Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 12;64(Pt 8):m1022. doi: 10.1107/S1600536808020898

Bis(O,O′-diphenethyl dithio­phosphato-κ2 S,S′)bis­(4-methyl­pyridine-κN)nickel(II)

Jian-Shen Feng a,*, Yu Cheng a, Li-Ke Zou a, Bin Xie a, Xiu-Lan Zhang a
PMCID: PMC2961944  PMID: 21203014

Abstract

The title complex, [Ni(C16H18O2PS2)2(C6H7N)2], exhibits a roughly octa­hedral coordination geometry. The NiII atom lies on an inversion centre and is coordinated by four S atoms of O,O′-diphenethyl dithio­phosphate mol­ecules and two N atoms of 4-methyl­pyridine mol­ecules. Important geometric data include Ni—N = 2.100 (3) Å, and Ni—S = 2.5101 (10) and 2.4772 (11) Å.

Related literature

For related literature, see: Allen (2002); Drew et al. (1987); Harrison et al. (1987); Liu et al. (1997); Li et al. (2006).graphic file with name e-64-m1022-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H18O2PS2)2(C6H7N)2]

  • M r = 919.77

  • Monoclinic, Inline graphic

  • a = 12.920 (4) Å

  • b = 17.498 (4) Å

  • c = 10.979 (3) Å

  • β = 113.05 (3)°

  • V = 2283.9 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 294 (2) K

  • 0.50 × 0.48 × 0.33 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999) T min = 0.715, T max = 0.797

  • 4524 measured reflections

  • 4263 independent reflections

  • 2538 reflections with I > 2σ(I)

  • R int = 0.004

  • 3 standard reflections every 300 reflections intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.125

  • S = 0.98

  • 4263 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020898/dn2365sup1.cif

e-64-m1022-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020898/dn2365Isup2.hkl

e-64-m1022-Isup2.hkl (208.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial assistance from the Education Committee of Sichuan Province of China (project No. 2006 A110, 07ZA161) and the Science and Technology Office of Zigong City, China (project No. 07GX008).

supplementary crystallographic information

Comment

Interest in the chemistry of metal complexes of O,O'- dialkyldithiophosphates continues to grow due to extensively employed as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides(Harrison et al.,1987; Liu et al., 1997;Li et al.,2006). O,O'-Dialkyldithiophosphates exhibit remarkable variety of forms of coordination to metal (Drew et al.,1987). These systems can adopt a variety of molecular and crystal structures, mono-,bi-,tetra-,and polynuclear. We report here the synthesis and crystal structure of Ni[S2P(OCH2CH2Ph)2]2(NC5H4CH3-4)2.

The NiII atom exhibits a roughly octahedral geometry,and lies on an inversion center (Fig.1). The bond lengths and angles within the complex may be considered normal in comparison with the Cambridge Structural Database results (Allen, 2002).

Experimental

90 ml hot aqueous solution of Ni(OAc)2.4 H2O (1.87 g, 7.5 mmol) was added to 90 ml boiling methanol solution of [(PhCH2CH2O)2PS2]NH2(CH2CH3)2(6.42 g, 15.75 mmol). The mixture was refluxed and stirred for 30 minutes.After cooling to room temperature, the resulting Ni[S2P(OCH2CH2Ph)2]2 precipitate was collected by filtration and washed with methanol.

0.56 g 4-methylpyridine was added to a solution of Ni[S2P(OCH2CH2Ph)2]2 (0.72 g, 1 mmol) in 30 ml acetone and 60 ml petroleum ether, then the reaction mixture was concentrated to about 30 ml with a vacuum rotary evaporator. After cooling to room temperature, the pale green precipitate was collected by filtration and washed with petroleum ether.The block crystal was dissovled in a solution of 0.6 g 4-methylpyridine in 30 ml acetone and 20 ml petroleum ether, and the solution was kept at room temperature, green block crystals of Ni[S2P(OCH2CH2Ph)2]2(NC5H4CH3-4)2 were obtained in four weeks.

Refinement

All H atoms attached to C atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.96 Å (methyl) and Uiso(H) =1.2Ueq(C, aromatic and methylene) or 1.5Ueq (C, methyl).

Figures

Fig. 1.

Fig. 1.

A View of the title complexe showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for the sake of clarity.[Symmetry code: (i) -x + 1, -y, -z].

Crystal data

[Ni(C16H18O2PS2)2(C6H7N)2] F000 = 964
Mr = 919.77 Dx = 1.337 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 12.920 (4) Å θ = 4.7–7.8º
b = 17.498 (4) Å µ = 0.72 mm1
c = 10.979 (3) Å T = 294 (2) K
β = 113.05 (3)º Block, green
V = 2283.9 (12) Å3 0.50 × 0.48 × 0.33 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.004
Radiation source: fine-focus sealed tube θmax = 25.6º
Monochromator: graphite θmin = 1.7º
T = 294(2) K h = −15→6
ω/2θ scans k = −21→0
Absorption correction: for a sphere(WINGX; Farrugia, 1999) l = −12→13
Tmin = 0.715, Tmax = 0.797 3 standard reflections
4524 measured reflections every 300 reflections
4263 independent reflections intensity decay: 0.3%
2538 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.072P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
4263 reflections Δρmax = 0.40 e Å3
263 parameters Δρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.0000 0.04415 (18)
S1 0.37867 (8) 0.09900 (5) 0.04468 (9) 0.0600 (3)
S2 0.68569 (7) 0.06097 (5) 0.11775 (9) 0.0560 (3)
P1 0.74567 (7) −0.03034 (6) 0.06089 (9) 0.0566 (3)
O1 0.8408 (2) −0.07200 (17) 0.1803 (2) 0.0721 (8)
O2 0.82597 (19) −0.00827 (16) −0.0117 (2) 0.0738 (8)
N1 0.4851 (2) 0.05930 (16) −0.1723 (3) 0.0471 (6)
C1 0.8201 (3) −0.0924 (2) 0.2958 (3) 0.0643 (10)
H1A 0.7570 −0.1274 0.2720 0.077*
H1B 0.8024 −0.0471 0.3350 0.077*
C2 0.9244 (3) −0.1296 (3) 0.3921 (4) 0.0693 (11)
H2A 0.9359 −0.1780 0.3564 0.083*
H2B 0.9887 −0.0972 0.4049 0.083*
C3 0.9159 (3) −0.1428 (2) 0.5224 (4) 0.0599 (9)
C4 0.9828 (4) −0.1032 (3) 0.6319 (4) 0.0779 (12)
H4 1.0354 −0.0690 0.6252 0.094*
C5 0.9745 (5) −0.1126 (3) 0.7503 (5) 0.1013 (16)
H5 1.0213 −0.0851 0.8237 0.122*
C6 0.8984 (5) −0.1618 (4) 0.7619 (5) 0.1083 (19)
H6 0.8916 −0.1674 0.8427 0.130*
C7 0.8314 (4) −0.2035 (3) 0.6549 (6) 0.111 (2)
H7 0.7791 −0.2376 0.6627 0.133*
C8 0.8416 (4) −0.1947 (3) 0.5345 (4) 0.0880 (14)
H8 0.7978 −0.2241 0.4621 0.106*
C9 0.7811 (3) 0.0340 (3) −0.1333 (4) 0.0786 (13)
H9A 0.7260 0.0707 −0.1300 0.094*
H9B 0.7443 −0.0005 −0.2068 0.094*
C10 0.8743 (3) 0.0741 (3) −0.1521 (4) 0.0792 (12)
H10A 0.9305 0.0371 −0.1509 0.095*
H10B 0.9094 0.1092 −0.0790 0.095*
C11 0.8351 (3) 0.1179 (2) −0.2803 (3) 0.0565 (9)
C12 0.7967 (3) 0.0800 (2) −0.3984 (4) 0.0656 (10)
H12 0.7931 0.0269 −0.3995 0.079*
C13 0.7637 (3) 0.1192 (3) −0.5139 (4) 0.0856 (14)
H13 0.7388 0.0922 −0.5931 0.103*
C14 0.7658 (4) 0.1953 (4) −0.5172 (6) 0.1012 (19)
H14 0.7428 0.2208 −0.5978 0.121*
C15 0.8018 (4) 0.2354 (3) −0.4018 (7) 0.1067 (19)
H15 0.8026 0.2886 −0.4026 0.128*
C16 0.8375 (4) 0.1958 (3) −0.2827 (5) 0.0807 (13)
H16 0.8633 0.2228 −0.2034 0.097*
C17 0.4546 (3) 0.0236 (2) −0.2882 (3) 0.0552 (9)
H17 0.4386 −0.0284 −0.2919 0.066*
C18 0.4457 (3) 0.0600 (2) −0.4025 (4) 0.0642 (10)
H18 0.4229 0.0329 −0.4815 0.077*
C19 0.4706 (3) 0.1367 (3) −0.4005 (4) 0.0674 (11)
C20 0.5011 (3) 0.1735 (2) −0.2822 (4) 0.0691 (11)
H20 0.5177 0.2254 −0.2764 0.083*
C21 0.5072 (3) 0.1338 (2) −0.1714 (4) 0.0588 (9)
H21 0.5278 0.1602 −0.0919 0.071*
C22 0.4675 (4) 0.1771 (3) −0.5222 (5) 0.1025 (17)
H22A 0.4301 0.2254 −0.5301 0.154*
H22B 0.4275 0.1464 −0.5987 0.154*
H22C 0.5430 0.1854 −0.5156 0.154*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0442 (3) 0.0490 (3) 0.0422 (3) −0.0013 (3) 0.0201 (3) 0.0022 (3)
S1 0.0643 (6) 0.0611 (6) 0.0612 (6) 0.0078 (5) 0.0317 (5) 0.0007 (5)
S2 0.0515 (5) 0.0646 (6) 0.0510 (5) −0.0106 (4) 0.0190 (4) 0.0018 (4)
P1 0.0450 (5) 0.0802 (7) 0.0490 (5) 0.0067 (5) 0.0233 (4) 0.0164 (5)
O1 0.0545 (14) 0.111 (2) 0.0570 (15) 0.0208 (14) 0.0285 (12) 0.0289 (14)
O2 0.0479 (13) 0.123 (2) 0.0581 (15) 0.0103 (14) 0.0287 (12) 0.0319 (15)
N1 0.0449 (15) 0.0522 (17) 0.0490 (16) 0.0003 (13) 0.0234 (13) 0.0049 (13)
C1 0.053 (2) 0.089 (3) 0.056 (2) 0.0092 (19) 0.0264 (18) 0.023 (2)
C2 0.051 (2) 0.094 (3) 0.059 (2) 0.013 (2) 0.0184 (19) 0.021 (2)
C3 0.049 (2) 0.069 (2) 0.055 (2) 0.0095 (19) 0.0131 (17) 0.0187 (19)
C4 0.073 (3) 0.089 (3) 0.065 (3) −0.002 (2) 0.021 (2) 0.011 (2)
C5 0.119 (4) 0.110 (4) 0.062 (3) 0.007 (3) 0.021 (3) 0.005 (3)
C6 0.106 (4) 0.157 (5) 0.067 (3) 0.021 (4) 0.040 (3) 0.040 (4)
C7 0.075 (3) 0.154 (5) 0.097 (4) −0.013 (3) 0.028 (3) 0.058 (4)
C8 0.078 (3) 0.112 (4) 0.062 (3) −0.020 (3) 0.015 (2) 0.023 (3)
C9 0.056 (2) 0.127 (4) 0.057 (2) 0.003 (2) 0.0274 (19) 0.035 (2)
C10 0.063 (2) 0.120 (4) 0.056 (2) −0.005 (2) 0.025 (2) 0.020 (2)
C11 0.0480 (19) 0.079 (3) 0.051 (2) −0.0007 (18) 0.0296 (17) 0.0078 (19)
C12 0.057 (2) 0.080 (3) 0.061 (2) −0.0134 (19) 0.0246 (19) −0.007 (2)
C13 0.064 (3) 0.139 (5) 0.053 (3) −0.014 (3) 0.023 (2) 0.004 (3)
C14 0.064 (3) 0.156 (6) 0.086 (4) 0.005 (3) 0.033 (3) 0.056 (4)
C15 0.101 (4) 0.074 (3) 0.170 (6) 0.022 (3) 0.080 (4) 0.042 (4)
C16 0.085 (3) 0.084 (3) 0.088 (3) −0.010 (3) 0.050 (3) −0.023 (3)
C17 0.054 (2) 0.063 (2) 0.051 (2) 0.0008 (17) 0.0234 (17) −0.0012 (18)
C18 0.058 (2) 0.092 (3) 0.048 (2) 0.007 (2) 0.0268 (18) 0.007 (2)
C19 0.055 (2) 0.086 (3) 0.069 (3) 0.012 (2) 0.033 (2) 0.025 (2)
C20 0.071 (3) 0.063 (2) 0.078 (3) 0.002 (2) 0.033 (2) 0.020 (2)
C21 0.061 (2) 0.058 (2) 0.061 (2) −0.0007 (18) 0.0280 (19) 0.0034 (19)
C22 0.098 (3) 0.134 (4) 0.090 (3) 0.019 (3) 0.052 (3) 0.056 (3)

Geometric parameters (Å, °)

Ni1—N1i 2.100 (3) C8—H8 0.9300
Ni1—N1 2.100 (3) C9—C10 1.476 (5)
Ni1—S2 2.4772 (11) C9—H9A 0.9700
Ni1—S2i 2.4772 (11) C9—H9B 0.9700
Ni1—S1 2.5101 (10) C10—C11 1.507 (5)
Ni1—S1i 2.5101 (10) C10—H10A 0.9700
S1—P1i 1.9772 (15) C10—H10B 0.9700
S2—P1 1.9803 (15) C11—C16 1.363 (6)
P1—O1 1.581 (3) C11—C12 1.365 (5)
P1—O2 1.584 (2) C12—C13 1.355 (6)
P1—S1i 1.9772 (15) C12—H12 0.9300
O1—C1 1.440 (4) C13—C14 1.332 (7)
O2—C9 1.435 (4) C13—H13 0.9300
N1—C17 1.332 (4) C14—C15 1.362 (7)
N1—C21 1.333 (4) C14—H14 0.9300
C1—C2 1.497 (5) C15—C16 1.390 (7)
C1—H1A 0.9700 C15—H15 0.9300
C1—H1B 0.9700 C16—H16 0.9300
C2—C3 1.495 (5) C17—C18 1.371 (5)
C2—H2A 0.9700 C17—H17 0.9300
C2—H2B 0.9700 C18—C19 1.378 (5)
C3—C4 1.363 (5) C18—H18 0.9300
C3—C8 1.365 (5) C19—C20 1.362 (5)
C4—C5 1.356 (6) C19—C22 1.498 (5)
C4—H4 0.9300 C20—C21 1.376 (5)
C5—C6 1.350 (7) C20—H20 0.9300
C5—H5 0.9300 C21—H21 0.9300
C6—C7 1.365 (7) C22—H22A 0.9600
C6—H6 0.9300 C22—H22B 0.9600
C7—C8 1.387 (6) C22—H22C 0.9600
C7—H7 0.9300
N1i—Ni1—N1 180.0 C3—C8—C7 120.0 (5)
N1i—Ni1—S2 90.83 (8) C3—C8—H8 120.0
N1—Ni1—S2 89.17 (8) C7—C8—H8 120.0
N1i—Ni1—S2i 89.17 (8) O2—C9—C10 108.7 (3)
N1—Ni1—S2i 90.83 (8) O2—C9—H9A 110.0
S2—Ni1—S2i 180.0 C10—C9—H9A 110.0
N1i—Ni1—S1 90.50 (8) O2—C9—H9B 110.0
N1—Ni1—S1 89.50 (8) C10—C9—H9B 110.0
S2—Ni1—S1 98.75 (4) H9A—C9—H9B 108.3
S2i—Ni1—S1 81.25 (4) C9—C10—C11 112.3 (3)
N1i—Ni1—S1i 89.50 (8) C9—C10—H10A 109.2
N1—Ni1—S1i 90.50 (8) C11—C10—H10A 109.2
S2—Ni1—S1i 81.25 (4) C9—C10—H10B 109.2
S2i—Ni1—S1i 98.75 (4) C11—C10—H10B 109.2
S1—Ni1—S1i 180.0 H10A—C10—H10B 107.9
P1i—S1—Ni1 83.82 (5) C16—C11—C12 118.1 (4)
P1—S2—Ni1 84.64 (4) C16—C11—C10 121.7 (4)
O1—P1—O2 94.61 (13) C12—C11—C10 120.3 (4)
O1—P1—S1i 113.28 (13) C13—C12—C11 120.4 (4)
O2—P1—S1i 113.27 (12) C13—C12—H12 119.8
O1—P1—S2 112.56 (12) C11—C12—H12 119.8
O2—P1—S2 112.10 (12) C14—C13—C12 121.9 (5)
S1i—P1—S2 110.28 (6) C14—C13—H13 119.0
C1—O1—P1 119.5 (2) C12—C13—H13 119.0
C9—O2—P1 119.2 (2) C13—C14—C15 119.5 (5)
C17—N1—C21 116.6 (3) C13—C14—H14 120.2
C17—N1—Ni1 121.2 (2) C15—C14—H14 120.2
C21—N1—Ni1 122.2 (2) C14—C15—C16 119.0 (5)
O1—C1—C2 107.7 (3) C14—C15—H15 120.5
O1—C1—H1A 110.2 C16—C15—H15 120.5
C2—C1—H1A 110.2 C11—C16—C15 121.0 (4)
O1—C1—H1B 110.2 C11—C16—H16 119.5
C2—C1—H1B 110.2 C15—C16—H16 119.5
H1A—C1—H1B 108.5 N1—C17—C18 122.9 (4)
C3—C2—C1 111.1 (3) N1—C17—H17 118.5
C3—C2—H2A 109.4 C18—C17—H17 118.5
C1—C2—H2A 109.4 C17—C18—C19 120.2 (4)
C3—C2—H2B 109.4 C17—C18—H18 119.9
C1—C2—H2B 109.4 C19—C18—H18 119.9
H2A—C2—H2B 108.0 C20—C19—C18 117.0 (4)
C4—C3—C8 118.7 (4) C20—C19—C22 121.6 (4)
C4—C3—C2 120.4 (4) C18—C19—C22 121.4 (4)
C8—C3—C2 120.9 (4) C19—C20—C21 120.0 (4)
C5—C4—C3 121.5 (5) C19—C20—H20 120.0
C5—C4—H4 119.2 C21—C20—H20 120.0
C3—C4—H4 119.2 N1—C21—C20 123.3 (4)
C6—C5—C4 120.1 (5) N1—C21—H21 118.4
C6—C5—H5 120.0 C20—C21—H21 118.4
C4—C5—H5 120.0 C19—C22—H22A 109.5
C5—C6—C7 120.0 (5) C19—C22—H22B 109.5
C5—C6—H6 120.0 H22A—C22—H22B 109.5
C7—C6—H6 120.0 C19—C22—H22C 109.5
C6—C7—C8 119.7 (5) H22A—C22—H22C 109.5
C6—C7—H7 120.1 H22B—C22—H22C 109.5
C8—C7—H7 120.1

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2365).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Drew, M. G. B., Hobson, R. J., Mumba, P. P. E. M. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1569–1571.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. Harrison, P. G. & Kikabhai, K. (1987). J. Chem. Soc. Dalton Trans. pp. 807–814.
  8. Li, Z., Li, J. & Du, S. (2006). J. Mol. Struct.783, 116–121.
  9. Liu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899–3909.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020898/dn2365sup1.cif

e-64-m1022-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020898/dn2365Isup2.hkl

e-64-m1022-Isup2.hkl (208.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES