Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):m1041–m1042. doi: 10.1107/S160053680802179X

Dichlorido(dimethyl­formamide-κO)[1,4,7-tris­(2-cyano­ethyl)-1,4,7-triaza­cyclo­nonane-κ3 N 1,N 4,N 7]cobalt(II)

Zhong Zhang a, Zhi-Rong Geng a, Qun Zhao a, Zhi-Lin Wang a,*
PMCID: PMC2961961  PMID: 21203031

Abstract

The title compound, [CoCl2(C15H24N6)(C3H7NO)], crystallizes as a monomeric complex. The coordination environment around the CoII center could be described as a distorted octa­hedron consisting of three N donors from the facially coordinating triaza macrocyclic ligand, one O donor from dimethyl­formamide and two Cl ions. Neutral complex mol­ecules are associated via inter­molecular C—H⋯Cl hydrogen bonds to form two-dimensional layers. C—H⋯O hydrogen bonds are also present.

Related literature

For related literature, see: Scarpellini et al. (2005); Tei et al. (1998, 2003).graphic file with name e-64-m1041-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C15H24N6)(C3H7NO)]

  • M r = 491.33

  • Monoclinic, Inline graphic

  • a = 9.787 (2) Å

  • b = 19.710 (5) Å

  • c = 12.370 (3) Å

  • β = 97.936 (4)°

  • V = 2363.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 298 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.746, T max = 0.800

  • 12542 measured reflections

  • 4630 independent reflections

  • 3320 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.154

  • S = 1.07

  • 4630 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802179X/ww2123sup1.cif

e-64-m1041-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802179X/ww2123Isup2.hkl

e-64-m1041-Isup2.hkl (226.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cl1—Co1 2.4382 (14)
Cl2—Co1 2.4096 (13)
Co1—O1 2.114 (3)
Co1—N2 2.194 (4)
Co1—N3 2.200 (4)
Co1—N1 2.232 (4)
O1—Co1—N2 87.78 (12)
O1—Co1—N3 168.01 (13)
N2—Co1—N3 80.93 (13)
O1—Co1—N1 93.00 (13)
N2—Co1—N1 81.07 (14)
N3—Co1—N1 81.30 (13)
O1—Co1—Cl2 90.45 (9)
N2—Co1—Cl2 173.80 (10)
N3—Co1—Cl2 100.34 (10)
N1—Co1—Cl2 93.09 (10)
O1—Co1—Cl1 91.12 (9)
N2—Co1—Cl1 93.38 (10)
N3—Co1—Cl1 93.58 (10)
N1—Co1—Cl1 172.94 (10)
Cl2—Co1—Cl1 92.60 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl2i 0.97 2.75 3.658 (4) 157
C2—H2A⋯O1 0.97 2.58 3.120 (5) 116
C3—H3A⋯Cl2i 0.97 2.81 3.774 (4) 170
C7—H7A⋯Cl2 0.97 2.65 3.419 (4) 136
C10—H10A⋯O1 0.97 2.47 3.149 (6) 127
C10—H10B⋯Cl1 0.97 2.73 3.218 (4) 111
C11—H11A⋯Cl1i 0.97 2.62 3.525 (5) 156
C11—H11B⋯Cl2ii 0.97 2.65 3.502 (5) 147
C13—H13A⋯Cl1 0.97 2.72 3.460 (5) 133
C16—H16⋯Cl2 0.93 2.80 3.325 (5) 117
C17—H17A⋯O1 0.96 2.34 2.741 (7) 105

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was supported by the Natural Science Foundation of China (grant No. 20475026).

supplementary crystallographic information

Comment

Structural investigations on metal complexes with nitrile pendant arm derivatives of 1,4,7-triazacyclononane ([9]aneN3) reveal that these triazamacrocyclic ligands can either be used as building-blocks to assemble multi-dimensional polymeric networks (Tei et al., 1998) or only act as tridentate ligands in the formation of mononuclear complexes with the pendant nitrile groups not involved in metal coordination (Tei et al., 2003). In this paper, we report the crystal structure of the title compound, (I), which is a monomeric CoII complex of a [9]aneN3 derivative containing three pendant 2-cyanoethyl arms.

The molecular structure of (I) (Fig. 1) shows the CoII ion is six-coordinated with three tertiary N donors from the nitrile-functionalized [9]aneN3, one O donor from dimethylformamide ligand and two Cl- ions completing an octahedral geometry. All bond distances and angles around the octahedral CoII ion (Table 1) are generally within the normal ranges (Scarpellini et al., 2005). Three pendant 2-cyanoethyl arms attached to the triazamacrocycle adopt different conformations relative to the macrocycle framework and none of them participates in the coordination to the CoII ion.

The crystal packing of (I) is dominated by intermolecular C—H···Cl hydrogen bonds (Table 2), which link the complex molecules to form two-dimensional hydrogen-bonded layers parallel to (010) plane (Fig. 2).

Experimental

The triazamacrocyclic ligand 1,4,7-tris(2-cyanoethyl)-1,4,7-triazacyclononane was prepared following a literature procedure (Tei et al., 1998). A mixture of the triazamacrocyclic ligand (29 mg, 0.1 mmol) and CoCl2.6H2O (24 mg, 0.1 mmol) in MeOH (10 ml) was stirred under reflux for 2 h. The precipitated pink solid was filtered off and subsequently redissolved in dimethylformamide. Purple single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into the dimethylformamide solution. (yield 23 mg, 46.8%) Elemental analysis found: C 44.13; H 6.41; N 19.81%; calculated for C18H31Cl2CoN7O: C 44.00; H 6.36; N 19.96%.

Refinement

All H atoms were placed in calculated positions and treated in the subsequent refinement as riding atoms, with C—H distances in the range 0.96 - 0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level (arbitrary sphere for H atoms).

Fig. 2.

Fig. 2.

Partial packing diagram of the title compound, showing the two-dimensional network formed through intermolecular C—H···Cl hydrogen bonds (dashed lines). For clarity, H atoms not involved in hydrogen bonding have been omitted.

Crystal data

[CoCl2(C15H24N6)(C3H7NO)] F000 = 1028
Mr = 491.33 Dx = 1.381 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 915 reflections
a = 9.787 (2) Å θ = 3.2–26.3º
b = 19.710 (5) Å µ = 0.98 mm1
c = 12.370 (3) Å T = 298 (2) K
β = 97.936 (4)º Block, purple
V = 2363.5 (10) Å3 0.32 × 0.26 × 0.24 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4630 independent reflections
Radiation source: sealed tube 3320 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.052
T = 298(2) K θmax = 26.0º
ω and φ scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −11→12
Tmin = 0.746, Tmax = 0.800 k = −22→24
12542 measured reflections l = −14→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.154   w = 1/[σ2(Fo2) + (0.0683P)2 + 1.5989P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
4630 reflections Δρmax = 0.90 e Å3
264 parameters Δρmin = −0.78 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2270 (4) 0.8211 (2) 0.3872 (3) 0.0324 (9)
H1A 0.2422 0.7803 0.4311 0.039*
H1B 0.2274 0.8595 0.4364 0.039*
C2 0.3432 (4) 0.8292 (2) 0.3190 (4) 0.0361 (10)
H2A 0.3394 0.8744 0.2878 0.043*
H2B 0.4308 0.8245 0.3658 0.043*
C3 0.3572 (5) 0.7079 (2) 0.2715 (3) 0.0379 (10)
H3A 0.3539 0.7075 0.3495 0.046*
H3B 0.4479 0.6923 0.2594 0.046*
C4 0.2498 (5) 0.6602 (2) 0.2164 (4) 0.0389 (10)
H4A 0.2658 0.6531 0.1415 0.047*
H4B 0.2586 0.6167 0.2533 0.047*
C5 0.0698 (5) 0.6922 (2) 0.3276 (4) 0.0373 (10)
H5A 0.1510 0.6860 0.3812 0.045*
H5B 0.0049 0.6564 0.3381 0.045*
C6 0.0060 (4) 0.7591 (2) 0.3466 (3) 0.0303 (9)
H6A −0.0840 0.7617 0.3028 0.036*
H6B −0.0072 0.7624 0.4227 0.036*
C7 0.0145 (4) 0.8814 (2) 0.3205 (3) 0.0304 (9)
H7A −0.0535 0.8830 0.2556 0.037*
H7B 0.0790 0.9182 0.3148 0.037*
C8 −0.0598 (5) 0.8954 (3) 0.4193 (3) 0.0381 (10)
H8A −0.1046 0.9393 0.4088 0.046*
H8B −0.1318 0.8617 0.4201 0.046*
C9 0.0240 (6) 0.8954 (3) 0.5263 (4) 0.0466 (12)
C10 0.4320 (4) 0.7942 (3) 0.1517 (3) 0.0385 (10)
H10A 0.3992 0.8346 0.1115 0.046*
H10B 0.4295 0.7572 0.0997 0.046*
C11 0.5839 (5) 0.8060 (3) 0.2025 (4) 0.0446 (12)
H11A 0.6046 0.7777 0.2669 0.054*
H11B 0.6442 0.7920 0.1505 0.054*
C12 0.6122 (6) 0.8753 (3) 0.2321 (5) 0.0509 (13)
C13 0.0065 (5) 0.6472 (2) 0.1419 (4) 0.0413 (11)
H13A 0.0278 0.6533 0.0683 0.050*
H13B −0.0832 0.6675 0.1447 0.050*
C14 −0.0065 (6) 0.5711 (2) 0.1614 (5) 0.0510 (13)
H14A −0.0061 0.5636 0.2390 0.061*
H14B −0.0950 0.5559 0.1244 0.061*
C15 0.0989 (6) 0.5305 (3) 0.1257 (5) 0.0522 (13)
C16 0.1312 (5) 0.9111 (2) 0.0171 (4) 0.0413 (11)
H16 0.0671 0.8850 −0.0274 0.050*
C17 0.2703 (6) 1.0089 (3) 0.0374 (5) 0.0666 (17)
H17A 0.2868 0.9934 0.1116 0.100*
H17B 0.2374 1.0548 0.0355 0.100*
H17C 0.3546 1.0068 0.0060 0.100*
C18 0.1187 (6) 0.9877 (3) −0.1311 (5) 0.0618 (16)
H18A 0.0484 0.9566 −0.1617 0.093*
H18B 0.1924 0.9880 −0.1749 0.093*
H18C 0.0802 1.0325 −0.1296 0.093*
Cl1 0.17722 (12) 0.74778 (6) −0.02560 (9) 0.0444 (3)
Cl2 −0.11597 (11) 0.80786 (5) 0.07777 (8) 0.0339 (2)
Co1 0.12259 (6) 0.78880 (3) 0.14939 (5) 0.03397 (19)
N1 0.0910 (4) 0.81680 (18) 0.3190 (3) 0.0329 (8)
N2 0.3359 (4) 0.77830 (18) 0.2297 (3) 0.0371 (9)
N3 0.1097 (4) 0.68609 (18) 0.2168 (3) 0.0319 (8)
N4 0.0843 (4) 0.8938 (2) 0.6097 (3) 0.0441 (10)
N5 0.6313 (5) 0.9298 (2) 0.2543 (4) 0.0551 (12)
N6 0.1858 (5) 0.4987 (2) 0.0935 (4) 0.0492 (10)
N7 0.1708 (4) 0.9672 (2) −0.0227 (3) 0.0470 (10)
O1 0.1717 (3) 0.88941 (16) 0.1096 (2) 0.0372 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.030 (2) 0.039 (2) 0.025 (2) 0.0038 (18) −0.0088 (16) −0.0029 (17)
C2 0.029 (2) 0.042 (2) 0.036 (2) −0.0020 (18) −0.0027 (17) 0.0042 (19)
C3 0.039 (2) 0.049 (3) 0.024 (2) 0.014 (2) −0.0005 (18) −0.0011 (19)
C4 0.046 (3) 0.035 (2) 0.036 (2) 0.013 (2) 0.006 (2) 0.0042 (19)
C5 0.046 (3) 0.035 (2) 0.032 (2) 0.001 (2) 0.0073 (19) 0.0015 (19)
C6 0.025 (2) 0.041 (2) 0.0255 (19) 0.0005 (18) 0.0034 (15) 0.0055 (17)
C7 0.025 (2) 0.041 (2) 0.024 (2) 0.0045 (17) −0.0016 (16) −0.0021 (17)
C8 0.033 (2) 0.050 (3) 0.034 (2) 0.004 (2) 0.0127 (19) 0.001 (2)
C9 0.056 (3) 0.055 (3) 0.033 (3) 0.004 (2) 0.018 (2) −0.008 (2)
C10 0.032 (2) 0.056 (3) 0.026 (2) 0.001 (2) −0.0023 (17) −0.005 (2)
C11 0.023 (2) 0.065 (3) 0.045 (3) 0.000 (2) 0.0059 (19) 0.004 (2)
C12 0.042 (3) 0.044 (3) 0.069 (4) −0.005 (2) 0.016 (3) 0.001 (3)
C13 0.040 (3) 0.041 (3) 0.042 (3) −0.002 (2) 0.003 (2) 0.001 (2)
C14 0.055 (3) 0.042 (3) 0.056 (3) −0.003 (2) 0.007 (2) −0.001 (2)
C15 0.045 (3) 0.048 (3) 0.061 (3) 0.006 (2) −0.002 (2) −0.010 (3)
C16 0.047 (3) 0.037 (2) 0.039 (3) −0.002 (2) 0.003 (2) 0.012 (2)
C17 0.061 (4) 0.070 (4) 0.060 (4) −0.030 (3) −0.023 (3) 0.017 (3)
C18 0.061 (4) 0.063 (3) 0.062 (4) −0.003 (3) 0.009 (3) 0.038 (3)
Cl1 0.0365 (6) 0.0568 (7) 0.0392 (6) 0.0011 (5) 0.0027 (4) −0.0050 (5)
Cl2 0.0330 (6) 0.0353 (5) 0.0324 (5) −0.0002 (4) 0.0005 (4) 0.0006 (4)
Co1 0.0342 (3) 0.0336 (3) 0.0330 (3) −0.0002 (2) 0.0007 (2) 0.0012 (2)
N1 0.0301 (19) 0.0342 (18) 0.0343 (19) 0.0050 (15) 0.0037 (15) 0.0049 (15)
N2 0.035 (2) 0.0317 (19) 0.046 (2) 0.0012 (15) 0.0081 (17) 0.0029 (16)
N3 0.034 (2) 0.0365 (18) 0.0241 (17) −0.0024 (16) 0.0012 (14) 0.0022 (15)
N4 0.042 (2) 0.052 (2) 0.038 (2) −0.0023 (19) 0.0052 (18) −0.0134 (19)
N5 0.050 (3) 0.060 (3) 0.060 (3) −0.011 (2) 0.024 (2) −0.011 (2)
N6 0.047 (3) 0.045 (2) 0.052 (2) 0.006 (2) −0.002 (2) −0.014 (2)
N7 0.042 (2) 0.055 (2) 0.042 (2) −0.012 (2) −0.0004 (17) 0.0153 (19)
O1 0.0345 (17) 0.0401 (17) 0.0354 (17) −0.0036 (14) −0.0015 (13) 0.0082 (14)

Geometric parameters (Å, °)

C1—N1 1.477 (5) C10—H10A 0.9700
C1—C2 1.515 (6) C10—H10B 0.9700
C1—H1A 0.9700 C11—C12 1.432 (8)
C1—H1B 0.9700 C11—H11A 0.9700
C2—N2 1.487 (6) C11—H11B 0.9700
C2—H2A 0.9700 C12—N5 1.119 (6)
C2—H2B 0.9700 C13—N3 1.486 (6)
C3—N2 1.486 (6) C13—C14 1.526 (7)
C3—C4 1.501 (7) C13—H13A 0.9700
C3—H3A 0.9700 C13—H13B 0.9700
C3—H3B 0.9700 C14—C15 1.423 (7)
C4—N3 1.464 (6) C14—H14A 0.9700
C4—H4A 0.9700 C14—H14B 0.9700
C4—H4B 0.9700 C15—N6 1.170 (6)
C5—N3 1.481 (5) C16—O1 1.235 (5)
C5—C6 1.491 (6) C16—N7 1.291 (6)
C5—H5A 0.9700 C16—H16 0.9300
C5—H5B 0.9700 C17—N7 1.405 (6)
C6—N1 1.477 (5) C17—H17A 0.9600
C6—H6A 0.9700 C17—H17B 0.9600
C6—H6B 0.9700 C17—H17C 0.9600
C7—N1 1.478 (5) C18—N7 1.426 (6)
C7—C8 1.531 (6) C18—H18A 0.9600
C7—H7A 0.9700 C18—H18B 0.9600
C7—H7B 0.9700 C18—H18C 0.9600
C8—C9 1.458 (7) Cl1—Co1 2.4382 (14)
C8—H8A 0.9700 Cl2—Co1 2.4096 (13)
C8—H8B 0.9700 Co1—O1 2.114 (3)
C9—N4 1.116 (6) Co1—N2 2.194 (4)
C10—N2 1.470 (6) Co1—N3 2.200 (4)
C10—C11 1.550 (6) Co1—N1 2.232 (4)
N1—C1—C2 112.0 (3) C14—C13—H13A 107.8
N1—C1—H1A 109.2 N3—C13—H13B 107.8
C2—C1—H1A 109.2 C14—C13—H13B 107.8
N1—C1—H1B 109.2 H13A—C13—H13B 107.1
C2—C1—H1B 109.2 C15—C14—C13 115.1 (5)
H1A—C1—H1B 107.9 C15—C14—H14A 108.5
N2—C2—C1 112.4 (4) C13—C14—H14A 108.5
N2—C2—H2A 109.1 C15—C14—H14B 108.5
C1—C2—H2A 109.1 C13—C14—H14B 108.5
N2—C2—H2B 109.1 H14A—C14—H14B 107.5
C1—C2—H2B 109.1 N6—C15—C14 177.6 (6)
H2A—C2—H2B 107.9 O1—C16—N7 125.1 (5)
N2—C3—C4 111.7 (3) O1—C16—H16 117.5
N2—C3—H3A 109.3 N7—C16—H16 117.5
C4—C3—H3A 109.3 N7—C17—H17A 109.5
N2—C3—H3B 109.3 N7—C17—H17B 109.5
C4—C3—H3B 109.3 H17A—C17—H17B 109.5
H3A—C3—H3B 107.9 N7—C17—H17C 109.5
N3—C4—C3 112.2 (4) H17A—C17—H17C 109.5
N3—C4—H4A 109.2 H17B—C17—H17C 109.5
C3—C4—H4A 109.2 N7—C18—H18A 109.5
N3—C4—H4B 109.2 N7—C18—H18B 109.5
C3—C4—H4B 109.2 H18A—C18—H18B 109.5
H4A—C4—H4B 107.9 N7—C18—H18C 109.5
N3—C5—C6 112.8 (3) H18A—C18—H18C 109.5
N3—C5—H5A 109.0 H18B—C18—H18C 109.5
C6—C5—H5A 109.0 O1—Co1—N2 87.78 (12)
N3—C5—H5B 109.0 O1—Co1—N3 168.01 (13)
C6—C5—H5B 109.0 N2—Co1—N3 80.93 (13)
H5A—C5—H5B 107.8 O1—Co1—N1 93.00 (13)
N1—C6—C5 112.5 (3) N2—Co1—N1 81.07 (14)
N1—C6—H6A 109.1 N3—Co1—N1 81.30 (13)
C5—C6—H6A 109.1 O1—Co1—Cl2 90.45 (9)
N1—C6—H6B 109.1 N2—Co1—Cl2 173.80 (10)
C5—C6—H6B 109.1 N3—Co1—Cl2 100.34 (10)
H6A—C6—H6B 107.8 N1—Co1—Cl2 93.09 (10)
N1—C7—C8 117.6 (4) O1—Co1—Cl1 91.12 (9)
N1—C7—H7A 107.9 N2—Co1—Cl1 93.38 (10)
C8—C7—H7A 107.9 N3—Co1—Cl1 93.58 (10)
N1—C7—H7B 107.9 N1—Co1—Cl1 172.94 (10)
C8—C7—H7B 107.9 Cl2—Co1—Cl1 92.60 (4)
H7A—C7—H7B 107.2 C6—N1—C1 113.8 (3)
C9—C8—C7 117.1 (4) C6—N1—C7 111.0 (3)
C9—C8—H8A 108.0 C1—N1—C7 111.2 (3)
C7—C8—H8A 108.0 C6—N1—Co1 100.5 (2)
C9—C8—H8B 108.0 C1—N1—Co1 108.7 (3)
C7—C8—H8B 108.0 C7—N1—Co1 111.2 (2)
H8A—C8—H8B 107.3 C10—N2—C3 110.8 (3)
N4—C9—C8 177.2 (6) C10—N2—C2 112.0 (3)
N2—C10—C11 115.5 (4) C3—N2—C2 112.4 (3)
N2—C10—H10A 108.4 C10—N2—Co1 109.8 (3)
C11—C10—H10A 108.4 C3—N2—Co1 109.0 (3)
N2—C10—H10B 108.4 C2—N2—Co1 102.6 (3)
C11—C10—H10B 108.4 C4—N3—C5 113.5 (3)
H10A—C10—H10B 107.5 C4—N3—C13 112.0 (3)
C12—C11—C10 112.8 (4) C5—N3—C13 112.0 (4)
C12—C11—H11A 109.0 C4—N3—Co1 102.5 (3)
C10—C11—H11A 109.0 C5—N3—Co1 108.2 (3)
C12—C11—H11B 109.0 C13—N3—Co1 108.0 (3)
C10—C11—H11B 109.0 C16—N7—C17 121.4 (4)
H11A—C11—H11B 107.8 C16—N7—C18 120.9 (5)
N5—C12—C11 178.4 (7) C17—N7—C18 117.6 (4)
N3—C13—C14 118.2 (4) C16—O1—Co1 119.1 (3)
N3—C13—H13A 107.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Cl2i 0.97 2.75 3.658 (4) 157
C2—H2A···O1 0.97 2.58 3.120 (5) 116
C3—H3A···Cl2i 0.97 2.81 3.774 (4) 170
C7—H7A···Cl2 0.97 2.65 3.419 (4) 136
C10—H10A···O1 0.97 2.47 3.149 (6) 127
C10—H10B···Cl1 0.97 2.73 3.218 (4) 111
C11—H11A···Cl1i 0.97 2.62 3.525 (5) 156
C11—H11B···Cl2ii 0.97 2.65 3.502 (5) 147
C13—H13A···Cl1 0.97 2.72 3.460 (5) 133
C16—H16···Cl2 0.93 2.80 3.325 (5) 117
C17—H17A···O1 0.96 2.34 2.741 (7) 105

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2123).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Scarpellini, M., Wu, A. J., Kampf, J. W. & Pecoraro, V. L. (2005). Inorg. Chem.44, 5001–5010. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). J. Chem. Soc. Dalton Trans. pp. 304–310.
  6. Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802179X/ww2123sup1.cif

e-64-m1041-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802179X/ww2123Isup2.hkl

e-64-m1041-Isup2.hkl (226.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES