Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 16;64(Pt 8):m1031. doi: 10.1107/S1600536808021296

catena-Poly[[(2,2′-bipyrimidine-κ2 N 1,N 1′)diperchloratocopper(II)]-μ-4,4′-bipyridine-κ2 N:N′]

Wei Xu a,*, Jian-Li Lin a, Hong-Zhen Xie a
PMCID: PMC2961952  PMID: 21203022

Abstract

The central CuN4O2 motif of the title compound, [Cu(ClO4)2(C8H6N4)(C10H8N2)]n, exhibits a Jahn–Teller-distorted octa­hedral geometry around the metal centre, showing a considerably long Cu—O bond distance of 2.634 (4) Å towards the second perchlorate group occupying the sixth coordination site, giving a (4+1+1)-type coordination mode. The 4,4′-bipyridine (bipy) ligands are highly twisted with respect to each other, the dihedral angle between the two pyridyl ring planes being 38.9 (2)°. The bipy ligands act as bridging ligands between [Cu(ClO4)2(2,2′-bpym)] (2,2′-bpym is 2,2′-bipyrimidine) units, generating an infinite one-dimensional zigzag chain along [010]. Intra- and intermolecular C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For related literature, see: Biradha & Fujita (2000); Eddaoudi et al. (2001); Hathaway (1973); Kaye & Long (2008); Kitagawa et al. (2006); Subramanian & Zaworotko (1995).graphic file with name e-64-m1031-scheme1.jpg

Experimental

Crystal data

  • [Cu(ClO4)2(C8H6N4)(C10H8N2)]

  • M r = 576.75

  • Monoclinic, Inline graphic

  • a = 11.334 (2) Å

  • b = 14.266 (3) Å

  • c = 13.299 (3) Å

  • β = 96.55 (3)°

  • V = 2136.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 295 (2) K

  • 0.32 × 0.26 × 0.15 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996) T min = 0.664, T max = 0.815

  • 4265 measured reflections

  • 3686 independent reflections

  • 2896 reflections with I > 2σ(I)

  • R int = 0.045

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.160

  • S = 1.06

  • 3686 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021296/im2074sup1.cif

e-64-m1031-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021296/im2074Isup2.hkl

e-64-m1031-Isup2.hkl (180.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O6i 0.93 2.59 3.415 (9) 147
C6—H6⋯O2ii 0.93 2.58 3.425 (7) 151
C7—H7⋯O3iii 0.93 2.58 3.189 (7) 124
C9—H9⋯O3 0.93 2.56 3.480 (7) 171
C9—H9⋯O4 0.93 2.49 3.185 (6) 132
C11—H11⋯O2iv 0.93 2.46 3.342 (6) 159
C16—H16⋯O4v 0.93 2.57 3.299 (6) 135
C17—H17⋯O8v 0.93 2.47 3.082 (6) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061) and the Newer Training Program Foundation for Talents of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020).

supplementary crystallographic information

Comment

A great deal of interest in self-assembly of coordination complexes with specific frameworks is expanding rapidly in view of their potentially useful magnetic, catalytic and nonlinear optical properties (Eddaoudi, et al., 2001; Kitagawa, et al., 2006; Kaye & Long, 2008). The ligand 4,4'-bipyridine is an ideal bridging ligand between transition metal atoms to establish coordination networks due to itss two potential binding sites that are arranged in a divergent (exo) fashion and its a rigid structure helping to predict network geometries (Subramanian & Zaworotko, 1995; Biradha & Fujita, 2000). 2,2'-bipyrimidine also is a versatile blocking and bridging ligand due to its N2 chelating sites on both sides of the ligand. Herein, we report a new complex with one-dimensional zigzag chains, (I), obtained by self-assembly from Cu(ClO4)2, 4,4'-bpy and 2,2'-bpym in DMF solution. 2,2'-bpym acts as a bidentate ligand with the second chelating site not coodinating the metal atom.

In the title compound, the Cu atom is located in a Jahn-Teller distorted octahedral coordination environment with four N atoms from one 2,2'-bpym ligand (N1, N2) and two 4,4'-bpy ligands [N5, N6#1 (#1 = 1/2 - x, 1/2 + y, 1/2 - z)] adopting a planar arrangement (d(Cu—N) = 1.998 (4)–2.008 (4) Å). The Cu(II) centre is displaced out of the N4 plane by 0.062 (2) Å in the direction of one of perchlorate ligand with d(Cu—O8) = 2.421 (4) Å. The O atom of the second perchlorate group occupies a sixth coordination site at a longer distance of 2.634 (4) Å, completing the overall (4 + 1 + 1) type coordination. O4 is situated slightly off the axial direct of the square pyramid, nevertheless it is close enough to the Cu atom (Hathaway, 1973). The complex can thus be interpreted of consisting of [(2,2'-bpym)Cu(ClO4)2] units attached to each other via 4,4'-bpy to give a zigzag one-dimensional chain along [010] with the chelating 2,2'-bpym ligands extending outwards. The pyrimidine rings of the 2,2'-bpym ligand are twisted relative to each other at 8.7 (1)°, while the dihedral angel of the pyridine rings of the 4,4'-bpy ligand is 38.9 (2)°. Another interesting feature of the structure is that the backbone of the 2,2'-bpym ligand extends sideways from either face of the 4,4'-bpy ribbon and intimately interlocks the interchain region that separates adjacent 4,4'-bpy ribbons (Fig. 2). The perchlorate groups exhibit weak intramolecular hydrogen bonds between the O atoms and the C atoms of the 4,4'-bpy ligands with d(C···O) = 3.082 (6)–3.480 (7) Å and <(C—H···O) = 124–171° (Table 1.). In addition, intermolecular C—H···O hydrogen bonds between the C atoms of the 2,2'-bpym and 4,4'-bpy ligands and the O atoms of the perchlorate groups (d(C···O) = 3.189 (7)–3.425 (7) Å and <(C—H···O) = 124–159°) are observed that are responsible for the three-dimensional supramolecular assembly.

Experimental

Addition of 0.372 g (1.0 mmol) Cu(ClO4)2, 0.158 g (1.0 mmol) 4,4'-bipyridine and 0.158 g (1.0 mmol) 2,2'-bipyrimidine to a stirred DMF solution (30 ml) yielde a purple precipitate, which was refluxed for 2 h at 403 K followed by filtration after cooling. The resulting light-green filtrate was maintained at room temperature, slow evaporation afforded a small amount of purple block crystals two weeks later.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H distances at 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound. The displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Schematic representation showing the interlocking of 2,2'-bpym rings of two strands resulting in an infinite one-dimensional sheet (perchlorates are omitted for clarity).

Crystal data

[Cu(ClO4)2(C8H6N4)(C10H8N2)] F000 = 1164
Mr = 576.75 Dx = 1.793 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 11.334 (2) Å θ = 5.0–12.5º
b = 14.266 (3) Å µ = 1.34 mm1
c = 13.299 (3) Å T = 295 (2) K
β = 96.55 (3)º Block, purple
V = 2136.3 (8) Å3 0.32 × 0.26 × 0.15 mm
Z = 4

Data collection

Bruker P4 diffractometer Rint = 0.045
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 2.1º
T = 295(2) K h = −13→1
θ/2θ scans k = −1→16
Absorption correction: multi-scan(XSCANS; Siemens, 1996) l = −15→15
Tmin = 0.664, Tmax = 0.815 3 standard reflections
4265 measured reflections every 97 reflections
3686 independent reflections intensity decay: none
2896 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.160   w = 1/[σ2(Fo2) + (0.0889P)2 + 4.3786P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3686 reflections Δρmax = 0.93 e Å3
317 parameters Δρmin = −0.61 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.59615 (4) 0.21166 (4) 0.34471 (4) 0.0296 (2)
Cl1 0.73943 (10) 0.14413 (9) 0.10813 (9) 0.0398 (3)
Cl2 0.62782 (13) 0.18070 (11) 0.60732 (10) 0.0534 (4)
N1 0.6774 (3) 0.0876 (3) 0.3709 (3) 0.0331 (8)
N2 0.7638 (3) 0.2575 (3) 0.3759 (3) 0.0299 (8)
N3 0.8653 (4) 0.0233 (3) 0.4312 (3) 0.0459 (11)
N4 0.9612 (3) 0.2015 (3) 0.4100 (4) 0.0460 (11)
N5 0.4387 (3) 0.1567 (3) 0.2901 (3) 0.0309 (8)
N6 −0.0235 (3) −0.1609 (3) 0.1722 (3) 0.0307 (8)
C1 0.6283 (5) 0.0024 (3) 0.3741 (4) 0.0429 (12)
H1 0.5471 −0.0046 0.3557 0.051*
C2 0.6961 (6) −0.0750 (4) 0.4043 (5) 0.0548 (15)
H2 0.6629 −0.1346 0.4050 0.066*
C3 0.8144 (5) −0.0602 (4) 0.4332 (4) 0.0518 (14)
H3 0.8614 −0.1113 0.4553 0.062*
C4 0.7946 (4) 0.0938 (3) 0.3996 (3) 0.0328 (10)
C5 0.8442 (4) 0.1889 (3) 0.3958 (3) 0.0335 (10)
C6 0.9985 (4) 0.2895 (4) 0.4055 (5) 0.0528 (15)
H6 1.0798 0.3009 0.4147 0.063*
C7 0.9233 (5) 0.3644 (4) 0.3880 (5) 0.0562 (15)
H7 0.9516 0.4255 0.3858 0.067*
C8 0.8037 (4) 0.3446 (4) 0.3737 (4) 0.0399 (11)
H8 0.7496 0.3935 0.3623 0.048*
C9 0.4280 (4) 0.1042 (4) 0.2051 (4) 0.0386 (11)
H9 0.4910 0.1029 0.1661 0.046*
C10 0.3281 (4) 0.0526 (3) 0.1737 (4) 0.0378 (11)
H10 0.3243 0.0166 0.1151 0.045*
C11 0.3444 (4) 0.1639 (3) 0.3396 (4) 0.0336 (10)
H11 0.3486 0.2039 0.3951 0.040*
C12 0.2399 (4) 0.1153 (3) 0.3132 (4) 0.0326 (10)
H12 0.1756 0.1228 0.3501 0.039*
C13 0.2324 (4) 0.0551 (3) 0.2310 (3) 0.0295 (9)
C14 0.1326 (4) −0.0117 (3) 0.2077 (4) 0.0316 (10)
C15 0.0802 (4) −0.0526 (4) 0.2857 (4) 0.0383 (11)
H15 0.0956 −0.0296 0.3514 0.046*
C16 0.0050 (4) −0.1276 (3) 0.2654 (4) 0.0378 (11)
H16 −0.0273 −0.1562 0.3188 0.045*
C17 0.0193 (4) −0.1170 (3) 0.0946 (4) 0.0348 (10)
H17 −0.0041 −0.1368 0.0287 0.042*
C18 0.0976 (4) −0.0428 (3) 0.1113 (3) 0.0335 (10)
H18 0.1269 −0.0137 0.0567 0.040*
O1 0.8332 (5) 0.1061 (6) 0.1735 (4) 0.114 (2)
O2 0.7807 (4) 0.1965 (3) 0.0279 (3) 0.0648 (12)
O3 0.6646 (5) 0.0702 (3) 0.0637 (4) 0.0770 (14)
O4 0.6684 (3) 0.2050 (3) 0.1635 (3) 0.0522 (10)
O5 0.5763 (7) 0.1934 (7) 0.6933 (5) 0.140 (3)
O6 0.6507 (6) 0.0798 (4) 0.6044 (5) 0.111 (2)
O7 0.7399 (5) 0.2209 (5) 0.6042 (5) 0.100 (2)
O8 0.5503 (4) 0.1986 (3) 0.5175 (3) 0.0596 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.0195 (3) 0.0221 (3) 0.0458 (4) 0.00049 (19) −0.0030 (2) 0.0002 (2)
Cl1 0.0354 (6) 0.0419 (7) 0.0432 (7) 0.0003 (5) 0.0089 (5) 0.0013 (5)
Cl2 0.0532 (8) 0.0679 (9) 0.0384 (7) −0.0110 (7) 0.0023 (6) 0.0033 (6)
N1 0.034 (2) 0.0248 (19) 0.040 (2) 0.0037 (15) 0.0016 (16) 0.0017 (16)
N2 0.0261 (18) 0.0251 (19) 0.036 (2) 0.0020 (15) −0.0055 (15) 0.0004 (15)
N3 0.044 (2) 0.043 (2) 0.051 (3) 0.020 (2) 0.007 (2) 0.011 (2)
N4 0.0232 (19) 0.051 (3) 0.061 (3) 0.0069 (18) −0.0050 (18) 0.000 (2)
N5 0.0236 (17) 0.0280 (19) 0.041 (2) −0.0027 (15) 0.0019 (15) −0.0057 (16)
N6 0.0202 (16) 0.0299 (19) 0.041 (2) −0.0021 (14) −0.0016 (15) −0.0023 (16)
C1 0.048 (3) 0.029 (2) 0.051 (3) −0.003 (2) 0.006 (2) 0.001 (2)
C2 0.077 (4) 0.030 (3) 0.059 (4) 0.007 (3) 0.019 (3) 0.006 (2)
C3 0.069 (4) 0.035 (3) 0.055 (3) 0.023 (3) 0.022 (3) 0.012 (2)
C4 0.035 (2) 0.033 (2) 0.031 (2) 0.0108 (19) 0.0043 (18) 0.0046 (18)
C5 0.028 (2) 0.038 (3) 0.033 (2) 0.0066 (19) −0.0029 (18) −0.0033 (19)
C6 0.024 (2) 0.058 (4) 0.073 (4) −0.005 (2) −0.003 (2) −0.008 (3)
C7 0.035 (3) 0.043 (3) 0.088 (5) −0.008 (2) −0.004 (3) −0.004 (3)
C8 0.028 (2) 0.037 (3) 0.053 (3) −0.001 (2) −0.002 (2) −0.003 (2)
C9 0.027 (2) 0.045 (3) 0.046 (3) −0.008 (2) 0.011 (2) −0.011 (2)
C10 0.030 (2) 0.039 (3) 0.045 (3) −0.007 (2) 0.005 (2) −0.007 (2)
C11 0.031 (2) 0.026 (2) 0.043 (3) −0.0042 (18) 0.0029 (19) −0.0080 (19)
C12 0.027 (2) 0.032 (2) 0.039 (2) −0.0031 (18) 0.0076 (18) −0.0071 (19)
C13 0.024 (2) 0.027 (2) 0.037 (2) −0.0026 (17) 0.0000 (17) −0.0003 (18)
C14 0.0207 (19) 0.029 (2) 0.045 (3) −0.0007 (17) 0.0016 (18) −0.0006 (19)
C15 0.031 (2) 0.042 (3) 0.042 (3) −0.010 (2) 0.0049 (19) −0.005 (2)
C16 0.033 (2) 0.041 (3) 0.040 (3) −0.011 (2) 0.011 (2) −0.002 (2)
C17 0.032 (2) 0.032 (2) 0.038 (3) −0.0027 (19) −0.0050 (19) 0.000 (2)
C18 0.034 (2) 0.033 (2) 0.032 (2) −0.0057 (19) −0.0001 (18) 0.0025 (19)
O1 0.077 (3) 0.183 (7) 0.078 (4) 0.063 (4) −0.006 (3) 0.023 (4)
O2 0.071 (3) 0.064 (3) 0.065 (3) −0.014 (2) 0.036 (2) 0.002 (2)
O3 0.089 (3) 0.047 (2) 0.099 (4) −0.023 (2) 0.028 (3) −0.021 (2)
O4 0.052 (2) 0.053 (2) 0.055 (2) −0.0009 (18) 0.0210 (18) −0.0097 (18)
O5 0.116 (5) 0.254 (10) 0.054 (3) 0.016 (6) 0.026 (3) −0.011 (5)
O6 0.126 (5) 0.068 (4) 0.131 (5) 0.011 (3) −0.023 (4) 0.034 (4)
O7 0.083 (4) 0.130 (5) 0.083 (4) −0.041 (3) −0.004 (3) 0.015 (3)
O8 0.056 (2) 0.078 (3) 0.044 (2) 0.021 (2) 0.0044 (18) 0.012 (2)

Geometric parameters (Å, °)

Cu—N6i 1.998 (4) C1—H1 0.9300
Cu—N1 2.007 (4) C2—C3 1.369 (9)
Cu—N2 2.008 (4) C2—H2 0.9300
Cu—N5 2.008 (4) C3—H3 0.9300
Cu—O8 2.421 (4) C4—C5 1.471 (7)
Cu—O4 2.634 (4) C6—C7 1.370 (8)
Cl1—O1 1.403 (5) C6—H6 0.9300
Cl1—O2 1.424 (4) C7—C8 1.377 (7)
Cl1—O3 1.438 (4) C7—H7 0.9300
Cl1—O4 1.442 (4) C8—H8 0.9300
Cl2—O5 1.354 (6) C9—C10 1.376 (6)
Cl2—O7 1.399 (6) C9—H9 0.9300
Cl2—O8 1.422 (4) C10—C13 1.395 (6)
Cl2—O6 1.464 (6) C10—H10 0.9300
N1—C1 1.339 (6) C11—C12 1.383 (6)
N1—C4 1.343 (6) C11—H11 0.9300
N2—C8 1.323 (6) C12—C13 1.385 (6)
N2—C5 1.343 (6) C12—H12 0.9300
N3—C4 1.325 (6) C13—C14 1.484 (6)
N3—C3 1.325 (7) C14—C18 1.372 (6)
N4—C6 1.329 (7) C14—C15 1.382 (7)
N4—C5 1.331 (6) C15—C16 1.376 (7)
N5—C11 1.321 (6) C15—H15 0.9300
N5—C9 1.350 (6) C16—H16 0.9300
N6—C16 1.332 (6) C17—C18 1.383 (6)
N6—C17 1.344 (6) C17—H17 0.9300
N6—Cuii 1.998 (4) C18—H18 0.9300
C1—C2 1.379 (7)
N6i—Cu—N1 175.53 (15) C2—C3—H3 118.4
N6i—Cu—N2 95.45 (14) N3—C4—N1 125.7 (4)
N1—Cu—N2 81.19 (15) N3—C4—C5 119.4 (4)
N6i—Cu—N5 88.66 (15) N1—C4—C5 114.9 (4)
N1—Cu—N5 95.15 (15) N4—C5—N2 124.9 (5)
N2—Cu—N5 169.48 (15) N4—C5—C4 119.9 (4)
N6i—Cu—O8 92.65 (15) N2—C5—C4 115.2 (4)
N1—Cu—O8 84.89 (15) N4—C6—C7 123.4 (5)
N2—Cu—O8 97.45 (15) N4—C6—H6 118.3
N5—Cu—O8 92.00 (15) C7—C6—H6 118.3
N6i—Cu—O4 95.57 (14) C6—C7—C8 116.6 (5)
N1—Cu—O4 86.74 (14) C6—C7—H7 121.7
N2—Cu—O4 79.35 (14) C8—C7—H7 121.7
N5—Cu—O4 90.64 (14) N2—C8—C7 121.5 (5)
O8—Cu—O4 171.41 (13) N2—C8—H8 119.2
O1—Cl1—O2 112.1 (4) C7—C8—H8 119.2
O1—Cl1—O3 109.9 (4) N5—C9—C10 122.9 (4)
O2—Cl1—O3 107.8 (3) N5—C9—H9 118.5
O1—Cl1—O4 110.2 (3) C10—C9—H9 118.5
O2—Cl1—O4 108.5 (3) C9—C10—C13 119.0 (4)
O3—Cl1—O4 108.3 (3) C9—C10—H10 120.5
O5—Cl2—O7 116.8 (5) C13—C10—H10 120.5
O5—Cl2—O8 113.6 (4) N5—C11—C12 123.5 (4)
O7—Cl2—O8 112.2 (3) N5—C11—H11 118.2
O5—Cl2—O6 104.4 (5) C12—C11—H11 118.2
O7—Cl2—O6 103.8 (4) C11—C12—C13 119.0 (4)
O8—Cl2—O6 104.4 (3) C11—C12—H12 120.5
C1—N1—C4 116.9 (4) C13—C12—H12 120.5
C1—N1—Cu 128.4 (3) C12—C13—C10 117.7 (4)
C4—N1—Cu 114.2 (3) C12—C13—C14 122.6 (4)
C8—N2—C5 117.6 (4) C10—C13—C14 119.4 (4)
C8—N2—Cu 128.2 (3) C18—C14—C15 117.5 (4)
C5—N2—Cu 114.1 (3) C18—C14—C13 122.3 (4)
C4—N3—C3 116.1 (5) C15—C14—C13 119.8 (4)
C6—N4—C5 116.0 (4) C16—C15—C14 119.3 (5)
C11—N5—C9 117.4 (4) C16—C15—H15 120.3
C11—N5—Cu 121.7 (3) C14—C15—H15 120.3
C9—N5—Cu 120.7 (3) N6—C16—C15 122.6 (4)
C16—N6—C17 118.6 (4) N6—C16—H16 118.7
C16—N6—Cuii 118.8 (3) C15—C16—H16 118.7
C17—N6—Cuii 121.2 (3) N6—C17—C18 121.0 (4)
N1—C1—C2 121.1 (5) N6—C17—H17 119.5
N1—C1—H1 119.5 C18—C17—H17 119.5
C2—C1—H1 119.5 C14—C18—C17 120.6 (4)
C3—C2—C1 117.0 (5) C14—C18—H18 119.7
C3—C2—H2 121.5 C17—C18—H18 119.7
C1—C2—H2 121.5 Cl1—O4—Cu 137.6 (2)
N3—C3—C2 123.2 (5) Cl2—O8—Cu 129.2 (2)
N3—C3—H3 118.4

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O6iii 0.93 2.59 3.415 (9) 147
C6—H6···O2iv 0.93 2.58 3.425 (7) 151
C7—H7···O3v 0.93 2.58 3.189 (7) 124
C9—H9···O3 0.93 2.56 3.480 (7) 171
C9—H9···O4 0.93 2.49 3.185 (6) 132
C11—H11···O2vi 0.93 2.46 3.342 (6) 159
C16—H16···O4ii 0.93 2.57 3.299 (6) 135
C17—H17···O8ii 0.93 2.47 3.082 (6) 124

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+3/2, y+1/2, −z+1/2; (vi) x−1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2074).

References

  1. Biradha, K. & Fujita, M. (2000). J. Chem. Soc. Dalton Trans. pp. 3805–3810.
  2. Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [DOI] [PubMed]
  3. Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49–69.
  4. Kaye, S. S. & Long, J. R. (2008). J. Am. Chem. Soc.130, 806–807. [DOI] [PubMed]
  5. Kitagawa, S., Noro, S.-I. & Nakamura, T. (2006). Chem. Commun. pp. 701–707. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Subramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl.34, 2127–2129.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021296/im2074sup1.cif

e-64-m1031-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021296/im2074Isup2.hkl

e-64-m1031-Isup2.hkl (180.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES