactions are drawn as dashed lines.

Crystal data

[Ni(C20H22N2O4)]·0.5H2O F000 = 1776
Mr = 422.11 Dx = 1.557 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6474 reflections
a = 29.1721 (7) Å θ = 2.4–28.5º
b = 7.3032 (2) Å µ = 1.11 mm1
c = 17.2833 (4) Å T = 100.0 (1) K
β = 101.323 (1)º Block, red
V = 3610.53 (16) Å3 0.33 × 0.18 × 0.15 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5319 independent reflections
Radiation source: fine-focus sealed tube 4166 reflections with I > 2˘I)
Monochromator: graphite Rint = 0.042
T = 100.0(1) K θmax = 30.2º
φ and ω scans θmin = 1.4º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −35→41
Tmin = 0.712, Tmax = 0.853 k = −10→8
21087 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.138   w = 1/[σ2(Fo2) + (0.0817P)2 + 1.6212P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5319 reflections Δρmax = 1.43 e Å3
253 parameters Δρmin = −0.90 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.013248 (10) 0.72441 (4) 0.025207 (15) 0.01283 (11)
O1 0.04524 (6) 0.6694 (2) 0.12462 (9) 0.0166 (3)
O2 −0.02834 (6) 0.8182 (2) 0.08056 (9) 0.0163 (3)
O3 0.22776 (6) 0.4706 (3) 0.23839 (11) 0.0386 (6)
O4 −0.20747 (6) 1.0823 (3) −0.00397 (10) 0.0263 (4)
N1 0.05957 (7) 0.6362 (3) −0.02489 (11) 0.0148 (4)
N2 −0.02394 (7) 0.7776 (3) −0.07261 (11) 0.0138 (4)
C1 0.08918 (8) 0.6183 (3) 0.14511 (13) 0.0146 (4)
C2 0.10797 (8) 0.6091 (3) 0.22710 (13) 0.0174 (5)
H2A 0.0889 0.6372 0.2627 0.021*
C3 0.15355 (9) 0.5599 (4) 0.25526 (14) 0.0229 (5)
H3A 0.1651 0.5554 0.3094 0.027*
C4 0.18251 (9) 0.5167 (4) 0.20272 (14) 0.0221 (5)
C5 0.16555 (8) 0.5227 (3) 0.12301 (13) 0.0184 (5)
H5A 0.1852 0.4928 0.0885 0.022*
C6 0.11850 (8) 0.5736 (3) 0.09201 (13) 0.0148 (4)
C7 0.10115 (8) 0.5758 (3) 0.00639 (13) 0.0148 (5)
C8 0.04336 (8) 0.6242 (3) −0.11176 (12) 0.0155 (5)
H8A 0.0355 0.4982 −0.1266 0.019*
H8B 0.0683 0.6625 −0.1379 0.019*
C9 0.00088 (9) 0.7449 (3) −0.13816 (13) 0.0167 (5)
H9A 0.0106 0.8611 −0.1568 0.020*
H9B −0.0202 0.6866 −0.1816 0.020*
C10 −0.06551 (8) 0.8514 (3) −0.08899 (13) 0.0147 (4)
C11 −0.09141 (8) 0.8976 (3) −0.02736 (13) 0.0150 (4)
C12 −0.13832 (8) 0.9617 (3) −0.04730 (13) 0.0165 (5)
H12A −0.1531 0.9677 −0.1001 0.020*
C13 −0.16223 (8) 1.0148 (3) 0.00996 (14) 0.0182 (5)
C14 −0.14041 (8) 1.0085 (3) 0.08966 (13) 0.0184 (5)
H14A −0.1562 1.0488 0.1283 0.022*
C15 −0.09594 (8) 0.9432 (3) 0.11049 (13) 0.0161 (5)
H15A −0.0819 0.9378 0.1636 0.019*
C16 −0.07050 (8) 0.8834 (3) 0.05342 (13) 0.0152 (5)
C17 0.26105 (9) 0.4494 (4) 0.19015 (16) 0.0292 (6)
H17A 0.2906 0.4159 0.2221 0.044*
H17B 0.2643 0.5626 0.1636 0.044*
H17C 0.2510 0.3552 0.1519 0.044*
C18 0.13369 (9) 0.5047 (3) −0.04465 (14) 0.0185 (5)
H18A 0.1160 0.4753 −0.0961 0.028*
H18B 0.1493 0.3968 −0.0210 0.028*
H18C 0.1565 0.5968 −0.0493 0.028*
C19 −0.08767 (8) 0.8943 (3) −0.17351 (13) 0.0187 (5)
H19A −0.0638 0.9289 −0.2019 0.028*
H19B −0.1095 0.9932 −0.1747 0.028*
H19C −0.1038 0.7879 −0.1977 0.028*
C20 −0.23260 (9) 1.0747 (4) −0.08316 (15) 0.0263 (6)
H20A −0.2635 1.1232 −0.0858 0.039*
H20B −0.2347 0.9498 −0.1009 0.039*
H20C −0.2166 1.1459 −0.1163 0.039*
O1W 0.0000 0.8705 (3) 0.2500 0.0218 (5)
H1W1 −0.0017 0.8066 0.2094 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01457 (17) 0.01553 (18) 0.00876 (15) 0.00044 (11) 0.00319 (11) −0.00026 (10)
O1 0.0164 (8) 0.0229 (9) 0.0106 (7) 0.0030 (7) 0.0031 (6) −0.0001 (6)
O2 0.0169 (8) 0.0207 (9) 0.0114 (7) 0.0043 (7) 0.0026 (6) −0.0012 (6)
O3 0.0139 (9) 0.0829 (18) 0.0188 (9) 0.0118 (10) 0.0030 (8) 0.0066 (10)
O4 0.0159 (9) 0.0410 (12) 0.0216 (9) 0.0080 (8) 0.0026 (7) −0.0027 (8)
N1 0.0197 (10) 0.0146 (10) 0.0110 (8) −0.0028 (8) 0.0055 (7) −0.0004 (7)
N2 0.0176 (10) 0.0149 (9) 0.0095 (8) −0.0008 (8) 0.0042 (7) −0.0002 (7)
C1 0.0161 (11) 0.0139 (11) 0.0139 (10) −0.0014 (9) 0.0029 (8) 0.0002 (8)
C2 0.0187 (12) 0.0222 (12) 0.0124 (10) −0.0009 (9) 0.0058 (9) −0.0007 (9)
C3 0.0200 (13) 0.0356 (15) 0.0121 (11) −0.0034 (11) 0.0007 (9) 0.0027 (10)
C4 0.0146 (12) 0.0341 (15) 0.0173 (11) 0.0013 (11) 0.0022 (9) 0.0037 (10)
C5 0.0155 (12) 0.0249 (13) 0.0155 (11) 0.0008 (10) 0.0050 (9) −0.0003 (9)
C6 0.0158 (11) 0.0154 (11) 0.0134 (10) −0.0018 (9) 0.0034 (8) −0.0002 (8)
C7 0.0184 (12) 0.0136 (11) 0.0135 (10) −0.0024 (9) 0.0055 (9) −0.0005 (8)
C8 0.0182 (11) 0.0178 (11) 0.0116 (10) 0.0007 (9) 0.0056 (8) −0.0010 (8)
C9 0.0187 (12) 0.0212 (12) 0.0111 (10) −0.0013 (9) 0.0050 (9) 0.0002 (8)
C10 0.0170 (11) 0.0141 (11) 0.0124 (10) −0.0022 (9) 0.0012 (8) 0.0009 (8)
C11 0.0184 (12) 0.0128 (11) 0.0141 (10) −0.0017 (9) 0.0042 (9) −0.0004 (8)
C12 0.0165 (12) 0.0169 (12) 0.0145 (10) −0.0004 (9) −0.0009 (9) 0.0026 (8)
C13 0.0150 (11) 0.0212 (12) 0.0178 (11) 0.0033 (9) 0.0023 (9) 0.0011 (9)
C14 0.0193 (12) 0.0219 (13) 0.0154 (11) 0.0016 (10) 0.0073 (9) −0.0011 (9)
C15 0.0186 (12) 0.0171 (11) 0.0126 (10) −0.0002 (9) 0.0032 (9) −0.0003 (8)
C16 0.0171 (11) 0.0125 (11) 0.0163 (10) −0.0001 (9) 0.0039 (9) −0.0001 (8)
C17 0.0186 (13) 0.0424 (17) 0.0284 (14) 0.0081 (12) 0.0089 (11) 0.0058 (12)
C18 0.0191 (12) 0.0210 (12) 0.0165 (11) 0.0026 (10) 0.0064 (9) −0.0015 (9)
C19 0.0214 (12) 0.0215 (12) 0.0124 (10) 0.0021 (10) 0.0014 (9) 0.0013 (9)
C20 0.0183 (13) 0.0335 (15) 0.0246 (13) 0.0054 (11) −0.0019 (10) −0.0003 (11)
O1W 0.0307 (14) 0.0245 (14) 0.0100 (10) 0.000 0.0039 (10) 0.000

Geometric parameters (Å, °)

Ni1—O2 1.8201 (16) C8—H8B 0.9700
Ni1—O1 1.8315 (15) C9—H9A 0.9700
Ni1—N1 1.8575 (19) C9—H9B 0.9700
Ni1—N2 1.8617 (19) C10—C11 1.461 (3)
O1—C1 1.315 (3) C10—C19 1.510 (3)
O2—C16 1.316 (3) C11—C16 1.413 (3)
O3—C4 1.384 (3) C11—C12 1.423 (3)
O3—C17 1.407 (3) C12—C13 1.374 (3)
O4—C13 1.385 (3) C12—H12A 0.9300
O4—C20 1.421 (3) C13—C14 1.400 (3)
N1—C7 1.304 (3) C14—C15 1.363 (3)
N1—C8 1.486 (3) C14—H14A 0.9300
N2—C10 1.307 (3) C15—C16 1.415 (3)
N2—C9 1.479 (3) C15—H15A 0.9300
C1—C6 1.410 (3) C17—H17A 0.9600
C1—C2 1.417 (3) C17—H17B 0.9600
C2—C3 1.371 (3) C17—H17C 0.9600
C2—H2A 0.9300 C18—H18A 0.9600
C3—C4 1.392 (3) C18—H18B 0.9600
C3—H3A 0.9300 C18—H18C 0.9600
C4—C5 1.370 (3) C19—H19A 0.9600
C5—C6 1.422 (3) C19—H19B 0.9600
C5—H5A 0.9300 C19—H19C 0.9600
C6—C7 1.467 (3) C20—H20A 0.9600
C7—C18 1.509 (3) C20—H20B 0.9600
C8—C9 1.516 (3) C20—H20C 0.9600
C8—H8A 0.9700 O1W—H1W1 0.8359
Ni1···Ni1i 3.4404 (4) Ni1···N2ii 3.728 (2)
Ni1···Ni1ii 4.1588 (4) Cg1···Cg3iii 3.7905 (12)
Ni1···N1i 3.383 (2) Cg3···Cg4iv 3.5310 (11)
Ni1···N2i 3.756 (2) Cg4···Cg4iii 3.6152 (11)
O2—Ni1—O1 81.89 (7) C8—C9—H9B 109.4
O2—Ni1—N1 175.30 (8) H9A—C9—H9B 108.0
O1—Ni1—N1 94.47 (8) N2—C10—C11 121.9 (2)
O2—Ni1—N2 93.96 (8) N2—C10—C19 119.9 (2)
O1—Ni1—N2 175.13 (8) C11—C10—C19 118.2 (2)
N1—Ni1—N2 89.81 (8) C16—C11—C12 118.1 (2)
C1—O1—Ni1 127.23 (14) C16—C11—C10 121.2 (2)
C16—O2—Ni1 128.42 (14) C12—C11—C10 120.6 (2)
C4—O3—C17 118.2 (2) C13—C12—C11 121.2 (2)
C13—O4—C20 116.57 (19) C13—C12—H12A 119.4
C7—N1—C8 118.98 (19) C11—C12—H12A 119.4
C7—N1—Ni1 128.81 (16) C12—C13—O4 125.2 (2)
C8—N1—Ni1 112.03 (14) C12—C13—C14 120.2 (2)
C10—N2—C9 118.29 (19) O4—C13—C14 114.6 (2)
C10—N2—Ni1 129.30 (16) C15—C14—C13 119.8 (2)
C9—N2—Ni1 112.11 (15) C15—C14—H14A 120.1
O1—C1—C6 125.0 (2) C13—C14—H14A 120.1
O1—C1—C2 116.6 (2) C14—C15—C16 121.8 (2)
C6—C1—C2 118.4 (2) C14—C15—H15A 119.1
C3—C2—C1 121.7 (2) C16—C15—H15A 119.1
C3—C2—H2A 119.2 O2—C16—C11 124.8 (2)
C1—C2—H2A 119.2 O2—C16—C15 116.4 (2)
C2—C3—C4 119.9 (2) C11—C16—C15 118.8 (2)
C2—C3—H3A 120.1 O3—C17—H17A 109.5
C4—C3—H3A 120.1 O3—C17—H17B 109.5
C5—C4—O3 125.5 (2) H17A—C17—H17B 109.5
C5—C4—C3 120.2 (2) O3—C17—H17C 109.5
O3—C4—C3 114.4 (2) H17A—C17—H17C 109.5
C4—C5—C6 121.2 (2) H17B—C17—H17C 109.5
C4—C5—H5A 119.4 C7—C18—H18A 109.5
C6—C5—H5A 119.4 C7—C18—H18B 109.5
C1—C6—C5 118.6 (2) H18A—C18—H18B 109.5
C1—C6—C7 121.4 (2) C7—C18—H18C 109.5
C5—C6—C7 119.9 (2) H18A—C18—H18C 109.5
N1—C7—C6 122.0 (2) H18B—C18—H18C 109.5
N1—C7—C18 121.0 (2) C10—C19—H19A 109.5
C6—C7—C18 117.0 (2) C10—C19—H19B 109.5
N1—C8—C9 110.42 (18) H19A—C19—H19B 109.5
N1—C8—H8A 109.6 C10—C19—H19C 109.5
C9—C8—H8A 109.6 H19A—C19—H19C 109.5
N1—C8—H8B 109.6 H19B—C19—H19C 109.5
C9—C8—H8B 109.6 O4—C20—H20A 109.5
H8A—C8—H8B 108.1 O4—C20—H20B 109.5
N2—C9—C8 110.95 (18) H20A—C20—H20B 109.5
N2—C9—H9A 109.4 O4—C20—H20C 109.5
C8—C9—H9A 109.4 H20A—C20—H20C 109.5
N2—C9—H9B 109.4 H20B—C20—H20C 109.5
O2—Ni1—O1—C1 −166.3 (2) C8—N1—C7—C18 3.6 (3)
N1—Ni1—O1—C1 10.7 (2) Ni1—N1—C7—C18 178.43 (16)
N2—Ni1—O1—C1 162.0 (9) C1—C6—C7—N1 7.0 (3)
O1—Ni1—O2—C16 −172.8 (2) C5—C6—C7—N1 −174.1 (2)
N1—Ni1—O2—C16 147.8 (9) C1—C6—C7—C18 −173.1 (2)
N2—Ni1—O2—C16 4.6 (2) C5—C6—C7—C18 5.8 (3)
O2—Ni1—N1—C7 33.3 (11) C7—N1—C8—C9 −164.8 (2)
O1—Ni1—N1—C7 −5.7 (2) Ni1—N1—C8—C9 19.5 (2)
N2—Ni1—N1—C7 176.6 (2) C10—N2—C9—C8 −168.1 (2)
O2—Ni1—N1—C8 −151.6 (9) Ni1—N2—C9—C8 17.5 (2)
O1—Ni1—N1—C8 169.41 (15) N1—C8—C9—N2 −23.6 (3)
N2—Ni1—N1—C8 −8.25 (15) C9—N2—C10—C11 −176.6 (2)
O2—Ni1—N2—C10 −1.8 (2) Ni1—N2—C10—C11 −3.4 (3)
O1—Ni1—N2—C10 29.6 (10) C9—N2—C10—C19 2.3 (3)
N1—Ni1—N2—C10 −179.0 (2) Ni1—N2—C10—C19 175.59 (16)
O2—Ni1—N2—C9 171.73 (15) N2—C10—C11—C16 7.2 (4)
O1—Ni1—N2—C9 −156.8 (9) C19—C10—C11—C16 −171.8 (2)
N1—Ni1—N2—C9 −5.46 (16) N2—C10—C11—C12 −174.0 (2)
Ni1—O1—C1—C6 −8.5 (3) C19—C10—C11—C12 7.0 (3)
Ni1—O1—C1—C2 171.10 (16) C16—C11—C12—C13 2.3 (3)
O1—C1—C2—C3 −179.1 (2) C10—C11—C12—C13 −176.5 (2)
C6—C1—C2—C3 0.6 (4) C11—C12—C13—O4 178.6 (2)
C1—C2—C3—C4 −0.3 (4) C11—C12—C13—C14 0.7 (4)
C17—O3—C4—C5 8.2 (4) C20—O4—C13—C12 7.9 (4)
C17—O3—C4—C3 −171.5 (2) C20—O4—C13—C14 −174.1 (2)
C2—C3—C4—C5 −0.2 (4) C12—C13—C14—C15 −2.4 (4)
C2—C3—C4—O3 179.5 (2) O4—C13—C14—C15 179.5 (2)
O3—C4—C5—C6 −179.3 (3) C13—C14—C15—C16 1.0 (4)
C3—C4—C5—C6 0.4 (4) Ni1—O2—C16—C11 −2.0 (3)
O1—C1—C6—C5 179.2 (2) Ni1—O2—C16—C15 178.21 (16)
C2—C1—C6—C5 −0.4 (3) C12—C11—C16—O2 176.6 (2)
O1—C1—C6—C7 −1.9 (4) C10—C11—C16—O2 −4.6 (4)
C2—C1—C6—C7 178.5 (2) C12—C11—C16—C15 −3.7 (3)
C4—C5—C6—C1 −0.1 (4) C10—C11—C16—C15 175.2 (2)
C4—C5—C6—C7 −179.0 (2) C14—C15—C16—O2 −178.2 (2)
C8—N1—C7—C6 −176.5 (2) C14—C15—C16—C11 2.1 (4)
Ni1—N1—C7—C6 −1.6 (3)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z; (iii) x+1/2, y+5/2, z; (iv) x+1/2, y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O1 0.84 2.41 3.1173 (19) 143
O1W—H1W1···O2 0.84 2.21 2.9077 (16) 141
C8—H8A···O2i 0.97 2.47 3.319 (3) 146
C9—H9A···O1Wii 0.97 2.52 3.407 (3) 152
C18—H18B···Cg1iv 0.96 2.71 3.385 (2) 127
C19—H19C···Cg2iv 0.96 2.81 3.652 (3) 146

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z; (iv) x+1/2, y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2663).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.
  6. Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.
  7. Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.
  8. Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [DOI] [PubMed]
  9. Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64 In the press. [AT2603]
  10. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  11. Hodgson, D. J. (1975). Prog. Inorg. Chem.19, 173–202.
  12. Li, C. H. & Chang, T. C. (1991). Eur. Polym. J.27, 35–39.
  13. Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023362/lh2663sup1.cif

e-64-m1081-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023362/lh2663Isup2.hkl

e-64-m1081-Isup2.hkl (260.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES