Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 9;64(Pt 8):m1018. doi: 10.1107/S1600536808020680

{2-[(4-Bromo­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}diiodidozinc(II)

Mehdi Khalaj a, Saeed Dehghanpour b,*, Ali Mahmoudi a
PMCID: PMC2961941  PMID: 21203011

Abstract

In the title compound, [ZnI2(C12H9BrN2)], the metal centre displays a moderately distorted tetra­hedral coordination geometry defined by two iodide anions and two N atoms of the organic ligand. The dihedral angle between the pyridine and benzene rings is 15.15 (13)°.

Related literature

For the crystal structure of similar imino­pyridine complexes, see: Dehghanpour, Mahmoudi, Khalaj & Salmanpour (2007); Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007). For related structures see: Lee et al. (2008); Wriedt et al. (2008).graphic file with name e-64-m1018-scheme1.jpg

Experimental

Crystal data

  • [ZnI2(C12H9BrN2)]

  • M r = 580.29

  • Triclinic, Inline graphic

  • a = 8.0749 (9) Å

  • b = 9.7323 (11) Å

  • c = 11.1884 (13) Å

  • α = 79.157 (2)°

  • β = 71.178 (3)°

  • γ = 67.325 (2)°

  • V = 765.87 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.23 mm−1

  • T = 100 (2) K

  • 0.45 × 0.21 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005) T min = 0.135, T max = 0.378

  • 9814 measured reflections

  • 4449 independent reflections

  • 3983 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 1.01

  • 4449 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 1.94 e Å−3

  • Δρmin = −1.96 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020680/rz2225sup1.cif

e-64-m1018-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020680/rz2225Isup2.hkl

e-64-m1018-Isup2.hkl (217.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

I1—Zn1 2.5201 (5)
I2—Zn1 2.5389 (5)
Zn1—N1 2.062 (3)
Zn1—N2 2.094 (3)
N1—Zn1—N2 80.30 (11)
N1—Zn1—I1 117.81 (8)
N2—Zn1—I1 117.60 (8)
N1—Zn1—I2 109.45 (8)
N2—Zn1—I2 110.18 (8)
I1—Zn1—I2 116.210 (17)

Acknowledgments

SD acknowledges the Alzahra University Research Council for partial support of this work.

supplementary crystallographic information

Comment

Iminopyridines derivatives are common ligands and many complexes containing these ligands have been reported. Recently, the crystal structure of zinc(II)-complexes similar to the title compound has been reported by our group (Dehghanpour, Mahmoudi, Khalaj & Salmanpour, 2007; Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib, 2007).

The molecular structure of the title compound and the atom numbering scheme are shown in Fig. 1. The structure consists of discrete [ZnI2(C12H9BrN2)] complex molecules where the metal centre has a tetrahedral coordination geometry which shows significant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle (Table 1) is much narrower than the ideal tetrahedral angle of 109.5°, whereas the opposite I1—Zn1—I2 angle is much wider. Bond lengths involving the Zn atom are in good agreement with the values found in the literature for tetrahedral zinc(II) complexes (Lee et al., 2008; Wriedt et al., 2008). The dihedral angle formed by the pyridine and benzene ring is 15.15 (13)°. The crystal structure is enforced by van der Waals interactions only.

Experimental

To a solution of (4-bromo-phenyl)-pyridin-2-ylmethylene-amine (26.1 mg, 0.1 mmol) in acetonitrile (20 ml) was added zinc iodide (31.9 mg, 0.1 mmol). The mixture was heated to dissolve the reactants. The solution was filtered and the volume of solvent removed under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the solution gave yellow crystals. The crystals were collected and washed with diethylether-dichloromethane (9:1 v/v); yield 81%. Calc. for C12H9BrI2N2Zn: C 24.84, H 1.56, N 4.83%; found: C 24.86, H 1.55, N 4.82%.

Refinement

All hydrogen atoms were placed geometrically and refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2Ueq(C). There is a high positive residual density of 1.93 e Å-3 at 0.83 Å from atom I2 due to considerable absorption effects which could not be completely corrected.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and thermal ellipsoids drawn at the 50% probability level.

Crystal data

[ZnI2(C12H9BrN2)] Z = 2
Mr = 580.29 F000 = 532
Triclinic, P1 Dx = 2.516 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.0749 (9) Å Cell parameters from 1953 reflections
b = 9.7323 (11) Å θ = 2.8–34.4º
c = 11.1884 (13) Å µ = 8.23 mm1
α = 79.157 (2)º T = 100 (2) K
β = 71.178 (3)º Plate, yellow
γ = 67.325 (2)º 0.45 × 0.21 × 0.12 mm
V = 765.87 (15) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 4449 independent reflections
Radiation source: fine-focus sealed tube 3983 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 100(2) K θmax = 30.0º
ω scans θmin = 1.9º
Absorption correction: multi-scan(APEX2; Bruker, 2005) h = −11→11
Tmin = 0.135, Tmax = 0.378 k = −13→13
9814 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.084   w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
4449 reflections Δρmax = 1.94 e Å3
163 parameters Δρmin = −1.96 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.28834 (3) 0.85145 (2) 0.60583 (2) 0.01640 (7)
I2 0.16700 (3) 0.84434 (2) 0.72880 (2) 0.01874 (7)
Br1 0.51281 (5) 0.79618 (4) −0.04600 (3) 0.02005 (9)
Zn1 0.02685 (5) 0.70420 (4) 0.64300 (4) 0.01456 (9)
N1 0.0641 (4) 0.4960 (3) 0.7379 (3) 0.0178 (6)
N2 0.2315 (4) 0.5720 (3) 0.4997 (3) 0.0154 (5)
C1 0.2115 (5) 0.3877 (4) 0.6720 (3) 0.0159 (6)
C2 0.2711 (5) 0.2407 (4) 0.7206 (3) 0.0195 (7)
H2A 0.3754 0.1671 0.6722 0.023*
C3 0.1746 (6) 0.2034 (4) 0.8421 (4) 0.0234 (7)
H3A 0.2130 0.1039 0.8786 0.028*
C4 0.0213 (5) 0.3136 (4) 0.9090 (4) 0.0240 (8)
H4A −0.0483 0.2900 0.9913 0.029*
C5 −0.0296 (5) 0.4594 (4) 0.8543 (3) 0.0225 (7)
H5A −0.1335 0.5349 0.9010 0.027*
C6 0.3009 (5) 0.4359 (4) 0.5426 (3) 0.0158 (6)
H6A 0.4084 0.3675 0.4913 0.019*
C7 0.3033 (4) 0.6193 (4) 0.3715 (3) 0.0147 (6)
C8 0.4198 (5) 0.5200 (4) 0.2790 (3) 0.0169 (6)
H8A 0.4551 0.4155 0.3005 0.020*
C9 0.4848 (5) 0.5734 (4) 0.1550 (3) 0.0185 (7)
H9A 0.5671 0.5061 0.0920 0.022*
C10 0.4275 (5) 0.7263 (4) 0.1250 (3) 0.0165 (6)
C11 0.3091 (5) 0.8267 (4) 0.2146 (3) 0.0204 (7)
H11A 0.2710 0.9311 0.1921 0.024*
C12 0.2468 (5) 0.7728 (4) 0.3380 (3) 0.0195 (7)
H12A 0.1649 0.8407 0.4006 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01523 (11) 0.01337 (11) 0.02111 (12) −0.00533 (8) −0.00547 (8) −0.00085 (8)
I2 0.01755 (12) 0.01407 (12) 0.02641 (13) −0.00646 (9) −0.00745 (9) −0.00117 (9)
Br1 0.02369 (18) 0.01625 (17) 0.01622 (17) −0.00571 (14) −0.00288 (13) 0.00060 (13)
Zn1 0.01415 (18) 0.01008 (17) 0.01727 (19) −0.00385 (14) −0.00195 (14) −0.00109 (14)
N1 0.0177 (13) 0.0139 (13) 0.0216 (14) −0.0076 (11) −0.0031 (11) −0.0002 (11)
N2 0.0181 (13) 0.0132 (13) 0.0162 (13) −0.0079 (11) −0.0027 (10) −0.0022 (10)
C1 0.0166 (14) 0.0140 (15) 0.0186 (15) −0.0073 (12) −0.0050 (12) −0.0003 (12)
C2 0.0230 (16) 0.0138 (15) 0.0218 (16) −0.0058 (13) −0.0077 (13) 0.0001 (13)
C3 0.0318 (19) 0.0139 (16) 0.0265 (18) −0.0090 (14) −0.0136 (15) 0.0058 (14)
C4 0.0275 (19) 0.0201 (17) 0.0220 (17) −0.0116 (15) −0.0035 (14) 0.0056 (14)
C5 0.0230 (17) 0.0223 (18) 0.0200 (17) −0.0092 (14) −0.0034 (13) 0.0023 (14)
C6 0.0156 (14) 0.0111 (14) 0.0197 (16) −0.0043 (12) −0.0038 (12) −0.0016 (12)
C7 0.0148 (14) 0.0123 (14) 0.0170 (15) −0.0053 (12) −0.0039 (11) −0.0008 (12)
C8 0.0194 (15) 0.0097 (14) 0.0201 (16) −0.0041 (12) −0.0035 (12) −0.0032 (12)
C9 0.0189 (15) 0.0138 (15) 0.0199 (16) −0.0040 (13) −0.0020 (12) −0.0040 (12)
C10 0.0167 (14) 0.0178 (16) 0.0155 (15) −0.0080 (13) −0.0032 (12) 0.0001 (12)
C11 0.0248 (17) 0.0126 (15) 0.0206 (17) −0.0055 (13) −0.0031 (13) −0.0018 (13)
C12 0.0210 (16) 0.0089 (14) 0.0213 (17) −0.0034 (12) 0.0013 (13) −0.0013 (12)

Geometric parameters (Å, °)

I1—Zn1 2.5201 (5) C3—H3A 0.9500
I2—Zn1 2.5389 (5) C4—C5 1.394 (5)
Zn1—N1 2.062 (3) C4—H4A 0.9500
Zn1—N2 2.094 (3) C5—H5A 0.9500
Br1—C10 1.902 (3) C6—H6A 0.9500
Zn1—N1 2.062 (3) C7—C8 1.391 (5)
Zn1—N2 2.094 (3) C7—C12 1.398 (5)
N1—C5 1.339 (4) C8—C9 1.392 (5)
N1—C1 1.353 (4) C8—H8A 0.9500
N2—C6 1.289 (4) C9—C10 1.387 (5)
N2—C7 1.424 (4) C9—H9A 0.9500
C1—C2 1.385 (5) C10—C11 1.381 (5)
C1—C6 1.473 (5) C11—C12 1.385 (5)
C2—C3 1.391 (5) C11—H11A 0.9500
C2—H2A 0.9500 C12—H12A 0.9500
C3—C4 1.387 (6)
N1—Zn1—N2 80.30 (11) N1—C5—C4 121.8 (3)
N1—Zn1—I1 117.81 (8) N1—C5—H5A 119.1
N2—Zn1—I1 117.60 (8) C4—C5—H5A 119.1
N1—Zn1—I2 109.45 (8) N2—C6—C1 119.2 (3)
N2—Zn1—I2 110.18 (8) N2—C6—H6A 120.4
I1—Zn1—I2 116.210 (17) C1—C6—H6A 120.4
C5—N1—C1 118.8 (3) C8—C7—C12 119.5 (3)
C5—N1—Zn1 128.7 (3) C8—C7—N2 123.0 (3)
C1—N1—Zn1 112.4 (2) C12—C7—N2 117.5 (3)
C6—N2—C7 120.8 (3) C7—C8—C9 120.2 (3)
C6—N2—Zn1 111.5 (2) C7—C8—H8A 119.9
C7—N2—Zn1 127.5 (2) C9—C8—H8A 119.9
N1—C1—C2 122.7 (3) C10—C9—C8 118.9 (3)
N1—C1—C6 115.2 (3) C10—C9—H9A 120.5
C2—C1—C6 122.1 (3) C8—C9—H9A 120.5
C1—C2—C3 118.4 (3) C11—C10—C9 121.8 (3)
C1—C2—H2A 120.8 C11—C10—Br1 120.0 (3)
C3—C2—H2A 120.8 C9—C10—Br1 118.1 (3)
C4—C3—C2 119.0 (3) C10—C11—C12 118.9 (3)
C4—C3—H3A 120.5 C10—C11—H11A 120.6
C2—C3—H3A 120.5 C12—C11—H11A 120.6
C3—C4—C5 119.3 (3) C11—C12—C7 120.6 (3)
C3—C4—H4A 120.3 C11—C12—H12A 119.7
C5—C4—H4A 120.3 C7—C12—H12A 119.7
N2—Zn1—N1—C5 −175.2 (3) Zn1—N1—C5—C4 −175.4 (3)
I1—Zn1—N1—C5 −59.0 (3) C3—C4—C5—N1 0.9 (6)
I2—Zn1—N1—C5 76.7 (3) C7—N2—C6—C1 −174.2 (3)
N2—Zn1—N1—C1 9.0 (2) Zn1—N2—C6—C1 10.1 (4)
I1—Zn1—N1—C1 125.1 (2) N1—C1—C6—N2 −2.6 (5)
I2—Zn1—N1—C1 −99.1 (2) C2—C1—C6—N2 175.4 (3)
N1—Zn1—N2—C6 −10.3 (2) C6—N2—C7—C8 14.4 (5)
I1—Zn1—N2—C6 −126.7 (2) Zn1—N2—C7—C8 −170.5 (3)
I2—Zn1—N2—C6 97.0 (2) C6—N2—C7—C12 −168.0 (3)
N1—Zn1—N2—C7 174.3 (3) Zn1—N2—C7—C12 7.0 (4)
I1—Zn1—N2—C7 57.9 (3) C12—C7—C8—C9 2.2 (5)
I2—Zn1—N2—C7 −78.4 (3) N2—C7—C8—C9 179.7 (3)
C5—N1—C1—C2 −0.8 (5) C7—C8—C9—C10 −1.7 (5)
Zn1—N1—C1—C2 175.5 (3) C8—C9—C10—C11 0.5 (5)
C5—N1—C1—C6 177.2 (3) C8—C9—C10—Br1 −178.3 (3)
Zn1—N1—C1—C6 −6.5 (4) C9—C10—C11—C12 0.3 (6)
N1—C1—C2—C3 0.2 (5) Br1—C10—C11—C12 179.0 (3)
C6—C1—C2—C3 −177.6 (3) C10—C11—C12—C7 0.2 (6)
C1—C2—C3—C4 0.9 (6) C8—C7—C12—C11 −1.5 (5)
C2—C3—C4—C5 −1.5 (6) N2—C7—C12—C11 −179.1 (3)
C1—N1—C5—C4 0.2 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2225).

References

  1. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.
  3. Dehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M. (2007). Acta Cryst. E63, m2841.
  4. Lee, S. H., Kim, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m511. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m11. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020680/rz2225sup1.cif

e-64-m1018-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020680/rz2225Isup2.hkl

e-64-m1018-Isup2.hkl (217.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES