Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):m1016. doi: 10.1107/S1600536808019168

Dibromido[(S)-2-(pyrrolidin-2-yl)-1H-benzimidazole]zinc(II)

Wei Dai a, Da-Wei Fu a,*
PMCID: PMC2961939  PMID: 21203009

Abstract

The title compound, [ZnBr2(C11H13N3)], was synthesized by hydro­thermal reaction of ZnBr2 and (S)-2-(pyrrolidin-2-yl)-1H-benzimidazole. The ZnII atom has a distorted tetra­hedral geometry and is coordinated by two N atoms from the chelating organic ligand and two terminal Br anions. In the crystal structure, mol­ecules are linked into a chain along the [101] direction by N—H⋯Br and C—H⋯Br hydrogen bonds.

Related literature

For physical properties such as fluorescence and dielectric behaviors of metal-organic coordination compounds, see: Aminabhavi et al. (1986); Ye et al. (2008); Fu et al. (2007).graphic file with name e-64-m1016-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C11H13N3)]

  • M r = 412.43

  • Monoclinic, Inline graphic

  • a = 8.953 (3) Å

  • b = 11.668 (2) Å

  • c = 13.318 (2) Å

  • β = 91.443 (3)°

  • V = 1390.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.49 mm−1

  • T = 298 (2) K

  • 0.30 × 0.25 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.459, T max = 0.982 (expected range = 0.152–0.325)

  • 13896 measured reflections

  • 3179 independent reflections

  • 2426 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.114

  • S = 0.99

  • 3179 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.00 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019168/ci2621sup1.cif

e-64-m1016-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019168/ci2621Isup2.hkl

e-64-m1016-Isup2.hkl (156KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Br1—Zn1 2.3642 (8)
Zn1—N2 2.011 (3)
Zn1—N1 2.075 (4)
Zn1—Br2 2.3319 (7)
N2—Zn1—N1 82.35 (14)
N2—Zn1—Br2 112.70 (10)
N1—Zn1—Br2 117.89 (10)
N2—Zn1—Br1 118.99 (11)
N1—Zn1—Br1 110.08 (11)
Br2—Zn1—Br1 112.03 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯Br1i 0.86 2.74 3.516 (4) 150
C4—H4A⋯Br1ii 0.98 2.86 3.637 (5) 137
C1—H1ACg1iii 0.97 2.78 3.673 (6) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C6–C11 ring.

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong, and a Excellent Doctoral Degree Foundation Grant from Southeast University to DWF.

supplementary crystallographic information

Comment

Metal-organic coordination compounds provide a class of complexes displaying interesting chemical and physical properties such as fluorescence and dielectric behaviors (Aminabhavi et al., 1986; Ye et al., 2008; Fu et al., 2007). There has been very strong interest in employing crystal-engineering strategies to generate desirable materials by the hydrothermal reaction. Here we report the synthesis and crystal structure of the title compound.

The ZnII atom has a distorted tetrahedral geometry (Table 1) and is coordinated by two N atoms from the chelating S-2-(pyrrolidin-2-yl)-1H-benzimidazole ligand and two terminal Br- anions (Fig. 1).

In the crystal structure, N—H···Br and C—H···Br hydrogen bonds (Table 2) link the molecules into a chain along [1 0 1] (Fig.2).

Experimental

The homochiral ligand S-2-(pyrrolidin-2-yl)-1H-benzimidazole was synthesized by reaction of S-pyrrolidine-2-carboxylic acid and benzene-1,2-diamine according to the procedure described in the literature (Aminabhavi et al., 1986). A mixture of S-2-(pyrrolidin-2-yl)-1H-benzimidazole (18.7 mg, 0.1 mmol), ZnBr2 (33.9 mg, 0.1 mmol) and water (1 ml) sealed in a glass tube was maintained at 343 K. Crystals suitable for X-ray ananlysis were obtained after 3 d.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) and N-H = 0.91 Å with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

[ZnBr2(C11H13N3)] F000 = 800
Mr = 412.43 Dx = 1.970 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3615 reflections
a = 8.953 (3) Å θ = 2.7–27.5º
b = 11.668 (2) Å µ = 7.49 mm1
c = 13.318 (2) Å T = 298 (2) K
β = 91.443 (3)º Block, colourless
V = 1390.9 (6) Å3 0.30 × 0.25 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 3179 independent reflections
Radiation source: fine-focus sealed tube 2426 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.065
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 298(2) K θmin = 2.7º
ω scans h = −11→11
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −15→15
Tmin = 0.459, Tmax = 0.982 l = −17→17
13896 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.114   w = 1/[σ2(Fo2) + (0.0563P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
3179 reflections Δρmax = 0.67 e Å3
154 parameters Δρmin = −1.00 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.25768 (6) 0.93780 (4) 0.57154 (4) 0.04999 (18)
Zn1 0.13105 (6) 0.76113 (4) 0.55176 (4) 0.03634 (16)
Br2 0.20151 (7) 0.62945 (5) 0.67586 (4) 0.0600 (2)
C6 0.1068 (5) 0.5895 (4) 0.2708 (3) 0.0378 (10)
N2 0.1146 (4) 0.6901 (3) 0.4143 (2) 0.0344 (8)
N1 −0.0955 (4) 0.7895 (3) 0.5261 (3) 0.0378 (8)
H10B −0.1140 0.8650 0.5377 0.045*
N3 −0.0296 (4) 0.6401 (3) 0.2863 (3) 0.0391 (9)
H3C −0.1073 0.6357 0.2471 0.047*
C8 0.3041 (6) 0.4841 (5) 0.2047 (4) 0.0554 (14)
H8A 0.3427 0.4362 0.1559 0.066*
C5 −0.0198 (5) 0.6977 (4) 0.3735 (3) 0.0315 (9)
C11 0.1978 (5) 0.6223 (4) 0.3510 (3) 0.0354 (9)
C7 0.1572 (6) 0.5177 (4) 0.1952 (3) 0.0489 (12)
H7A 0.0955 0.4941 0.1419 0.059*
C3 −0.2915 (5) 0.6980 (5) 0.4237 (4) 0.0550 (13)
H3A −0.3632 0.7284 0.3748 0.066*
H3B −0.2771 0.6170 0.4107 0.066*
C10 0.3458 (6) 0.5868 (5) 0.3582 (4) 0.0508 (12)
H10A 0.4074 0.6090 0.4120 0.061*
C9 0.3976 (6) 0.5188 (5) 0.2844 (4) 0.0555 (14)
H9A 0.4967 0.4949 0.2869 0.067*
C1 −0.1969 (6) 0.7209 (5) 0.5893 (3) 0.0512 (13)
H1A −0.2104 0.7573 0.6539 0.061*
H1B −0.1578 0.6442 0.6002 0.061*
C4 −0.1416 (5) 0.7637 (4) 0.4201 (3) 0.0361 (10)
H4A −0.1568 0.8357 0.3834 0.043*
C2 −0.3426 (6) 0.7174 (6) 0.5290 (4) 0.0631 (15)
H2A −0.4059 0.6553 0.5510 0.076*
H2B −0.3965 0.7892 0.5344 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0629 (3) 0.0386 (3) 0.0474 (3) −0.0098 (2) −0.0209 (2) 0.0027 (2)
Zn1 0.0395 (3) 0.0392 (3) 0.0299 (3) −0.0022 (2) −0.0093 (2) −0.0028 (2)
Br2 0.0757 (4) 0.0521 (3) 0.0509 (3) −0.0016 (3) −0.0220 (3) 0.0139 (2)
C6 0.040 (2) 0.042 (2) 0.032 (2) −0.001 (2) −0.0023 (19) −0.0055 (18)
N2 0.0326 (18) 0.041 (2) 0.0290 (17) −0.0002 (16) −0.0077 (15) −0.0026 (15)
N1 0.041 (2) 0.0366 (19) 0.0357 (19) −0.0010 (17) −0.0034 (16) −0.0067 (16)
N3 0.035 (2) 0.050 (2) 0.0319 (18) −0.0031 (17) −0.0084 (16) −0.0051 (16)
C8 0.057 (3) 0.063 (3) 0.046 (3) 0.018 (3) 0.014 (3) −0.013 (3)
C5 0.034 (2) 0.035 (2) 0.0255 (19) −0.0055 (18) −0.0032 (17) 0.0030 (17)
C11 0.031 (2) 0.041 (2) 0.033 (2) −0.0023 (19) −0.0051 (18) −0.0002 (18)
C7 0.058 (3) 0.054 (3) 0.035 (2) 0.001 (3) −0.004 (2) −0.012 (2)
C3 0.035 (3) 0.077 (4) 0.053 (3) −0.008 (3) 0.002 (2) −0.015 (3)
C10 0.039 (3) 0.067 (3) 0.046 (3) 0.002 (3) −0.008 (2) −0.010 (2)
C9 0.041 (3) 0.076 (4) 0.050 (3) 0.014 (3) 0.004 (2) −0.006 (3)
C1 0.048 (3) 0.068 (3) 0.038 (3) −0.009 (3) 0.004 (2) 0.004 (2)
C4 0.033 (2) 0.044 (3) 0.031 (2) 0.0022 (19) −0.0080 (18) 0.0031 (18)
C2 0.046 (3) 0.087 (4) 0.057 (3) −0.002 (3) 0.002 (3) 0.004 (3)

Geometric parameters (Å, °)

Br1—Zn1 2.3642 (8) C5—C4 1.484 (6)
Zn1—N2 2.011 (3) C11—C10 1.390 (6)
Zn1—N1 2.075 (4) C7—H7A 0.93
Zn1—Br2 2.3319 (7) C3—C2 1.504 (7)
C6—N3 1.377 (6) C3—C4 1.547 (6)
C6—C11 1.382 (6) C3—H3A 0.97
C6—C7 1.393 (6) C3—H3B 0.97
N2—C5 1.311 (5) C10—C9 1.354 (7)
N2—C11 1.387 (5) C10—H10A 0.93
N1—C1 1.488 (6) C9—H9A 0.93
N1—C4 1.492 (5) C1—C2 1.515 (7)
N1—H10B 0.91 C1—H1A 0.97
N3—C5 1.343 (5) C1—H1B 0.97
N3—H3C 0.86 C4—H4A 0.98
C8—C7 1.376 (7) C2—H2A 0.97
C8—C9 1.395 (7) C2—H2B 0.97
C8—H8A 0.93
N2—Zn1—N1 82.35 (14) C6—C7—H7A 122.2
N2—Zn1—Br2 112.70 (10) C2—C3—C4 103.8 (4)
N1—Zn1—Br2 117.89 (10) C2—C3—H3A 111.0
N2—Zn1—Br1 118.99 (11) C4—C3—H3A 111.0
N1—Zn1—Br1 110.08 (11) C2—C3—H3B 111.0
Br2—Zn1—Br1 112.03 (3) C4—C3—H3B 111.0
N3—C6—C11 105.8 (4) H3A—C3—H3B 109.0
N3—C6—C7 132.1 (4) C9—C10—C11 118.0 (5)
C11—C6—C7 122.0 (4) C9—C10—H10A 121.0
C5—N2—C11 106.7 (3) C11—C10—H10A 121.0
C5—N2—Zn1 113.3 (3) C10—C9—C8 120.8 (5)
C11—N2—Zn1 139.5 (3) C10—C9—H9A 119.6
C1—N1—C4 105.6 (3) C8—C9—H9A 119.6
C1—N1—Zn1 115.4 (3) N1—C1—C2 104.1 (4)
C4—N1—Zn1 111.7 (3) N1—C1—H1A 110.9
C1—N1—H10B 108.0 C2—C1—H1A 110.9
C4—N1—H10B 108.0 N1—C1—H1B 110.9
Zn1—N1—H10B 108.0 C2—C1—H1B 110.9
C5—N3—C6 107.8 (3) H1A—C1—H1B 109.0
C5—N3—H3C 126.1 C5—C4—N1 108.1 (3)
C6—N3—H3C 126.1 C5—C4—C3 113.8 (4)
C7—C8—C9 122.8 (5) N1—C4—C3 106.9 (3)
C7—C8—H8A 118.6 C5—C4—H4A 109.3
C9—C8—H8A 118.6 N1—C4—H4A 109.3
N2—C5—N3 111.4 (4) C3—C4—H4A 109.3
N2—C5—C4 122.6 (4) C3—C2—C1 102.7 (4)
N3—C5—C4 126.0 (4) C3—C2—H2A 111.2
C6—C11—N2 108.2 (4) C1—C2—H2A 111.2
C6—C11—C10 120.8 (4) C3—C2—H2B 111.2
N2—C11—C10 130.9 (4) C1—C2—H2B 111.2
C8—C7—C6 115.6 (4) H2A—C2—H2B 109.1
C8—C7—H7A 122.2
N1—Zn1—N2—C5 2.2 (3) Zn1—N2—C11—C6 170.4 (3)
Br2—Zn1—N2—C5 119.3 (3) C5—N2—C11—C10 −179.8 (5)
Br1—Zn1—N2—C5 −106.5 (3) Zn1—N2—C11—C10 −9.2 (8)
N1—Zn1—N2—C11 −168.0 (5) C9—C8—C7—C6 0.1 (8)
Br2—Zn1—N2—C11 −50.9 (5) N3—C6—C7—C8 179.6 (5)
Br1—Zn1—N2—C11 83.2 (5) C11—C6—C7—C8 −1.4 (7)
N2—Zn1—N1—C1 110.8 (3) C6—C11—C10—C9 −0.2 (8)
Br2—Zn1—N1—C1 −0.8 (3) N2—C11—C10—C9 179.3 (5)
Br1—Zn1—N1—C1 −131.0 (3) C11—C10—C9—C8 −1.1 (8)
N2—Zn1—N1—C4 −9.8 (3) C7—C8—C9—C10 1.2 (9)
Br2—Zn1—N1—C4 −121.4 (3) C4—N1—C1—C2 −32.6 (5)
Br1—Zn1—N1—C4 108.4 (3) Zn1—N1—C1—C2 −156.5 (3)
C11—C6—N3—C5 −1.6 (5) N2—C5—C4—N1 −14.3 (6)
C7—C6—N3—C5 177.5 (5) N3—C5—C4—N1 166.5 (4)
C11—N2—C5—N3 −0.8 (5) N2—C5—C4—C3 −132.8 (4)
Zn1—N2—C5—N3 −174.2 (3) N3—C5—C4—C3 47.9 (6)
C11—N2—C5—C4 179.8 (4) C1—N1—C4—C5 −111.7 (4)
Zn1—N2—C5—C4 6.5 (5) Zn1—N1—C4—C5 14.4 (4)
C6—N3—C5—N2 1.5 (5) C1—N1—C4—C3 11.1 (5)
C6—N3—C5—C4 −179.2 (4) Zn1—N1—C4—C3 137.3 (3)
N3—C6—C11—N2 1.1 (5) C2—C3—C4—C5 133.9 (4)
C7—C6—C11—N2 −178.1 (4) C2—C3—C4—N1 14.6 (5)
N3—C6—C11—C10 −179.2 (4) C4—C3—C2—C1 −34.0 (6)
C7—C6—C11—C10 1.6 (7) N1—C1—C2—C3 41.8 (6)
C5—N2—C11—C6 −0.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3C···Br1i 0.86 2.74 3.516 (4) 150
C4—H4A···Br1ii 0.98 2.86 3.637 (5) 137
C1—H1A···Cg1iii 0.97 2.78 3.673 (6) 153

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x, −y+2, −z+1; (iii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2621).

References

  1. Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.
  2. Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc.129, 5346–5347. [DOI] [PubMed]
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Ye, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev.37, 84–100. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019168/ci2621sup1.cif

e-64-m1016-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019168/ci2621Isup2.hkl

e-64-m1016-Isup2.hkl (156KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES